TUTORIAL 5

MA1132: ADVANCED CALCULUS, HILARY 2017

(1) Use the chain rule to find $\frac{d z}{d t}$ when

$$
z=\sin (x y)+e^{x y}, \quad x=t^{2}, \quad y=t .
$$

Check your answer by directly plugging in $x=t^{2}$ and $y=t$ into z and taking the derivative with respect to t.
(2) Suppose that

$$
w=\frac{x y}{x^{2}+z^{2}}, \quad x=r+s, \quad y=r-s, \quad z=1 .
$$

Use the chain rule to find $\frac{\partial w}{\partial s}$.
(3) Suppose that $f(x, y)=x \cos y-y \sin x$ and $\left(x_{0}, y_{0}\right)=(\pi / 2, \pi)$. Find the directional derivatives of f at $\left(x_{0}, y_{0}\right)$ in the directions of the following two vectors:
(a) $(3 / 5,-4 / 5)$,
(b) $(1,2)$.

