TUTORIAL 1

MA1132: ADVANCED CALCULUS, HILARY 2017
(1) (a) Find the equation of the plane passing through the points $(1,1,3),(0,0,-2)$, and $(2,2,1)$.
(b) Find parametric equations describing the curve of intersection of this plane with the surface given by $z=x^{2}+y^{2}$.
(c) What type of geometric object is the curve you found in b)?
(2) Show that the graph of the vector-valued function

$$
\vec{r}(t)=t \cos t \vec{i}+t \sin t \vec{j}+t \vec{k}
$$

lies on the double-cone $x^{2}+y^{2}=z^{2}$.
(3) Consider the surface given parametrically in terms of parameters $u, v \in[0,2 \pi)$ by

$$
\left\{\begin{array}{l}
x=(2+\cos v) \cos u \\
y=(2+\cos v) \sin u \\
z=\sin v
\end{array}\right.
$$

(a) The intersection of this surface with the plane $y=0$ is a union of two curves. Describe what these two curves are by finding (non-parametric) equations for them in a form which makes the geometric interpretation of these two curves clear.
(b) Now consider the intersection of the same surface with the plane $z=0$ and find non-parametric equations for the curves in this intersection, and describe the objects you find.

