HOMEWORK 8 SOLUTIONS

MA1132: ADVANCED CALCULUS, HILARY 2017

(1) Compute the double integral

$$
\iint_{R} \sqrt{y} d A
$$

where R is the region between the curves $y=\sqrt{x}$ and $y=x^{2}$. (Hint: break the region R into two pieces.)

Solution: The curves intersect at $x=0,1$, and in the interval $[0,1]$ the curve $y=\sqrt{x}$ always lies above the curve $y=x^{2}$ (this follows from the fact that they don't intersect on that interval and noting that $\sqrt{x}>x^{2}$ in at least one point in the interval by just plugging a point in). Thus, R is a type I region with x ranging from 0 to 1 , and wherein any vertical line through a fixed x runs from $y=x^{2}$ to $y=\sqrt{x}$. Thus, the double integral above can be expressed as the iterated integral

$$
\begin{aligned}
\iint_{R} \sqrt{y} d A & =\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}} \sqrt{y} d y d x \\
& =\int_{0}^{1}\left[\frac{2 y^{\frac{3}{2}}}{3}\right]_{y=x^{2}}^{\sqrt{x}} d x=\int_{0}^{1}\left(\frac{2 x^{\frac{3}{4}}}{3}-\frac{2 x^{3}}{3}\right) d x \\
& =\left[\frac{8 x^{\frac{7}{4}}}{21}-\frac{x^{4}}{6}\right]_{x=0}^{1}=\frac{3}{14}
\end{aligned}
$$

(2) Find the value of

$$
\iint_{R}\left(x^{2}-y\right) d A
$$

where R is the square with vertices $(-1,0),(1,0),(0,1)$, and $(0,-1)$.
Solution: This square is not nice to express as either a type I or a type II region, as one would have to deal with absolute value, or piecewise functions. We thus break this region into two simpler type I regions by splitting the square down the middle line at $x=0$. Call R_{1} the piece of the square to the left of this line, and R_{2} the region to the right (including or not including the boundary piece in the middle doesn't change anything; two-dimensional integrals over onedimensional curves always give zero, just as single integrals zero-dimensional points give zero). These are both type I regions, with x ranging from -1 to 0 in
R_{1}, and x ranging from 0 to 1 in R_{2}. In R_{1}, for fixed vertical lines through x, y ranges from the line from $(-1,0)$ to $(0,-1)$, which is given by $y=-x-1$, to the line from $(-1,0)$ to $(0,1)$, which is given by $y=x+1$. In R_{2}, for fixed vertical lines through x, y ranges from the line from $(0,-1)$ to $(1,0)$, which is given by $y=x-1$, to the line from $(0,1)$ to $(1,0)$, which is given by $y=-x+1$. Thus,

$$
\begin{aligned}
\iint_{R}\left(x^{2}-y\right) d A & =\iint_{R_{1}}\left(x^{2}-y\right) d A+\iint_{R_{2}}\left(x^{2}-y\right) d A \\
& =\int_{-1}^{0} \int_{-x-1}^{x+1}\left(x^{2}-y\right) d y d x+\int_{0}^{1} \int_{x-1}^{-x+1}\left(x^{2}-y\right) d y d x \\
& =\int_{-1}^{0}\left[x^{2} y-\frac{y^{2}}{2}\right]_{y=-x-1}^{x+1} d x+\int_{0}^{1}\left[x^{2} y-\frac{y^{2}}{2}\right]_{y=x-1}^{-x+1} d x \\
& =\int_{-1}^{0}\left(2 x^{3}+2 x^{2}\right) d x+\int_{0}^{1}\left(-2 x^{3}+2 x^{2}\right) d x \\
& =\left[\frac{x^{4}}{2}+\frac{2 x^{3}}{3}\right]_{x=-1}^{0}+\left[-\frac{x^{4}}{2}+\frac{2 x^{3}}{3}\right]_{x=0}^{1} \\
& =\frac{1}{6}+\frac{1}{6}=\frac{1}{3}
\end{aligned}
$$

(3) Let R be the region in the $x-y$ plane bounded by the lines $y=1, y=2$, the y-axis, and the curve $y=1 / x$. Find the volume lying over R und under the graph of the function $f(x, y)=e^{x y}$.

