HOMEWORK 9

MA1132: ADVANCED CALCULUS, HILARY 2017
(1) Find the surface area of the piece of the plane $z=x+y$ lying inside the cylinder $(x-2)^{2}+(y-3)^{2}=1$.
(2) Gabriel's horn is a famous shape obtained by rotating the area under the curve $y=1 / x$ in the $x-y$ plane from $x=1$ to ∞ around the x-axis. Find parametric equations for this surface, and find an integral expression for the surface area of the "truncated" horn from $x=1$ to $x=a$. Conclude, by using a comparison with a divergent integral, that this horn has infinite surface area.
(3) Evaluate the iterated integral

$$
\int_{-1}^{1} \int_{-x}^{x} \int_{0}^{x^{2}+z} x \sin \left(x^{7}\right) y^{2} d y d z d x
$$

(Hint: For the final integral over x, what do you notice about the integrand?)
(4) Find the volume of the region between the paraboloid $z=x^{2}+y^{2}$ and the $x-y$ plane above the annular region S lying between the concentric circles of radii 1 and 2 centered at the origin.

