TUTORIAL 4

MA1132: ADVANCED CALCULUS, HILARY 2017
(1) Compute the following partial derivatives and values of partial derivatives.
(a) The partial derivatives f_{x} and f_{y} when $f(x, y)=x^{4} y-\sqrt{x y}+\log (x) \sin (y)$.
(b) The value

$$
\left.\frac{\partial z}{\partial x}\right|_{x=3, y=2}
$$

for $z=\frac{x^{2}+y^{2}}{x-y}$.
(2) (a) Find the linearization, or the linear approximation, $L(x, y)$ of the function $f(x, y)=x e^{x y}$ near the point $\left(x_{0}, y_{0}\right)=(1,0)$.
(b) Use your answer from a) to approximate the value $f(0.99,0.2)$.
(3) We saw that Clairaut's Theorem guarantees that for "nice" functions, we can compute mixed second order partial derivatives in different orders and obtain the same answers. Here you will check a special case of this by direct computation. Namely, compute the partial derivatives directly to check that

$$
f_{x z}=f_{z x}
$$

when $f(x, y, z)=\sin (x+y)\left(x^{3} y-y^{2} z\right)$.

