## TUTORIAL 8

MA1132: ADVANCED CALCULUS, HILARY 2017
(1) Evaluate the integral

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} \sin \left(x^{5}\right) y d x d y
$$

by switching the order of integration. That is, write this as a double integral over a region $R$ in the plane (sketch a picture), rewrite this as in integral with respect to $d y d x$, and evaluate.
(2) Evaluate

$$
\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{d y d x}{\sqrt{x^{2}+y^{2}}}
$$

by first switching to polar coordinates.
(3) Show that the parametric surface

$$
\left\{\begin{array}{l}
x=u \cos v \\
y=u \sin v \\
z=u^{2}
\end{array}\right.
$$

with $1 \leq u \leq 4$ and $0 \leq v \leq \frac{\pi}{2}$ is a piece of the paraboloid $z=x^{2}+y^{2}$. Find the surface area of this piece.

## Advanced Problem:

The very important Gamma function is defined for positive real numbers as the integral

$$
\int_{0}^{\infty} x^{z-1} e^{-x} d x
$$

Show that this function evaluates to $\Gamma(n)=(n-1)$ ! at positive integers $n$. (Hint: use integration by parts to relate the values of $\Gamma(z)$ and $\Gamma(z+1)$.) The values at other places are interesting as well. Use a $u$-substitution to evaluate $\Gamma(1 / 2)$. Put together what you learned in the last two parts to find $\Gamma(n / 2)$ for any positive integer $n$.

