HOMEWORK 10 SOLUTIONS

MA1132: ADVANCED CALCULUS, HILARY 2017
(1) Find the volume between the cone $z=r$ and the plane $z=0$ and lying under the plane $z=10$.

Solution: The equation $z=r$ can be written as $z=\sqrt{x^{2}+y^{2}}$, which we have seen describes a cone. The intersection of the cone with the plane is the curve $r=z=10$, which is a circle in the plane $z=10$. Thus, this region under the cone is a simple $x-y$ solid lying above the circle of radius 10 centered at the origin in the $x-y$ plane. The interior of this circle (plus the circle itself) is the region S with $0 \leq \vartheta \leq 2 \pi$ and $0 \leq r \leq 10$. For any fixed x and fixed y, the z-coordinate in the region between the cone and the plane runs from 0 to r. Thus, the volume of this region, call it R, is

$$
\iiint_{R} d V=\iint_{S} \int_{0}^{r} d z d A=\int_{0}^{2 \pi} \int_{0}^{10} r^{2} d r d \vartheta=\frac{2000 \pi}{3} .
$$

(2) The centroid of a region in the plane is the center of mass in the case when the density function is a constant (which, since we divide out by the mass in our formula for center of mass anyways, can be assumed to be 1). Show that the centroid of a triangle with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ is at

$$
\frac{1}{3}\left(x_{1}+x_{2}+x_{3}, y_{1}+y_{2}+y_{3}\right) .
$$

Solution: If we rotate and translate our triangle, it won't change the geometry. Thus, we can assume that we study a triangle with vertices at $(0,0),(a, 0)$, and (b, c) for real numbers a, b, c with $a, c>0$. The x-coordinate of the center of mass of the triangle T is given by $\iint_{T} x d A / \iint_{T} d A$. The triangle can be integrated over as as a type II region. The horizontal lines bounding this region are $y=0$ and $y=c$, and for fixed y, x ranges from the side extending from $(0,0)$ to (b, c), which has equation $x=\frac{b y}{c}$, to the line from (b, c) to $(a, 0)$, which has
equation $x=\frac{(b-a) y}{c}+a$. Thus, we find that the x-coordinate of the centroid is

$$
\left.\begin{array}{rl}
& \frac{\int_{0}^{c} \int_{\frac{b y}{c}}^{\frac{(b-a) y}{c}}+a}{c} x d x d y \\
= & \frac{\int_{0}^{c} \int_{\frac{b y}{c}}^{c}\left(\frac{a^{2}}{2}-\frac{a(a-b) y}{c}+a\right.}{c} d x d y \\
= & \frac{\left(a^{2}+a b\right) c}{6} \\
\frac{a c}{2} & \int_{0}^{c} \frac{a(c-y)}{c} d y \\
2 c^{2}
\end{array}\right) d y .
$$

Similarly, the y-coordinate of the centroid is

$$
\begin{aligned}
& \frac{\int_{0}^{c} \int_{\frac{b y}{c}}^{\frac{(b-a) y}{c}}+a}{\frac{a c}{2}} y d x d y \\
= & \frac{\int_{0}^{c} \frac{a(c-y) y}{c} d y}{\frac{a c}{2}} \\
= & \frac{\frac{a c^{2}}{6}}{\frac{a c}{2}}=\frac{c}{3} .
\end{aligned}
$$

Thus, the centroid of this triangle lies at $\left(\frac{a+b}{3}, \frac{c}{3}\right)$. Here, the x-coordinate is the sum of the x-coordinates of the vertices divided by 3 , and similarly for the y-coordinate of the centroid, as claimed.
(3) Evaluate the integral $\iiint_{R} x y z d V$ where R is the part of the ball $\rho \leq 1$ lying in the first octant (i.e., when $x, y, z \geq 0$).

Solution: We first recall the formula $d V=\rho^{2} \sin \varphi d \rho d \varphi d \vartheta$. In spherical coordinates, the integration region is given by $(\vartheta, \varphi, \rho) \in\left[0, \frac{\pi}{2}\right] \times\left[0, \frac{\pi}{2}\right] \times[0,1]$. Moreover, $x y z=\rho^{3} \sin ^{2} \varphi \cos \varphi \sin \vartheta \cos \vartheta$. Thus,

$$
\begin{aligned}
\iiint_{R} x y z d V & =\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} \rho^{5} \sin ^{3} \varphi \cos \varphi \sin \vartheta \cos \vartheta d \rho d \varphi d \vartheta \\
& =\frac{1}{6} \cdot \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \sin ^{3} \varphi \cos \varphi \sin \vartheta \cos \vartheta d \varphi d \vartheta \\
& =\frac{1}{24} \cdot \int_{0}^{\frac{\pi}{2}} \sin \vartheta \cos \vartheta\left[\sin ^{4} \varphi\right]_{\varphi=0}^{\frac{\pi}{2}} d \vartheta \\
& =\frac{1}{24} \cdot \int_{0}^{\frac{\pi}{2}} \sin \vartheta \cos \vartheta d \vartheta \\
& =-\frac{1}{48}\left[\cos ^{2} \vartheta\right]_{\vartheta=0}^{\frac{\pi}{2}}=\frac{1}{48}
\end{aligned}
$$

(4) Change variables to compute

$$
\iint_{R} x y d A
$$

where R is the parallelogram with vertices at $(0, \pm 1),(\pm 2,0)$ by turning the integration region into a rectangle with sides parallel to the u and v axes for some coordinates u, v.

Solution: We first write down equations for the lines forming the sides of the parallelogram. These are $x+2 y=-2$ (lower-left side), $x+2 y=2$ (upperright), $x-2 y=-2$ (upper-left), and $x-2 y=2$ (lower-right). We thus are motivated to set $u=x+2 y, v=x-2 y$. In this coordinate system, the sides of the parallelogram are the lines $u, v= \pm 2$. Solving for x and y gives $x=\frac{u+v}{2}$, $y=\frac{u-v}{4}$. Thus, the Jacobian is

$$
J(u, v)=\operatorname{det}\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{4} & -\frac{1}{4}
\end{array}\right)=-\frac{1}{4} .
$$

Thus, the region R is just the image of the rectangle $[-2,2] \times[-2,2]$ in the $u-v$ plane, and so our integral becomes

$$
\frac{1}{8} \int_{-2}^{2} \int_{-2}^{2}\left(u^{2}-v^{2}\right) \frac{d u d v}{4}=\frac{1}{32} \int_{-2}^{2}\left[\frac{u^{3}}{3}-u v^{2}\right]_{u=-2}^{2} d v=\int_{-2}^{2}\left(-\frac{v^{2}}{8}+\frac{1}{6}\right) d v=0
$$

(5) Find the area of an elliptical region given by $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1$ by finding a suitable change of variables which transforms the problem into a problem of integrating over a circular region.

Solution:

If we set $x=a u, y=b v$, then the boundary ellipse becomes $1=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=$ $u^{2}+v^{2}$. Thus, the elliptical region is the image of the circle $u^{2}+v^{2} \leq 1$ under
this transformation. The Jacobian is

$$
J(u, v)=\operatorname{det}\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)=a b .
$$

Thus, the area of the ellipse is $\int_{0}^{2 \pi} \int_{0}^{1} r \cdot a b \cdot d r d \vartheta=\pi a b$.

