TUTORIAL 2 SOLUTIONS

MA1132: ADVANCED CALCULUS, HILARY 2017
(1) Consider the parametric curve

$$
\left\{\begin{array}{l}
x(t)=\cos (t) \\
y(t)=\sin (t) \\
z(t)=\frac{2}{3} t^{\frac{3}{2}} .
\end{array}\right.
$$

(a) Using the base point $t_{0}=0$, find, as a function of t, the arc length s of the curve from 0 to t.
(b) Write the arc length parameterization of the curve above.
(c) Find the coordinates of the point on the curve which is an arc length distance of $\frac{14}{3}$ away from the point at $t=0$ (in the direction of the orientation induced by the parameterization above).
Solution:
a). Setting $r(t)=\left(\cos (t), \sin (t), \frac{2}{3} t^{\frac{3}{2}}\right)$, we compute

$$
r^{\prime}(t)=\left(-\sin (t), \cos (t), t^{\frac{1}{2}}\right) .
$$

Thus,

$$
\left|r^{\prime}(t)\right|=\sqrt{\sin ^{2}(t)+\cos ^{2}(t)+t}=\sqrt{t+1}
$$

The arc length from 0 to t is given by

$$
s=\int_{0}^{t}\left|\frac{d r}{d u}\right| d u=\int_{0}^{t} \sqrt{u+1} d u=\frac{2}{3}\left((t+1)^{\frac{3}{2}}-1\right) .
$$

b). Solving for s in the last expression gives

$$
t=\left(\frac{3 s}{2}+1\right)^{\frac{2}{3}}-1
$$

Thus, the arc length parameterization of the curve is obtained by substituting the last expression in for t in the original parameterization, yielding

$$
\left\{\begin{array}{l}
x(s)=\cos \left(\left(\frac{3 s}{2}+1\right)^{\frac{2}{3}}-1\right) \\
y(s)=\sin \left(\left(\frac{3 s}{2}+1\right)^{\frac{2}{3}}-1\right) \\
z(s)=\frac{2}{3}\left(\left(\frac{3 s}{2}+1\right)^{\frac{2}{3}}-1\right)^{\frac{3}{2}} \\
1
\end{array}\right.
$$

c) When $s=14 / 3$, then $t=\left(\frac{3}{2} \cdot \frac{14}{3}+1\right)^{\frac{2}{3}}-1=8^{\frac{2}{3}}-1=3$. Thus,

$$
(x, y, z)=(\cos (3), \sin (3), 2 \sqrt{3}) .
$$

(2) In this problem, you will prove the important Frenet-Serret formulas, which describe how the TNB frame of unit tangent, unit normal, and binormal vectors of a curve in \mathbb{R}^{3} change as you move along the curve. These state the following (using arc length parameterization):

$$
\begin{gathered}
\frac{d T}{d s}=\kappa N, \\
\frac{d N}{d s}=-\kappa T+\tau B, \\
\frac{d B}{d s}=-\tau N .
\end{gathered}
$$

Here, τ is the torsion (which we briefly saw on the homework), and κ is the curvature of the curve. More succinctly, we can use matrix multiplication notation to write (where ' denotes differentiation with respect to s)

$$
\left(\begin{array}{l}
T^{\prime} \\
N^{\prime} \\
B^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)\left(\begin{array}{l}
T \\
N \\
B
\end{array}\right) .
$$

(a) Show the first equation, namely

$$
\frac{d T}{d s}=\kappa N
$$

using the definition

$$
N=\frac{\frac{d T}{d t}}{\left|\frac{d T}{d t}\right|},
$$

and the following two facts from class:

$$
\begin{gathered}
\frac{d s}{d t}=\left|\frac{d r}{d t}\right| \\
\kappa=\frac{\left|\frac{d T}{d t}\right|}{\left|\frac{d r}{d t}\right|}
\end{gathered}
$$

(b) Show that $\frac{d B}{d s}$ is perpendicular to B. Now show that $\frac{d B}{d s}$ is also perpendicular to T (hint: recall that B is perpendicular to both T and N by its definition as a cross product $B=T \times N$ and differentiate the equation $0=B \cdot T)$. Conclude that

$$
\frac{d B}{d s}=-\tau N
$$

where τ is a scalar-valued function (the minus sign is unimportant, and only there for historical reasons).
(c) Show, by differentiating the equation $N=B \times T$ that for the same function τ you defined by the equation in b), we have

$$
\frac{d N}{d s}=-\kappa T+\tau B
$$

Solution:

a) We use the chain rule to find

$$
\frac{d T}{d t}=\frac{d T}{d s} \frac{d s}{d t},
$$

so that by using the formulas above we find

$$
\frac{d T}{d s}=\frac{\frac{d T}{d t}}{\frac{d s}{d t}}=\frac{\left|\frac{d T}{d t}\right|}{\left|\frac{d r}{d t}\right|} N=\kappa N .
$$

b) Since $|B|=1$ for all s, using a basic theorem from class, $d B / d s$ is always perpendicular to B. Since B is perpendicular to both T and N, both dot products $B \cdot T$ and $B \cdot N$ are equal to zero. Differentiating $0=B \cdot T$, we find, using the product rule for dot products, that

$$
0=B \cdot \frac{d T}{d s}+\frac{d B}{d s} \cdot T
$$

which by the first Frenet-Serret formula is equal to

$$
0=\kappa B \cdot N+\frac{d B}{d s} \cdot T=\frac{d B}{d s} \cdot T
$$

Thus, $d B / d s$ is perpendicular to both T and B, implying that it is a multiple of N. We then simply choose to call this multiple $-\tau$.
c) We use the product rule for taking derivatives of cross products to find

$$
\frac{d N}{d s}=\frac{d B}{d s} \times T+B \times \frac{d T}{d s}=-\tau(N \times T)+\kappa(B \times N)
$$

where in the last equality we used parts a) and b). Since the cross product is an anticommutative operation, $N \times T=-(T \times N)=-B$. Moreover, $B \times N$ is perpendicular to both B and N, and has length 1 , so that it is $\pm T$. A check of the right-hand rule shows that in fact $B \times N=-T$. Plugging these last two facts into the last displayed equation shows that

$$
\frac{d N}{d s}=\tau B-\kappa T
$$

which is equivalent to the claim.
(3) Find the curvature of the plane curve parameterized by $r(t)=\left(t, t^{2}\right)$ at the point when $t=2$.

Solution: We will use the formula

$$
\kappa(t)=\frac{\left|r^{\prime}(t) \times r^{\prime \prime}(t)\right|}{\left|r^{\prime}(t)\right|^{3}} .
$$

We are using a cross product, so we must embed this curve in three dimensions, and so will use the parameterization $r(t)=\left(t, t^{2}, 0\right)$ for the same curve (using the same letter r). We then find

$$
\begin{gathered}
r^{\prime}(t)=(1,2 t, 0), \\
r^{\prime \prime}(t)=(0,2,0), \\
r^{\prime}(t) \times r^{\prime \prime}(t)=(0,0,2) .
\end{gathered}
$$

Thus, $\left|r^{\prime}(t) \times r^{\prime \prime}(t)\right|=2$ and $\left|r^{\prime}\right|=\sqrt{1+4 t^{2}}$. Therefore, for any t,

$$
\kappa(t)=\frac{2}{\left(1+4 t^{2}\right)^{\frac{3}{2}}} .
$$

Plugging in $t=2$ yields

$$
\kappa(2)=\frac{2}{17^{\frac{3}{2}}} .
$$

