TUTORIAL 9

MA1132: ADVANCED CALCULUS, HILARY 2017

- Evaluate ∫₀¹ ∫_x^{2x} ∫_{xy-1}^{x+y} x²dzdydx.
 Use spherical coordinates to evaluate ∫∫∫_R xdV when R is the piece lying in the first octant of the unit ball x² + y² + z² ≤ 1 centered at the origin. (Recall that $\sin^2 \vartheta = \frac{1 - \cos(2\vartheta)}{2}.)$
- (3) Use a change of variables to find $\iint_R (y^2 x^2)^4 dA$ where R is the trapezoid with vertices at (0,1), (1,0), (2,0), and (0,2). (Hint: Make a change of variables which transforms two of the sides of the trapezoid to be on lines of the form u = a and u = b, and to find a suitable second parameter v, make a choice which makes the integrand as nice as possible.)

Advanced Problem:

Consider the *n*-variable function $e^{-\frac{1}{2}(x_1^2 + x_2^2 + ... x_n^2)}$. Express $\int \cdots \int_{\mathbb{R}^n} e^{-\frac{1}{2}(x_1^2 + x_2^2 + ... x_n^2)} dV$, where dV is an *n*-dimensional volume element, as a product of integrals to find its value. Additionally use the very important technique of differentiating under the integration sign, which states that for "nice" functions f(x,t) we have

$$\frac{d}{dx}\int_{a}^{b}f(x,t)dx = \int_{a}^{b}\frac{\partial f}{\partial x}(x,t)dt,$$

to evaluate the integral

$$\int_{-\infty}^{\infty} x^n e^{-x^2}$$

for any positive integer n. (Hint: take the Gaussian integral identity $\int_{-\infty}^{\infty} e^{-x^2} dx =$ $\sqrt{\pi}$ and insert a parameter t.)