HOMEWORK 10

MA1132: ADVANCED CALCULUS, HILARY 2017
(1) Find the volume between the cone $z=r$ and the plane $z=0$ and lying under the plane $z=10$.
(2) The centroid of a region in the plane is the center of mass in the case when the density function is a constant (which, since we divide out by the mass in our formula for center of mass anyways, can be assumed to be 1). Show that the centroid of a triangle with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ is at

$$
\frac{1}{3}\left(x_{1}+x_{2}+x_{3}, y_{1}+y_{2}+y_{3}\right)
$$

(3) Evaluate the integral $\iiint_{R} x y z d V$ where R is the part of the ball $\rho \leq 1$ lying in the first octant (i.e., when $x, y, z \geq 0$).
(4) Change variables to compute

$$
\iint_{R} x y d A
$$

where R is the parallelogram with vertices at $(0, \pm 1),(\pm 2,0)$ by turning the integration region into a rectangle with sides parallel to the u and v axes for some coordinates u, v.
(5) Find the area of an elliptical region given by $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1$ by finding a suitable change of variables which transforms the problem into a problem of integrating over a circular region.

