HOMEWORK 5 SOLUTIONS

MA1132: ADVANCED CALCULUS, HILARY 2017

(1) Consider the function $z=f(x, y)=x \log (x y)-\sqrt{x^{2}+y^{2}}$ with $x=t^{2}+1$, $y=t-1$. Find $\frac{d z}{d t}$ by using the chain rule.

Solution: We compute

$$
\begin{gathered}
\frac{\partial f}{\partial x}=\log (x y)+1-\frac{x}{\sqrt{x^{2}+y^{2}}} \\
\frac{\partial f}{\partial y}=\frac{x}{y}-\frac{y}{\sqrt{x^{2}+y^{2}}} \\
\frac{d x}{d t}=2 t \\
\frac{d y}{d t}=1 \\
x^{2}+y^{2}=t^{4}+3 t^{2}-2 t+2 \\
x y=t^{3}-t^{2}+t-1
\end{gathered}
$$

and so

$$
\begin{aligned}
\frac{d z}{d t} & =\left(\log (x y)+1-\frac{x}{\sqrt{x^{2}+y^{2}}}\right) \cdot(2 t)+\left(\frac{x}{y}-\frac{x}{\sqrt{x^{2}+y^{2}}}\right) \cdot(1) \\
& =2\left(\log \left(t^{3}-t^{2}+t-1\right)+1-\frac{t^{2}+1}{\sqrt{t^{4}+3 t^{2}-2 t+2}}\right) t+\left(\frac{t^{2}+1}{t-1}-\frac{t-1}{\sqrt{t^{4}+3 t^{2}-2 t+2}}\right) .
\end{aligned}
$$

(2) Suppose that $w=f(x, y, z)=x y^{\frac{1}{2}}+\sin \left(\frac{x}{y}\right) \tan z-z^{2} x^{3}$ and $x=2 r+s, y=s t$, $z=r-t$. Find $\frac{\partial w}{\partial r}$.

Solution:

Using a tree diagram, the chain rule for this situation becomes

$$
\frac{\partial w}{\partial r}=f_{x} \frac{\partial x}{\partial r}+f_{y} \frac{\partial y}{\partial r}+f_{z} \frac{\partial z}{\partial r}
$$

Now, we directly compute that

$$
f_{x}=y^{\frac{1}{2}}+\frac{\cos \left(\frac{x}{y}\right)}{y} \tan z-3 z^{2} x^{2}=\sqrt{s t}+\frac{\cos \left(\frac{2 r+s}{s t}\right)}{s t} \tan (r-t)-3(r-t)^{2}(2 r+s)^{2}
$$

$$
\begin{gathered}
f_{y}=\frac{x}{2 \sqrt{y}}-\frac{x \cos \left(\frac{x}{y}\right)}{y^{2}} \tan z=\frac{2 r+s}{2 \sqrt{s t}}-\frac{(2 r+s) \cos \left(\frac{2 r+s}{s t}\right)}{s^{2} t^{2}} \tan (r-t) \\
f_{z}=\sec ^{2} z \sin \left(\frac{x}{y}\right)-2 z x^{3}=\sec ^{2}(r-t) \sin \left(\frac{2 r+s}{s t}\right)-2(r-t)(2 r+s)^{3} \\
\frac{\partial x}{\partial r}=2 \\
\frac{\partial y}{\partial r}=0 \\
\frac{\partial z}{\partial r}=1
\end{gathered}
$$

and so

$$
\begin{aligned}
\frac{\partial w}{\partial r} & =2\left(\sqrt{s t}+\frac{\cos \left(\frac{2 r+s}{s t}\right)}{s t} \tan (r-t)-3(r-t)^{2}(2 r+s)^{2}\right) \\
& +\left(\sec ^{2}(r-t) \sin \left(\frac{2 r+s}{s t}\right)-2(r-t)(2 r+s)^{3}\right)
\end{aligned}
$$

(3) Find $\left.\frac{\partial^{2} f}{\partial \vartheta^{2}}\right|_{\vartheta=\frac{\pi}{2}, r=\sqrt{3}}$ for $f(x, y)=x y+y^{2}, x=r \cos \vartheta, y=r \sin \vartheta$.

