TUTORIAL 1

MA1132: ADVANCED CALCULUS, HILARY 2017

- (1) (a) Find the equation of the plane passing through the points (1, 1, 3), (0, 0, -2), and (2, 2, 1).
 - (b) Find parametric equations describing the curve of intersection of this plane with the surface given by $z = x^2 + y^2$.
- (c) What type of geometric object is the curve you found in b)?
- (2) Show that the graph of the vector-valued function

$$\vec{r}(t) = t\cos t\vec{i} + t\sin t\vec{j} + t\vec{k}$$

lies on the double-cone $x^2 + y^2 = z^2$.

(3) Consider the surface given parametrically in terms of parameters $u, v \in [0, 2\pi)$ by

$$\begin{cases} x = (2 + \cos v) \cos u \\ y = (2 + \cos v) \sin u \\ z = \sin v. \end{cases}$$

- (a) The intersection of this surface with the plane y = 0 is a union of two curves. Describe what these two curves are by finding (non-parametric) equations for them in a form which makes the geometric interpretation of these two curves clear.
- (b) Now consider the intersection of the same surface with the plane z = 0 and find non-parametric equations for the curves in this intersection, and describe the objects you find.