TUTORIAL 5 SOLUTIONS

MA1132: ADVANCED CALCULUS, HILARY 2017

(1) Use the chain rule to find $\frac{dz}{dt}$ when

$$
z = \sin(xy) + e^{xy}, \qquad x = t^2, \qquad y = t.
$$

Check your answer by directly plugging in $x = t^2$ and $y = t$ into z and taking the derivative with respect to t .

Solution: The chain rule in this situation states that

$$
\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}
$$

= $(y \cos(xy) + ye^{xy}) \cdot (2t) + (x \cos(xy) + xe^{xy}) \cdot 1$
= $(t \cos(t^3) + te^{t^3}) \cdot (2t) + t^2 \cos(t^3) + t^2 e^{t^3} = 3t^2 \left(\cos(t^3) + e^{t^3}\right).$

To find $\frac{dz}{dt}$ directly, we can also plug in $x = t^2$, $y = t$ into the definition of z to find that

$$
z = \sin(t^3) + e^{t^3},
$$

so that

$$
\frac{dz}{dt} = 3t^2 \left(\cos(t^3) + e^{t^3} \right),
$$

which agrees with the computation above.

(2) Suppose that

$$
w = \frac{xy}{x^2 + z^2}
$$
, $x = r + s$, $y = r - s$, $z = 1$.

Use the chain rule to find $\frac{\partial w}{\partial s}$.

Solution: In this case, the chain rule states that

$$
\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial s} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial s}.
$$

Since $\frac{\partial x}{\partial s} = 1$, $\frac{\partial y}{\partial s} = -1$, and $\frac{\partial z}{\partial s} = 0$, this becomes

$$
\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} - \frac{\partial w}{\partial y}.
$$

These two derivatives are computed via the quotient rule to be:

$$
\frac{\partial w}{\partial x} = \frac{y(x^2 + z^2) - 2x^2y}{(x^2 + z^2)^2} = \frac{z^2y - x^2y}{(x^2 + z^2)^2} = \frac{(r - s) - (r + s)^2(r - s)}{((r + s)^2 + 1)^2},
$$

$$
\frac{\partial w}{\partial y} = \frac{\partial}{\partial y} \left(\frac{x}{x^2 + z^2} \cdot y \right) = \frac{x}{(x^2 + z^2)} = \frac{r + s}{(r + s)^2 + 1}.
$$

Hence,

$$
\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} - \frac{\partial w}{\partial y} = \frac{(r-s) - (r+s)^2(r-s)}{((r+s)^2 + 1)^2} - \frac{r+s}{(r+s)^2 + 1}.
$$

This answer is already acceptable (and useful if a point to plug in and evaluate were given), but it can also be written slightly more nicely as

$$
\frac{\partial w}{\partial s} = -2 \cdot \frac{r^3 + 2r^2s + rs^2 + s}{r^2 + 2rs + s^2 + 1)^2}.
$$

- (3) Suppose that $f(x, y) = x \cos y y \sin x$ and $(x_0, y_0) = (\pi/2, \pi)$. Find the directional derivatives of f at (x_0, y_0) in the directions of the following two vectors:
	- (a) $(3/5, -4/5)$,

(b) $(1, 2)$.

Solution:

We first compute the gradient in general:

$$
\nabla f = (f_x, f_y) = (\cos y - y \cos x, -x \sin y - \sin x),
$$

and at the specified point:

$$
\nabla f\left(\frac{\pi}{2}, \pi\right) = (-1, -1).
$$

Now we can find the directional derivatives we are looking for:

a). This is already a unit vector, as $|(3/5, -4/5)| = 1$ (as $3^2 + 4^2 = 5^2$). Thus, we can take $u = (3/5, -4/5)$ and the directional derivative we want to compute is

$$
D_u\left(\frac{\pi}{2}, \pi\right) = \nabla f\left(\frac{\pi}{2}, \pi\right) \cdot u = (-1, -1) \cdot \left(\frac{3}{5}, -\frac{4}{5}\right) = -\frac{3}{5} + \frac{4}{5} = \frac{1}{5}.
$$

b). This is not, a unit vector, so it is important to divide by its length to first obtain a unit vector. That is,

$$
|(1,2)| = \sqrt{1^2 + 2^2} = \sqrt{5},
$$

and so a unit vector pointing in the same direction as $(1, 2)$ is

$$
u = \frac{1}{\sqrt{5}}(1, 2).
$$

Then, the directional derivative we are looking for is

$$
D_u\left(\frac{\pi}{2}, \pi\right) = \nabla f\left(\frac{\pi}{2}, \pi\right) \cdot u = \frac{1}{\sqrt{5}}(-1, -1) \cdot (1, 2) = \frac{1}{\sqrt{5}}(-1 - 2) = -\frac{3}{\sqrt{5}}.
$$