TUTORIAL 9

MA1132: ADVANCED CALCULUS, HILARY 2017
(1) Evaluate $\int_{0}^{1} \int_{x}^{2 x} \int_{x y-1}^{x+y} x^{2} d z d y d x$.
(2) Use spherical coordinates to evaluate $\iiint_{R} x d V$ when R is the piece lying in the first octant of the unit ball $x^{2}+y^{2}+z^{2} \leq 1$ centered at the origin. (Recall that $\left.\sin ^{2} \vartheta=\frac{1-\cos (2 \vartheta)}{2}.\right)$
(3) Use a change of variables to find $\iint_{R}\left(y^{2}-x^{2}\right)^{4} d A$ where R is the trapezoid with vertices at $(0,1),(1,0),(2,0)$, and $(0,2)$. (Hint: Make a change of variables which transforms two of the sides of the trapezoid to be on lines of the form $u=a$ and $u=b$, and to find a suitable second parameter v, make a choice which makes the integrand as nice as possible.)

Advanced Problem:
 where $d V$ is an n-dimensional volume element, as a product of integrals to find its value. Additionally use the very important technique of differentiating under the integration sign, which states that for "nice" functions $f(x, t)$ we have

$$
\frac{d}{d x} \int_{a}^{b} f(x, t) d x=\int_{a}^{b} \frac{\partial f}{\partial x}(x, t) d t
$$

to evaluate the integral

$$
\int_{-\infty}^{\infty} x^{n} e^{-x^{2}}
$$

for any positive integer n. (Hint: take the Gaussian integral identity $\int_{-\infty}^{\infty} e^{-x^{2}} d x=$ $\sqrt{\pi}$ and insert a parameter t.)

