TUTORIAL 8 SOLUTIONS

MA1132: ADVANCED CALCULUS, HILARY 2017

(1) Evaluate the integral

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} \sin \left(x^{5}\right) y d x d y
$$

by switching the order of integration. That is, write this as a double integral over a region R in the plane (sketch a picture), rewrite this as in integral with respect to $d y d x$, and evaluate.

Solution: Since we don't know how to find antiderivative for $\sin \left(x^{5}\right)$, we switch the order of integration as suggested. The integral is equal to

$$
\iint_{R} \sin \left(x^{5}\right) y d A
$$

where R is the region bounded by the parabola $y=x^{2}$ (solve $x=\sqrt{y}$ for y), the line $x=1$, and the x-axis. Integrating this over y first, this is equal to

$$
\int_{0}^{1} \int_{0}^{x^{2}} \sin \left(x^{5}\right) y d y d x=\frac{1}{2} \int_{0}^{1} \sin \left(x^{5}\right) x^{4} d x=\frac{1}{10}\left[-\cos \left(x^{5}\right)\right]_{x=0}^{1}=\frac{1-\cos (1)}{10} .
$$

(2) Evaluate

$$
\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{d y d x}{\sqrt{x^{2}+y^{2}}}
$$

by first switching to polar coordinates.
Solution: We first want to express this integral as an integral

$$
\iint_{R} \frac{d A}{\sqrt{x^{2}+y^{2}}}
$$

for some region R. The integration region, reading off from the double integral above, is bounded by the lines $x=0$ and $x=1$, on the left and right, and on the top and bottom by $y=x$ and the top arc of the circle $x^{2}+y^{2}=2$ (note that the line $x=1$, the circle, and the line $y=x$ all meet at the same point $(1,1))$. Thus, R in this case is just a sector of a circle of radius $\sqrt{2}$ between the rays $\vartheta=\pi / 4$ and $\vartheta=\pi / 2$. Thus, recalling that $d A=r d r d \vartheta$ and $x^{2}+y^{2}=r^{2}$, the integral is equal to

$$
\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{0}^{\sqrt{2}} d r d \vartheta=\frac{\pi \sqrt{2}}{4}
$$

(3) Show that the parametric surface

$$
\left\{\begin{array}{l}
x=u \cos v \\
y=u \sin v \\
z=u^{2}
\end{array}\right.
$$

with $1 \leq u \leq 4$ and $0 \leq v \leq \frac{\pi}{2}$ is a piece of the paraboloid $z=x^{2}+y^{2}$. Find the surface area of this piece.

Solution: For any point on the surface, we have that $z=u^{2}=u^{2}\left(\cos ^{2} \vartheta+\right.$ $\left.\sin ^{2} \vartheta\right)=x^{2}+y^{2}$. This is the graph of the vector-valued function $r(u, v)=$ $\left(u \cos v, u \sin v, u^{2}\right)$. We first compute its partial derivatives:

$$
\begin{gathered}
r_{u}=(\cos v, \sin v, 2 u) \\
r_{v}=(-u \sin v, u \cos v, 0)
\end{gathered}
$$

The cross product is $r_{u} \times r_{v}=\left(-2 u^{2} \cos v,-2 u^{2} \sin v, u\left(\cos ^{2} v+\sin ^{2} v\right)\right)=$ $u(-2 u \cos v,-2 u \sin v, 1)$, which has norm (note that $u>0$ in our range)

$$
u \sqrt{4 u^{2}\left(\sin ^{2} v+\cos ^{2} v\right)+1}=u \sqrt{4 u^{2}+1}
$$

Thus, the surface area is the integral of this over the corresponding region in the $u-v$ plane:

$$
\iint_{R}\left|r_{u} \times r_{v}\right| d A=\int_{0}^{\frac{\pi}{2}} \int_{1}^{4} u \sqrt{4 u^{2}+1} d u d v
$$

This is

$$
\frac{1}{12} \int_{0}^{\frac{\pi}{2}}\left[\left(4 u^{2}+1\right)^{\frac{3}{2}}\right]_{u=1}^{4} d v=\frac{\pi}{24}\left(65^{\frac{3}{2}}-5^{\frac{3}{2}}\right) .
$$

Advanced Problem:

The very important Gamma function is defined for positive real numbers as the integral

$$
\int_{0}^{\infty} x^{z-1} e^{-x} d x
$$

Show that this function evaluates to $\Gamma(n)=(n-1)$! at positive integers n. (Hint: use integration by parts to relate the values of $\Gamma(z)$ and $\Gamma(z+1)$.) The values at other places are interesting as well. Use a u-substitution to evaluate $\Gamma(1 / 2)$. Put together what you learned in the last two parts to find $\Gamma(n / 2)$ for any positive integer n.

Solution: Firstly, we find that $\Gamma(1)=\int_{0}^{\infty} e^{-x} d x=\lim _{a \rightarrow \infty}\left(1-e^{-a}\right)=1$. Thus, $\Gamma(1)=1=(1-1)$!, as claimed. Now, for general $z>0$, using integration by parts shows that

$$
\Gamma(z+1)=\int_{0}^{\infty} x^{z} e^{-x} d x=\lim _{a \rightarrow \infty}\left[-x^{z} e^{-x}\right]_{x=0}^{a}+\int z x^{z-1} e^{-x} d x=z \Gamma(z)
$$

(here we used the fact that e^{-x} decays faster than any power of x like x^{z}). Thus,

$$
\begin{aligned}
\Gamma(n) & =(n-1) \Gamma(n-1)=(n-1)(n-2) \Gamma(n-2) \\
& =\cdots=(n-1)(n-2) \cdots 1 \cdot \Gamma(1)=(n-1)(n-2) \cdots 2 \cdot 1=(n-1)!.
\end{aligned}
$$

At $1 / 2$, we have to evaluate

$$
\int_{0}^{\infty} x^{-\frac{1}{2}} e^{-x} d x
$$

Using the substitution $x=u^{2}$ turns this into ($d x=2 u d u$, so $d x / x^{\frac{1}{2}}=2 d u$)

$$
2 \int_{0}^{\infty} e^{-u^{2}} d u
$$

which by symmetry is $\int_{-\infty}^{\infty} e^{-u^{2}} d u$. But this is an integral we saw how to handle using polar coordinates in class, so we have found $\Gamma(1 / 2)=\sqrt{\pi}$. We can use the equation $\Gamma(z+1)=z \Gamma(z)$ to evaluate Γ at all positive half-integers from this value. For example, $\Gamma(3 / 2)=\frac{1}{2} \cdot \Gamma(1 / 2)=\sqrt{\pi} / 2, \Gamma(5 / 2)=\frac{3}{2} \cdot \Gamma(3 / 2)=\frac{3}{4} \cdot \sqrt{\pi}$. By noting the pattern from a few examples we can observe (or prove, using induction) that

$$
\Gamma\left(n+\frac{1}{2}\right)=\frac{(2 n-1)!!}{2^{n}} \sqrt{\pi},
$$

where $n!$! denotes the double factorial $n(n-2)(n-4) \cdots \varepsilon$, with $\varepsilon=2,1$ depending on whether n is even or odd, respectively. Thus, we have computed $\Gamma(n / 2)$ for all integers n (i.e., in both the cases when n is even or odd).

