TUTORIAL 7 SOLUTIONS

MA1132: ADVANCED CALCULUS, HILARY 2017

(1) Using the method of Lagrange multipliers, find the point on the plane $x-y+3 z=$ 1 closest to the origin.

Solution: The distance of an arbitrary point (x, y, z) from the origin is $d=$ $\sqrt{x^{2}+y^{2}+z^{2}}$. It is geometrically clear that there is an absolute minimum of this function for (x, y, z) lying on the plane. To find it, we instead minimize the function

$$
d^{2}=f(x, y, z)=x^{2}+y^{2}+z^{2}
$$

subject to the constraint $g(x, y, z)=0$ where $g(x, y, z)=x-y+3 z-1$. The gradients of these two functions are $\nabla f=(2 x, 2 y, 2 z), \nabla g=(1,-1,3)$. Since $\nabla g \neq 0$ ever, the absolute minimum of the distance function we are looking for will occur at a point where

$$
\nabla f=\lambda g, \quad g=0
$$

Getting rid of the 2's in ∇f (which all get absorbed into the dummy constant λ) and setting components of the gradient equation equation, we obtain the system of equations

$$
\left\{\begin{array}{l}
x=\lambda \\
y=-\lambda \\
z=3 \lambda \\
x-y+3 z=1 .
\end{array}\right.
$$

Solving the first three equations gives $y=-x, z=3 x$. Plugging these into the equation of the plane gives $x+x+9 x=11 x=1$, and so the point we are looking for is $x=1 / 11, y=-1 / 11, z=3 / 11$.
(2) Compute the double integral

$$
\int_{0}^{1} \int_{0}^{\sqrt{\log 2}} x y e^{x^{2}} d x d y
$$

Solution: We evaluate:

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{\sqrt{\log 2}} x y e^{x^{2}} d x d y & =\int_{0}^{1} y\left(\int_{0}^{\sqrt{\log 2}} x e^{x^{2}} d x\right) d y \\
& =\int_{0}^{1} y\left[\frac{e^{x^{2}}}{2}\right]_{x=0}^{\sqrt{\log 2}} d y \\
& =\int_{0}^{1} y\left(1-\frac{1}{2}\right) d y=\int_{0}^{1} \frac{y}{2} d y \\
& =\left[\frac{y^{2}}{4}\right]_{0}^{1}=\frac{1}{4} .
\end{aligned}
$$

(3) Find the volume under the surface $z=\frac{x}{y}$ and above the rectangular region $R=[0,2] \times[1,3]$ in the $x-y$ plane.

Solution: The function $f(x, y)=x / y$ is always non-negative on $[0,2] \times[1,3]$, and so the double integral $\iint_{R} f(x, y) d A$ which in general gives the net volume, gives the actual volume in this case. Thus, the volume we want to compute is

$$
\begin{aligned}
V & =\int_{1}^{3} \int_{0}^{2} \frac{x}{y} d x d y \\
& =\int_{1}^{3} y^{-1}\left(\int_{0}^{2} x\right) d x d y \\
& =\int_{1}^{3} y^{-1}\left[\frac{x^{2}}{2}\right]_{0}^{2} d y \\
& =\int_{1}^{3} \frac{2}{y} d y=[2 \log y]_{1}^{3}=2 \log 3
\end{aligned}
$$

Advanced Problem: Suppose that $A=\left(A_{i j}\right)$ is a symmetric, real-valued $n \times n$ matrix. Define a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by the dot product $f(x)=x \cdot A x$. Show that the largest and smallest values of f on the unit sphere $\left\{x \in \mathbb{R}^{n}| | x \mid=1\right\}$ are the largest and smallest (real) eigenvalues of A. (Hints: Use the method of Lagrange multipliers. What is ∇f ? What is ∇g where $g(x)=x \cdot x-1$? Try writing down a few examples for small n first.) Deduce that every real-valued, symmetric $n \times n$ matrix has at least one real eigenvalue.

Solution: The function f is clearly continuous, and the sphere is a compact set, so by the Extreme Value Theorem, f has a global max and min on the sphere. We want to extremize f subject to the constraint $g=0$ with $g(x)=x \cdot x-1$. Writing this out using coordinates, say $x=\left(x_{1}, \ldots, x_{n}\right), g\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{2}+\ldots+x_{n}^{2}-1$, and so $\nabla g(x)=\left(2 x_{1}, \ldots, 2 x_{n}\right)=2 x$. On the sphere, ∇g thus doesn't vanish, and so our extrema must occur at points where $\nabla f=\lambda g$ and $g=0$ (there are no boundary points of the sphere to consider).

Now we compute the gradient ∇f. First, we write out f explicitly using the coordinates of x and matrix entries $A_{i j}$. Specifically, we see that $f(x)=\sum_{i=1}^{n} x_{i}(A x)_{i}=$ $\sum_{i=1}^{n} x_{i} \sum_{j=1}^{n} A_{i j} x_{j}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j}$. Now suppose we take the derivative of the last expression with respect to x_{i}. There are two types of pieces which will survive the differentiation. There is the piece $A_{i i} x_{i}^{2}$, which has derivative $2 A_{i i} x_{i}$. For each $j \neq i$, there are also two pieces $A_{i j} x_{i} x_{j}$ and $A_{j i} x_{j} x_{i}$. Since the matrix A is symmetric, $A_{i j}=A_{j i}$, and the sum of these two pieces is $2 A_{i j} x_{i} x_{j}$, which has derivative $2 A_{i j} x_{j}$. Thus,

$$
\frac{\partial f}{\partial x_{i}}=2 A_{i i} x_{i}+\sum_{\substack{j=1 \\ i \neq j}}^{n} 2 A_{i j} x_{j}=2 \sum_{j=1}^{n} A_{i j} x_{j}=2(A x)_{i}
$$

Putting all the derivatives together implies that $\nabla f=2 A x$. Thus, the equation $\nabla f=$ $\lambda \nabla g$ becomes $A x=\lambda x$, which implies that x is an eigenvector of A with eigenvalue λ. Hence, the maximum and minimum values of f on the sphere occur at eigenvectors of A. At such an eigenvector, $f(x)=x \cdot A x=x \cdot(\lambda x)=\lambda x \cdot x=\lambda$, as the vector x lies on the sphere. Thus, the maximum and minimum values of f on the sphere are the largest and smallest eigenvlaues of A. In particular, since the Extreme Value Theorem guarantees that such a max and a min exist, that A has at least one real eigenvalue. This is the main step in proving a very important result, known as the real spectral theorem. That is, you can inductively use this result to show that all eigenvalues of A are real. This is somewhat like to prove the Fundamental Theorem of Algebra (that all complex-coefficient polynomials of degree $n \geq 1$ have n complex roots) follows easily after one shows the much more difficult step that every such polynomial has at least one complex root.

