HOMEWORK 5

MA1132: ADVANCED CALCULUS, HILARY 2017
(1) Consider the function $z=f(x, y)=x \log (x y)-\sqrt{x^{2}+y^{2}}$ with $x=t^{2}+1$, $y=t-1$. Find $\frac{d z}{d t}$ by using the chain rule.
(2) Suppose that $w=f(x, y, z)=x y^{\frac{1}{2}}+\sin \left(\frac{x}{y}\right) \tan z-z^{2} x^{3}$ and $x=2 r+s, y=s t$, $z=r-t$. Find $\frac{\partial w}{\partial r}$.
(3) Find $\left.\frac{\partial^{2} f}{\partial \vartheta^{2}}\right|_{\vartheta=\frac{\pi}{2}, r=\sqrt{3}}$ for $f(x, y)=x y+y^{2}, x=r \cos \vartheta, y=r \sin \vartheta$.
(4) Find the directional derivative of $f(x, y, z)=\frac{x+y^{2}}{x-y^{3} z}$ in the direction of the line in the plane $z=0$ which makes an angle of $\pi / 3$ with the x-axis (in the direction of increasing x) as well as in the direction of the vector $(1,2,3)$ at the point $(1,-1,1)$.
(5) Find a unit vector pointing in the direction in which f increases the fastest at the point $(1,1)$, when

$$
f(x, y)=\frac{x}{y}-\frac{y^{\frac{3}{2}}}{x} .
$$

How fast is f increasing in this direction?

