TUTORIAL 7

MA1132: ADVANCED CALCULUS, HILARY 2017
(1) Using the method of Lagrange multipliers, find the point on the plane $x-y+3 z=$ 1 closest to the origin.
(2) Compute the double integral

$$
\int_{0}^{1} \int_{0}^{\sqrt{\log 2}} x y e^{x^{2}} d x d y
$$

(3) Find the volume under the surface $z=\frac{x}{y}$ and above the rectangular region $R=[0,2] \times[1,3]$ in the $x-y$ plane.
Advanced Problem: Suppose that $A=\left(A_{i j}\right)$ is a symmetric, real-valued $n \times n$ matrix. Define a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by the dot product $f(x)=x \cdot A x$. Show that the largest and smallest values of f on the unit sphere $\left\{x \in \mathbb{R}^{n}| | x \mid=1\right\}$ are the largest and smallest eigenvalues of A. (Hints: Use the method of Lagrange multipliers. What is ∇f ? What is ∇g where $g(x)=x \cdot x-1$? Try writing down a few examples for small n first.) Deduce that every real-valued, symmetric $n \times n$ matrix has at least one real eigenvalue.

