TUTORIAL 3 SOLUTIONS

MA1132: ADVANCED CALCULUS, HILARY 2017

(1) Suppose that a particle travels with velocity function given for $t>0$ by

$$
v(t)=\left(t^{2}, \sqrt{2} \cdot t \log t,(\log t)^{2}\right)
$$

and that at $t=1$, the position of the particle is $r(1)=(1,0,3)$. Find the following.
(a) The position function $r(t)$ for the particle.
(b) The the distance travelled by the particle from $t=1$ to $t=2$.
(c) The acceleration function $a(t)$.

Solution:

a). We have to find an antiderivative of $v(t)$. For this, we compute

$$
\begin{gathered}
\int t^{2} d t=\frac{t^{3}}{3}+C \\
\int t \log t d t=\frac{t^{2} \log t}{2}-\frac{1}{2} \int t d t=\frac{t^{2}}{2} \log t-\frac{t^{2}}{4}+C
\end{gathered}
$$

(where we used partial integration with $u=\log t, d u=d t / t, v=t^{2} / 2, d v=t d t$)

$$
\int \log ^{2} t d t=t \log ^{2} t-2 \int \log t d t
$$

(where we used partial integration with $u=\log ^{2} t, d u=2 \log t d t / t, v=t$, $d v=d t)$ which equals

$$
t \log ^{2} t-2 t \log t+2 \int d t=t \log ^{2} t-2 t \log t+2 t+C
$$

(where we used partial integration with $u=\log t, d u=d t / t, v=t, d v=d t$). Thus,

$$
r(t)=\left(\frac{t^{3}}{3}, \frac{\sqrt{2} t^{2}}{2} \log t-\frac{\sqrt{2} t^{2}}{4}, t \log ^{2} t-2 t \log t+2 t\right)+C
$$

where C is now a vector. We can solve for C by plugging in to find

$$
r(1)=\left(\frac{1}{3},-\frac{\sqrt{2}}{4}, 2\right)+C=(1,0,3)
$$

so that $C=\left(\frac{2}{3}, \frac{\sqrt{2}}{4}, 1\right)$ and

$$
r(t)=\left(\frac{t^{3}+2}{3}, \frac{\sqrt{2} t^{2}}{2} \log t-\frac{\sqrt{2}}{4}\left(t^{2}-1\right), t \log ^{2} t-2 t \log t+2 t+1\right)
$$

b). We need to integrate $|v(t)|$ from $t=1$ to $t=2$. Note that

$$
|v(t)|=\sqrt{t^{4}+2 t^{2} \log ^{2} t+\log ^{4} t}=\sqrt{\left(t^{2}+\log ^{2} t\right)^{2}}=\left|t^{2}+\log ^{2} t\right|=t^{2}+\log ^{2} t
$$

where we have used the fact that $t^{2}+\log ^{2} t \geq 0$ on the interval [1,2]. Hence, the distance travelled is

$$
\begin{aligned}
\int_{1}^{2}\left(t^{2}+\log ^{2} t\right) d t & =\left[\frac{t^{3}}{3}+t \log ^{2} t-2 t \log t+2 t\right]_{1}^{2} \\
& =\left(8 / 3+2 \log ^{2} 2-4 \log 2+4\right)-(1 / 3+2)=\frac{13}{3}+2 \log 2(\log 2-2) .
\end{aligned}
$$

c). The acceleration is

$$
a(t)=v^{\prime}(t)=(2 t, \sqrt{2} \log t+\sqrt{2}, 2 \log t / t)
$$

(2) Determine whether or not the following limit exists, and if it does, find its value:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x+2 \sin y}{x+y}
$$

Solution: The limit does not exist, as we can parameterize two different paths towards the point $(0,0)$ by $(t, 0)$ and $(0, t)$ both giving the desired point when $t=0$. The limit towards $t=0$ on these two curves, are, respectively

$$
\lim _{t \rightarrow 0} \frac{t}{t}=\lim _{t \rightarrow 0} 1=1
$$

and

$$
\lim _{t \rightarrow 0} \frac{2 \sin t}{t}=\lim _{t \rightarrow 0} \frac{2 \cos t}{1}=2
$$

(using L'Hospital's rule). As these two limits approaching the point $(0,0)$ aren't equal, the limit in question does not exist.
(3) Sketch the domains of the following functions and determine whether they are open sets or not.
(a)

$$
f(x, y)=\log \left(1-\sqrt{x^{2}-4 x+y^{2}+4}\right) .
$$

(b)

$$
f(x, y)=\frac{x+\sin y}{y+\cos x} .
$$

Solution:

a). The domain is the set where the function inside of the logarithm is positive, that is, where

$$
1-\sqrt{x^{2}-4 x+y^{2}+4}>0
$$

or, equivalently,

$$
\sqrt{x^{2}-4 x+y^{2}+4}<1
$$

which is the same as

$$
(x-2)^{2}+y^{2}<1
$$

This is just the interior of a circle of radius 1 with center at $(2,0)$ (without the boundary of the circle included). This is an open set.
b). The only "problem points" are those where the denominator vanishes, which occurs when $y=-\cos (x)$. That is, the domain is the set of all points in the $x-y$ plane which are not on the graph of the curve $y=-\cos x$. This is also an open set.

