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Abstract. We give an expression for the Smith-Thom deficiency of
the Hilbert square X [2] of a smooth real algebraic variety X in terms
of the rank of a suitable Mayer-Vietoris mapping in several situations.
As a consequence, we establish a simple necessary and sufficient con-
dition for the maximality of X [2] in the case of projective complete
intersections, and show that with a few exceptions no real nonsingular
projective complete intersection of even dimension has maximal Hilbert
square. We also provide new examples of smooth real algebraic varieties
with maximal Hilbert square.

. . . si beau soit un vaste paysage, les horizons
lointain sont toujours un peu vagues . . .

Henri Poincaré, Savants et écrivans.
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1. Introduction

Recall that on a real algebraic variety X the following inequality holds

dimH∗(X(R);F2) ≤ dimH∗(X(C);F2)).

It is traditionally called the Smith inequality and the difference

D(X) = dimH∗(X(C);F2))− dimH∗(X(R);F2))

is called the Smith-Thom deficiency of X. A real algebraic variety X is said
to be maximal, or an M -variety, if its Smith-Thom deficiency vanishes.

As it was observed in our previous paper [6], many deformation classes of
algebraic surfaces do not contain any real representative X whose Hilbert
square X [2] is maximal. Here, we refine results obtained in [6] and generalize
them to higher dimensions. The main results are as follows.

Theorem 1.1. Let X be a real nonsingular projective variety of dimension
n ≥ 2. If the Hilbert square X [2] is maximal, then X is maximal.

Theorem 1.2. The Smith-Thom deficiency of the Hilbert square X [2] of a
maximal real nonsingular projective complete intersection X ⊂ PN of di-
mension n ≥ 2 is given by

D(X [2]) = 4

 [n
2

]∑
l=1

l−1∑
i=0

βi(X(R))− d(n)

 ,

where d(n) is equal to n(n+2)
8 for n even and n2−1

8 for n odd.

The F2-Betti numbers βi(X(R)) are non-zero for every maximal real non-
singular complete intersection X ⊂ PN of dimension n whenever 0 ≤ i ≤ [n2 ]

(see Lemma 2.6). Since d(n) =
∑[n

2
]

l=1 l, we get the following criterium of
maximality as a consequence of Theorems 1.1 and 1.2.

Corollary 1.3. Let X ⊂ PN be a real nonsingular projective complete in-
tersection of dimension n ≥ 2. Then X [2] is maximal if and only if X is
maximal and

βi(X(R)) = 1 for every 0 ≤ i ≤
[n

2

]
− 1.

In particular, Corollary 1.3 yields a direct proof of the following result
due to L. Fu [4, Theorem 7.5]:

Corollary 1.4. The Hilbert square of a real cubic threefold is maximal if
and only if the threefold is maximal.

According to Theorem 11.12 in [4], no real cubic four-fold has maximal
Hilbert square. As a consequence of Theorems 1.1 and 1.2 we prove:

Theorem 1.5. The Hilbert square X [2] of a real nonsingular projective com-
plete intersection X ⊂ PN of positive, even dimension is maximal if and only
if X is a linear subspace, a maximal quadric, a maximal intersection of two
quadrics, or a maximal cubic surface in P3.
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As it was communicated to us by L. Fu, for a cubic hypersurface X,
the Galkin-Shinder-Voisin diagram (see [1, Section 4]) yields the following
relation between the Smith-Thom deficiencies of X, its Hilbert square, and
its Fano variety of lines F (X) :

D(X [2]) = (n+ 1)D(X) + D(F (X)).

Therefore, Corollary 1.5 has the following consequence:

Corollary 1.6. Let X be a real nonsingular cubic hypersurface of dimension
2n with n ≥ 2. If X is maximal 1, then its Fano variety of lines F (X) is not
maximal.

We study next the maximality of the Hilbert square of real algebraic
varieties whose complex locus has no odd degree cohomology.

Theorem 1.7. Let X be a real nonsingular projective variety of dimension
≥ 2 2 satisfying Hodd(X) = 0. If the Hilbert square X [2] is maximal, then
βk(X(R)) = β2k(X(C)) for every k ≥ 0. In particular, X(R) is connected.

