TUTORIAL 8 SOLUTIONS

MA1132: ADVANCED CALCULUS, HILARY 2017

(1) Evaluate the integral

11
/ / sin(2®)ydxdy
o Juu

by switching the order of integration. That is, write this as a double integral
over a region R in the plane (sketch a picture), rewrite this as in integral with
respect to dydx, and evaluate.

Solution: Since we don’t know how to find antiderivative for sin(z°), we
switch the order of integration as suggested. The integral is equal to

/ /R sin(2%)ydA,

where R is the region bounded by the parabola y = z? (solve x = VY for y), the
line x = 1, and the z-axis. Integrating this over y first, this is equal to

1 1-— 1
/ / sin(2®)ydydr = / sin(z®)zdr = 10 (- cos(:c‘r’)]izo = ;—88“.

) Evaluate
/ /v * dyde
a:2+y

by first switching to polar coordinates.
Solution: We first want to express this integral as an integral

/ / dA

R\ 7%+ Y

for some region R. The integration region, reading off from the double integral
above, is bounded by the lines x = 0 and x = 1, on the left and right, and on the
top and bottom by y = x and the top arc of the circle 22 +y* = 2 (note that the
line x = 1, the circle, and the line y = x all meet at the same point (1, 1)). Thus,
R in this case is just a sector of a circle of radius v/2 between the rays ¢ = 7 /4
and ¥ = /2. Thus, recalling that dA = rdrdy and z? + y* = r?, the integral is

equal to
T V2
// arap = 22
= Jo 4
4
1
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(3) Show that the parametric surface

T = UCOSV
Yy =usinv
2z =u?

with 1 <wu <4 and 0 <wv < 7 is a piece of the paraboloid z = 2%+ y?%. Find the
surface area of this piece.

Solution: For any point on the surface, we have that z = u? = u?(cos® 9 +
sin?0) = 22 + y2. This is the graph of the vector-valued function 7(u,v) =
(ucosv,usinv,u?). We first compute its partial derivatives:

Ty = (cosv, sinv, 2u),

Ty = (—usinv,ucosv,0).

The cross product is r, x 7, = (—2u?cosv, —2u?sinv,u(cos?v + sin’v)) =
u(—2u cos v, —2usinv, 1), which has norm (note that u > 0 in our range)

u\/4u2(sin211 +cos?v) + 1 =uv4du? + 1.

Thus, the surface area is the integral of this over the corresponding region in the

u-v plane:
L
// |7y X 1y|dA = /2 / uv4u? + ldudv.
R 0o Ji
This is
L[ [(4 2+1)3]4 dv = (655 — 5%)
— u v=— —52),
12 J, w1t 0T 0

Advanced Problem:
The very important Gamma function is defined for positive real numbers as

the integral
o
/ ¥ e d.
0

Show that this function evaluates to I'(n) = (n—1)! at positive integers n. (Hint:
use integration by parts to relate the values of I'(z) and I'(z+1).) The values at
other places are interesting as well. Use a u-substitution to evaluate I'(1/2). Put
together what you learned in the last two parts to find I'(n/2) for any positive
integer n.

Solution: Firstly, we find that ['(1) = [~ e "dz = lim,oo(l —e™*) = 1.
Thus, I'(1) =1 = (1 — 1)!, as claimed. Now, for general z > 0, using integration
by parts shows that

a—00 =0

[(z+1) :/ e "dr = lim [—xze_x]a ~|—/zxz_le_xd:p = 2T'(2)
0
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(here we used the fact that e=* decays faster than any power of = like x#). Thus,
F'n)=n—-I'n—1)=(n—-1)(n—2)I'(n —2)
=-=n-1)n-2)---1-T)=n-1)(n—-2)---2-1=(n-1).

At 1/2, we have to evaluate

o0 1
/ 2 “dx.
0

Using the substitution # = u? turns this into (dz = 2udu, so dz/z2 = 2du)

2 / e du,
0

which by symmetry is ffooo e~ du. But this is an integral we saw how to handle

using polar coordinates in class, so we have found I'(1/2) = y/m. We can use the
equation I'(z + 1) = zI'(2) to evaluate I' at all positive half-integers from this
value. For example, I'(3/2) = 1 -T'(1/2) = /7/2, ['(5/2) = 2 - I'(3/2) = 3 - /7.
By noting the pattern from a few examples we can observe (or prove, using

induction) that
1 2n — !

where n!! denotes the double factorial n(n—2)(n—4) - - - &, with ¢ = 2, 1 depending
on whether n is even or odd, respectively. Thus, we have computed I'(n/2) for
all integers n (i.e., in both the cases when n is even or odd).



