HOMEWORK 5

MA1132: ADVANCED CALCULUS, HILARY 2017

- (1) Consider the function $z = f(x, y) = x \log(xy) \sqrt{x^2 + y^2}$ with $x = t^2 + 1$, y = t 1. Find $\frac{dz}{dt}$ by using the chain rule.
- (2) Suppose that $w = f(x, y, z) = xy^{\frac{1}{2}} + \sin\left(\frac{x}{y}\right) \tan z z^2 x^3$ and x = 2r + s, y = st, z = r t. Find $\frac{\partial w}{\partial r}$.
- (3) Find $\frac{\partial^2 f}{\partial \vartheta^2}\Big|_{\vartheta=\frac{\pi}{2}, r=\sqrt{3}}$ for $f(x,y) = xy + y^2, x = r\cos\vartheta, y = r\sin\vartheta$.
- (4) Find the directional derivative of $f(x, y, z) = \frac{x+y^2}{x-y^3z}$ in the direction of the line in the plane z = 0 which makes an angle of $\pi/3$ with the x-axis (in the direction of increasing x) as well as in the direction of the vector (1, 2, 3) at the point (1, -1, 1).
- (5) Find a unit vector pointing in the direction in which f increases the fastest at the point (1, 1), when

$$f(x,y) = \frac{x}{y} - \frac{y^{\frac{3}{2}}}{x}.$$

How fast is f increasing in this direction?