Solution: We start with the first derivative with respect to ϑ. Using

$$
\begin{gathered}
\frac{\partial f}{\partial \vartheta}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial \vartheta}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \vartheta} \\
f_{x}=y \\
f_{y}=x+2 y \\
\frac{\partial x}{\partial \vartheta}=-r \sin \vartheta \\
\frac{\partial y}{\partial \vartheta}=r \cos \vartheta
\end{gathered}
$$

we have

$$
\begin{aligned}
\frac{\partial f}{\partial \vartheta} & =-r \sin (\vartheta) y+r \cos \vartheta(x+2 y) \\
& =-r^{2} \sin ^{2} \vartheta+r \cos (\vartheta)(r \cos \vartheta+2 r \sin \vartheta) \\
& =r^{2}\left(\cos ^{2} \vartheta-\sin ^{2} \vartheta+2 \sin \vartheta \cos \vartheta\right)
\end{aligned}
$$

Thus, differentiating one more time with respect to ϑ, we find
$\frac{\partial^{2} f}{\partial \vartheta^{2}}=\frac{\partial}{\partial \vartheta}\left(r^{2}\left(\cos ^{2} \vartheta-\sin ^{2} \vartheta+2 \sin \vartheta \cos \vartheta\right)\right)=r^{2}\left(-2 \sin \vartheta \cos \vartheta-2 \sin \vartheta \cos \vartheta+2 \cos ^{2} \vartheta-2 \sin ^{2} \vartheta\right)$.
(Note that if you use the very general formula for second partial derivatives with respect to ϑ on a surface expressed in polar coordinates which we gave in class,
then you will get the same answer, but it is much simpler in specific examples!) Plugging in $\vartheta=\pi / 2, r=\sqrt{3}$, we obtain

$$
3 \cdot(-2)=-6
$$

(4) Find the directional derivative of $f(x, y, z)=\frac{x+y^{2}}{x-y^{3} z}$ in the direction of the line in the plane $z=0$ which makes an angle of $\pi / 3$ with the x-axis (in the direction of increasing $x)$ as well as in the direction of the vector $(1,2,3)$ at the point $(1,-1,1)$.

Solution:

We have

$$
\begin{gathered}
f_{x}=-\frac{y^{2}(y z+1)}{\left(x-y^{3} z\right)^{2}}, \\
f_{y}=\frac{y\left(y^{3} z+3 x y z+2 x\right)}{\left(x-y^{3} z\right)^{2}}, \\
f_{z}=\frac{\left(y^{2}+x\right) y^{3}}{\left(x-y^{3} z\right)^{2}}, \\
\nabla f=\left(f_{x}, f_{y}, f_{z}\right) .
\end{gathered}
$$

In any direction pointing in the direction of a unit vector u, the directional derivative $D_{u} f(1,-1,1)$ is equal to $\nabla f(1,-1,1) \cdot u=(0,1 / 2,-1 / 2) \cdot u$. In the first case, a unit vector pointing in the direction of increasing x making an angle of $\pi / 3$ with the x-axis in the $x-y$ plane is

$$
(\cos (\pi / 3), \sin (\pi / 3))
$$

and so the unit vector pointing in the specified direction is

$$
u=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right)
$$

which gives

$$
D_{u} f(1,-1,1)=(0,1 / 2,-1 / 2) \cdot\left(\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right)=\frac{\sqrt{3}}{4}
$$

In the second case we need a unit vector which points in the same direction as $(1,2,3)$. To find this, we just divide by the length of $(1,2,3)$, which is $\sqrt{1^{2}+2^{2}+3^{2}}=\sqrt{14}$. That is,

$$
u=\frac{(1,2,3)}{\sqrt{14}}
$$

and so

$$
D_{u} f(1,-1,1)=\frac{1}{\sqrt{14}}(0,1 / 2,-1 / 2) \cdot(1,2,3)=-\frac{1}{2 \sqrt{14}} .
$$

(5) Find a unit vector pointing in the direction in which f increases the fastest at the point $(1,1)$, when

$$
f(x, y)=\frac{x}{y}-\frac{y^{\frac{3}{2}}}{x}
$$

How fast is f increasing in this direction?
Solution: We compute

$$
\begin{gathered}
f_{x}=\frac{x^{2}+y^{\frac{5}{2}}}{x^{2} y} \\
f_{y}=-\frac{3 y^{\frac{5}{2}}+2 x^{2}}{2 x y^{2}} .
\end{gathered}
$$

At $(1,1)$, we plug into the partial derivatives above to get

$$
\begin{gathered}
\nabla f(1,1)=(2,-5 / 2), \\
|\nabla f(1,1)|=\frac{\sqrt{41}}{2}
\end{gathered}
$$

The function f increases the fastest in the direction of $\nabla f(1,1)$, a unit vector in the direction of which is

$$
u=\frac{\nabla f(1,1)}{|\nabla f(1,1)|}=\left(\frac{4}{\sqrt{41}},-\frac{5}{\sqrt{41}}\right)
$$

The rate of increase in this direction is

$$
D_{u} f(1,1)=|\nabla f(1,1)|=\frac{\sqrt{41}}{2} .
$$