The conditions found in Theorem 1.7 are not sufficient to ensure the
maximality of the Hilbert square in general (cf., Corollary 1.5). However,
we identify a case when they are sufficient.

Theorem 1.8. Let X be a maximal real nonsingular projective variety such
that Hodd(X) = 0. If for every k ≤ dimX, the group Hk(X(R)) is generated
by fundamental classes of real loci of real smooth algebraic submanifolds,
then the Hilbert square X [2] is maximal.

Corollary 1.9. The Hilbert square is maximal for projective spaces, non-
singular toric varieties, nonsingular quadrics in P2n+1, and products of the
former ones (always equipped with standard real structure).

More advanced examples of real projective manifolds with maximal Hilbert
square will be presented elsewhere [7], in a different context.

The results obtained in Theorems 1.1, 1.7 and 1.8, including their proofs,
literally extend from real algebraic setting to compact complex manifolds
equipped with an anti-holomorphic involution.

Acknowledgements. We are greatly thankful to L. Fu for suggestions and
comments on this work. The first author acknowledges the support from the
grant ANR-18-CE40-0009 of French Agence Nationale de Recherche, while
the second author acknowledges the support of a Professional Travel Grant
from Vanderbilt University. A part of this work was completed during the

1By common belief, maximal real cubic hypersurfaces should exist in all dimensions.
However, up to our knowledge, published proofs cover the statement only up to dimension
4.

2The only exception in dimensions < 2 is that of X = P1 with a real structure without
real points.
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Notations and conventions:

1) By a complex variety equipped with a real structure, we mean a pair
(Y, c) consisting of a complex variety Y and an anti-holomorphic
involution c : Y → Y. When the anti-holomorphic conjugation is
understood from the context, we will simply say that Y is defined
over the reals.

2) Let Y be an algebraic variety defined over R, and G denote the
Galois group Gal(C/R). The group G is a cyclic group of order 2 and
acts on the locus of complex points Y (C). The non-trivial element
of G acts as an anti-holomorphic involution, which we will denote
by c, and the fixed point set of the action coincides with the set of
real points of Y. The pair (Y, c) is a variety equipped with a real
structure. To mediate between the notations traditionally used for
varieties equipped with real structures and for algebraic varieties
defined over R, we will use from now on Y to denote the set of
complex points, and Y (R) the set of real points.

3) Unless explicitly stated, all the homology and cohomology groups
have coefficients in the field F2 = Z/2Z. We use βi( · ) and bi( · ) to
denote the Betti numbers when the coefficients are in F2 or in Q,
respectively. For convenience, we allow the index i to be an arbitrary
integer, by setting βi = 0 for i < 0. We will use the notations
β∗( · ) and b∗( · ) for the corresponding total Betti numbers, while

βodd( · ) and βeven( · ) denote the sums
∑
i≥0

β2i+1( · ) and
∑
i≥0

β2i( · ),

respectively.

2. Preliminaries

2.1. Smith theory. Most results cited in this section are due to P.A. Smith.
Proofs can be found, e.g., in [2, Chapter 3] and [3, Chapter 1].

Throughout the section we consider a topological space X with a cellular
involution c : X → X, i.e., X is a CW-complex, c transforms cells into
cells and acts identically on each invariant cell 3. Let F = Fix c, X̄ = X/c,
and denote by in : F ↪→ X and pr : X → X̄ be the natural inclusion and
projection, respectively.

