## TUTORIAL 2

MA1132: ADVANCED CALCULUS, HILARY 2017
(1) Consider the parametric curve

$$
\left\{\begin{array}{l}
x(t)=\cos (t) \\
y(t)=\sin (t) \\
z(t)=\frac{2}{3} t^{\frac{3}{2}} .
\end{array}\right.
$$

(a) Using the base point $t_{0}=0$, find, as a function of $t$, the arc length $s$ of the curve from 0 to $t$.
(b) Write the arc length parameterization of the curve above.
(c) Find the coordinates of the point on the curve which is an arc length distance of $\frac{14}{3}$ away from the point at $t=0$ (in the direction of the orientation induced by the parameterization above).
(2) In this problem, you will prove the important Frenet-Serret formulas, which describe how the TNB frame of unit tangent, unit normal, and binormal vectors of a curve in $\mathbb{R}^{3}$ change as you move along the curve. These state the following (using arc length parameterization):

$$
\begin{gathered}
\frac{d T}{d s}=\kappa N \\
\frac{d N}{d s}=-\kappa T+\tau B \\
\frac{d B}{d s}=-\tau N .
\end{gathered}
$$

Here, $\tau$ is the torsion (which we briefly saw on the homework), and $\kappa$ is the curvature of the curve. More succinctly, we can use matrix multiplication notation to write (where ' denotes differentiation with respect to $s$ )

$$
\left(\begin{array}{l}
T^{\prime} \\
N^{\prime} \\
B^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)\left(\begin{array}{l}
T \\
N \\
B
\end{array}\right) .
$$

(a) Show the first equation, namely

$$
\frac{d T}{d s}=\kappa N
$$

using the definition

$$
N=\frac{\frac{d T}{d t}}{\left|\frac{d T}{d t}\right|}
$$

and the following two facts from class:

$$
\begin{aligned}
\frac{d s}{d t} & =\left|\frac{d r}{d t}\right|, \\
\kappa & =\frac{\left|\frac{d T}{d t}\right|}{\left|\frac{d r}{d t}\right|} .
\end{aligned}
$$

(b) Show that $\frac{d B}{d s}$ is perpendicular to $B$. Now show that $\frac{d B}{d s}$ is also perpendicular to $T$ (hint: recall that $B$ is perpendicular to both $T$ and $N$ by its definition as a cross product $B=T \times N$ and differentiate the equation $0=B \cdot T)$. Conclude that

$$
\frac{d B}{d s}=-\tau N
$$

where $\tau$ is a scalar-valued function (the minus sign is unimportant, and only there for historical reasons).
(c) Show, by differentiating the equation $N=B \times T$ that for the same function $\tau$ you defined by the equation in b), we have

$$
\frac{d N}{d s}=-\kappa T+\tau B
$$

(3) Find the curvature of the plane curve parameterized by $r(t)=\left(t, t^{2}\right)$ at the point when $t=2$.

