HOMEWORK 9 SOLUTIONS

MA1132: ADVANCED CALCULUS, HILARY 2017
(1) Find the surface area of the piece of the plane $z=x+y$ lying inside the cylinder $(x-2)^{2}+(y-3)^{2}=1$.

Solution:

We want to find the surface area of the piece of the plane lying over R, where R is the circle in the $x-y$ plane of radius 1 centered at $(2,3)$. The partial derivatives of $f(x, y)=x+y$ are $f_{x}=f_{y}=1$, and so this surface area is given by

$$
\iint_{R} \sqrt{f_{x}^{2}+f_{y}^{2}+1} d A=\sqrt{3} \iint_{R} d A
$$

which is $\sqrt{3}$ times the area of R. Since this area is π, the surface area of the corresponding piece of the plane is $\pi \sqrt{3}$.
(2) Gabriel's horn is a famous shape obtained by rotating the area under the curve $y=1 / x$ in the $x-y$ plane from $x=1$ to ∞ around the x-axis. Find parametric equations for this surface, and find an integral expression for the surface area of the "truncated" horn from $x=1$ to $x=a$. Conclude, by using a comparison with a divergent integral, that this horn has infinite surface area.

Solution: Using the method sketched in class, we can give parametric equations for the horn by first setting $x=u$, and then $y=f(u) \cos (v), z=$ $f(u) \sin (v)$, where in this case $f(x)=1 / x$. This gives that the horn is the graph of the multivariable, vector-valued function

$$
r(u, v)=\left(u, \frac{\cos v}{u}, \frac{\sin v}{u}\right) .
$$

We now compute the partial derivatives of r (recall that this is done componentwise):

$$
\begin{aligned}
\frac{\partial r}{\partial u} & =\left(1,-\frac{\cos v}{u^{2}},-\frac{\sin v}{u^{2}}\right) \\
\frac{\partial r}{\partial v} & =\left(0,-\frac{\sin v}{u}, \frac{\cos v}{u}\right)
\end{aligned}
$$

We then compute

$$
\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}=\left(-\frac{1}{u^{3}},-\frac{\cos v}{u},-\frac{\sin v}{u}\right)
$$

and so

$$
\left|\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}\right|=\sqrt{\frac{1}{u^{6}}+\frac{1}{u^{2}}}=\sqrt{\frac{u^{4}+1}{u^{6}}}
$$

Thus, the surface area of the horn from $x=1$ to $x=a$ is the integral over the region $[1, a] \times[0,2 \pi]$ in the $u-v$ plane of this quantity, that is,

$$
\int_{0}^{2 \pi} \int_{1}^{a} \sqrt{\frac{u^{4}+1}{u^{6}}} d u d v=2 \pi \int_{1}^{a} \sqrt{\frac{u^{4}+1}{u^{6}}} d u .
$$

For very large u, the term u^{4} / u^{6} dominates $1 / u^{6}$, so the integrand is approximately $1 / u$ for large u. Thus, we can see the reason why this last integral diverges for $a=\infty$; it is an integral of a function that is eventually very nearly $1 / u$, which we know has divergent integral on the interval $[1, \infty)$. We can be more explicit by noting that

$$
\sqrt{\frac{u^{4}+1}{u^{6}}}>\frac{1}{u}
$$

so that we have the corresponding inequality of integrals:

$$
\int_{1}^{a} \sqrt{\frac{u^{4}+1}{u^{6}}} d u>\int_{1}^{a} \frac{d u}{u}=\log a .
$$

As $a \rightarrow \infty$, this thus diverges, and hence so does the surface area of Gabriel's horn.
(3) Evaluate the iterated integral

$$
\int_{-1}^{1} \int_{-x}^{x} \int_{0}^{x^{2}+z} x \sin \left(x^{7}\right) y^{2} d y d z d x
$$

(Hint: For the final integral over x, what do you notice about the integrand?)

$$
\begin{aligned}
& \text { Solution: We evaluate } \\
& \int_{-1}^{1} \int_{-x}^{x} \int_{0}^{x^{2}+z} x \sin \left(x^{7}\right) y^{2} d y d z d x=\int_{-1}^{1} \int_{-x}^{x} x \sin \left(x^{7}\right)\left[\frac{y^{3}}{3}\right]_{y=0}^{x^{2}+z} d z d x \\
&=\int_{-1}^{1} \int_{-x}^{x} \frac{x \sin \left(x^{7}\right)}{3}\left(x^{2}+z\right)^{3} d z d x \\
&=\int_{-1}^{1} \int_{-x}^{x} \frac{x \sin \left(x^{7}\right)}{3}\left(x^{6}+3 x^{4} z+3 x^{2} z^{2}+z^{3}\right) d z d x \\
&=\int_{-1}^{1} \frac{x \sin \left(x^{7}\right)}{3}\left[x^{6} z+\frac{3 x^{4} z^{2}}{2}+x^{2} z^{3}+\frac{z^{4}}{4}\right]_{z=-x}^{x} d x \\
&=\int_{-1}^{1} \frac{x \sin \left(x^{7}\right)}{3}\left(2 x^{7}+2 x^{5}\right) d x \\
&=\frac{2}{3} \int_{-1}^{1}\left(x^{8}+x^{6}\right) \sin \left(x^{7}\right) d x
\end{aligned}
$$

Now we don't need to (and you probably wouldn't be able to) find the explicit antiderivative of this function. Note that the integrand is an odd function (meaning that $f(-x)=-f(x)$), and since it is integrated over the symmetric interval $[-1,1]$ about the origin, the integral is 0 . Thus,

$$
\int_{-1}^{1} \int_{-x}^{x} \int_{0}^{x^{2}+z} x \sin \left(x^{7}\right) y^{2} d y d z d x=0
$$

(4) Find the volume of the region between the paraboloid $z=x^{2}+y^{2}$ and the $x-y$ plane above the annular region S lying between the concentric circles of radii 1 and 2 centered at the origin.

Solution: If we call this three-dimensional region R, then the volume of R is given by the triple integral $\iiint_{R} d V$. This is a simple $x-y$ solid above S, where for fixed x, y, z ranges from 0 to $x^{2}+y^{2}$. Thus,

$$
V=\iiint_{R} d V=\iint_{S}\left(\int_{0}^{x^{2}+y^{2}} d z\right) d A=\iint_{S}\left(x^{2}+y^{2}\right) d A
$$

We use polar coordinates to evaluate this last double integral. In polar coordinates, $x^{2}+y^{2}=r^{2}, d A=r d r d \vartheta$, and S is the simple polar region where ϑ ranges from 0 to 2π and for fixed ϑ, r ranges from 1 to 2 . Thus,

$$
V=\iint_{S}\left(x^{2}+y^{2}\right) d A=\int_{0}^{2 \pi} \int_{1}^{2} r^{3} d r d \vartheta=2 \pi\left[\frac{r^{4}}{4}\right]_{r=1}^{2}=\frac{15 \pi}{2}
$$

