HOMEWORK 8

MA1132: ADVANCED CALCULUS, HILARY 2017
(1) Compute the double integral

$$
\iint_{R} \sqrt{y} d A
$$

where R is the region between the curves $y=\sqrt{x}$ and $y=x^{2}$. (Hint: break the region R into two pieces.)
(2) Find the value of

$$
\iint_{R}\left(x^{2}-y\right) d A
$$

where R is the square with vertices $(-1,0),(1,0),(0,1)$, and $(0,-1)$.
(3) Let R be the region in the $x-y$ plane bounded by the lines $y=1, y=2$, the y-axis, and the curve $y=1 / x$. Find the volume lying over R und under the graph of the function $f(x, y)=e^{x y}$.
(4) Use polar coordinates to compute

$$
\iint_{R} x y d A
$$

where R is the region lying between the concentric circles of radii 1 and 2 centered at the origin and in the first quadrant (this is one quarter of an annulus).
(5) Compute the value of

$$
\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} \cos \left(x^{2}+y^{2}\right) d y d x
$$

by switching to polar coordinates.