Solution: Here, R is a type II region, bounded by $y=1$ and $y=2$, and for fixed horizontal lines at height y in R, x ranges from 0 to $1 / y$ (solve for x in $y=1 / x$). Thus, the volume we are looking for is given by (note that $e^{x y}>0$ on R as e^{x} is always positive, so this is the volume and not just the net volume)

$$
\begin{aligned}
\iint_{R} e^{x y} d A & =\int_{1}^{2} \int_{0}^{\frac{1}{y}} e^{x y} d x d y \\
& =\int_{1}^{2}\left[\frac{e^{x y}}{y}\right]_{x=0}^{\frac{1}{y}} d y \\
& =\int_{1}^{2} \frac{e-1}{y} d y=(e-1) \int_{1}^{2} \frac{d y}{y}=(e-1)[\log y]_{y=1}^{2}=(e-1) \log 2
\end{aligned}
$$

(4) Use polar coordinates to compute

$$
\iint_{R} x y d A
$$

where R is the region lying between the concentric circles of radii 1 and 2 centered at the origin and in the first quadrant (this is one quarter of an annulus).

Solution: In polar coordinates, R is a simple polar region. In this case, ϑ ranges from 0 to $\pi / 2$, and along any ray of constant angle ϑ, r ranges from 1 to 2. Moreover, $x=r \cos \vartheta, y=r \sin \vartheta$, and $d A=r d r d \vartheta$. Thus, we have

$$
\begin{aligned}
\iint_{R} x y d A & =\int_{0}^{\frac{\pi}{2}} \int_{1}^{2} r^{3} \cos \vartheta \sin \vartheta d r d \vartheta \\
& =\int_{0}^{\frac{\pi}{2}}\left[\frac{r^{4}}{4}\right]_{r=1}^{2} \cos \vartheta \sin \vartheta d \vartheta \\
& =\frac{15}{4} \int_{0}^{\frac{\pi}{2}} \cos \vartheta \sin \vartheta=\frac{15}{4}\left[-\frac{1}{2} \cos ^{2} \vartheta\right]_{\vartheta=0}^{\frac{\pi}{2}} \\
& =\frac{15}{8}
\end{aligned}
$$

(5) Compute the value of

$$
\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} \cos \left(x^{2}+y^{2}\right) d y d x
$$

by switching to polar coordinates.
Solution: We first try to identify this as a double integral over a type I region (since the integration order is $d y d x$). The equation $y=\sqrt{1-x^{2}}$ implies that $x^{2}+y^{2}=1$, and so we recognize this graph between $x=-1$ and $x=1$ as the upper half of a semi-circle of radius 1 centered at the origin. Thus,

$$
\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} \cos \left(x^{2}+y^{2}\right) d y d x=\iint_{R} \cos \left(x^{2}+y^{2}\right) d A
$$

where R is the upper half of the closed unit disc of radius 1 centered at the origin. Thus, this is a simple polar region with ϑ ranging from 0 to π and for fixed θ we have r ranging from 0 to 1 . Noting that $x^{2}+y^{2}=r^{2}$ and $d A=r d r d \vartheta$, we find

$$
\iint_{R} \cos \left(x^{2}+y^{2}\right) d A=\int_{0}^{\pi} \int_{0}^{1} \cos \left(r^{2}\right) r d r d \vartheta=\int_{0}^{\pi}\left[\frac{\sin \left(r^{2}\right)}{2}\right]_{r=0}^{1} d \vartheta=\frac{\sin (1)}{2} \int_{0}^{\pi} d \vartheta=\frac{\sin (1) \pi}{2}
$$