3This rather traditional condition that X is a CW-complex (or a simplicial complex, as
in [2]) can be relaxed at the cost of using Čech cohomology and assuming X to be finite
dimensional locally compact Hausdorff topological space. In this paper, Smith theory is
applied to smooth manifolds and smooth involutions, so the CW-complex assumption is
largely enough.
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Consider the Smith chain complexes defined by

Sm∗(X) = Ker[(1 + c∗) : S∗(X)→ S∗(X)],

Sm∗(X,F ) = Ker[(1 + c∗) : S∗(X,F )→ S∗(X,F )].

and their Smith homology Hr(Sm∗(X)) and Hr(Sm∗(X,F )), respectively.
There exists a canonical isomorphism Sm∗(X,F ) = Im[(1 + c∗) : S∗(X) →
S∗(X)]. The Smith sequences are the long homology and cohomology exact
sequences associated with the short exact sequence of complexes

0→ Sm∗(X)
inclusion−−−−−→ S∗(X)

1+c∗−−−→ Sm∗(X,F )→ 0. (2.1)

The latter one canonically splits, Sm∗(X) = S∗(F )⊕ Im(1 + c∗), and the
transfer homomorphism tr∗ : S∗(X̄, F ) → Sm∗(X,F ) is an isomorphism [2,
Chapter 3] (see also op. cit. for the cohomology version). In view of these
identifications the long exact sequences associated to (2.1) yield:

Theorem 2.1. There are two natural, in respect to equivariant maps, exact
sequences, called (homology and cohomology) Smith sequences of (X, c):

· · · → Hp+1(X̄, F )
∆−→ Hp(X̄, F )⊕Hp(F )

tr∗+ in∗−−−−−→ Hp(X)
pr∗−−→ Hp(X̄, F )→ ,

→ Hp(X̄, F )
pr∗−−→ Hp(X)

tr∗⊕in∗−−−−−→ Hp(X̄, F )⊕Hp(F )
∆−→ Hp+1(X̄, F )→ · · · .

The homology and cohomology connecting homomorphisms ∆ are given
by

x 7→ x ∩ ω ⊕ ∂x and x⊕ f 7→ x ∪ ω + δf,

respectively, where ω ∈ H1(X̄ \ F ) is the characteristic class of the double
covering X \F → X̄ \F . The images of tr∗+in∗ and pr∗ consist of invariant
classes: Im tr∗ ⊂ Ker(1 + c∗) and Im pr∗ ⊂ Ker(1 + c∗).

The following immediate consequences of Theorem 2.1, which we state in
the homology setting, have an obvious counterpart for cohomology.

Corollary 2.2. Let (X, c) be a CW complex equipped with a cellular invo-
lution. Then

dim H∗(F ) + 2
∑
p

dim Coker(trp + inp) = dim H∗(X). (2.2)

As a consequence, we have

dim H∗(F ) ≤ dim H∗(X) (Smith inequality). (2.3)

Definition 2.3. Let (X, c) be a topological space equipped with a cellular
involution. The integer

D(X, c) = 2
∑
p

dim Coker(trp + inp)

is called the Smith-Thom deficiency of (X, c). If D(X, c) = 0, the topological
space X is called maximal, or an M -space, and c is called an M -involution.
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When the involution is understood from the context, it will be omitted
from the notation of the Smith-Thom deficiency.

Notice from Corollary 2.2 that X is maximal if and only if dim H∗(F ) =
dim H∗(X), and from Theorem 2.1 we find the following characterization
of maximality.

Corollary 2.4. Let (X, c) be a topological space equipped with a cellular
involution. Then X is maximal if and only if the sequence

0→ Hk+1(X̄, F )
∆−→ Hk(X̄, F )⊕Hk(F )→ Hk(X)→ 0

is exact for every k ≥ 0.

Lemma 2.5. If a d-dimensional space (X, c) is maximal and r ≤ d, then

βr(X̄, F ) =

d∑
k=r

(βr(X)− βr(F )). (2.4)

If, in addition, d = 2n, X is a smooth closed manifold, c a smooth involution,
and each component of F is n-dimensional, then we have

βr(X̄, F ) =
2n∑
k=r

βk(X), for every r ≥ n+ 1, (2.5)

and
β∗(X̄, F ) =

n

2
β∗(X). (2.6)

Proof. According to Corollary 2.4, under maximality assumption, for every
k ≥ 0 we have βk+1(X̄, F ) + βk(X) = βk(X̄, F ) + βk(F ). We obtain (2.4)
by summing up these equalities over all k with r ≤ k ≤ d and noticing that
βd+1(X̄, F ) = 0. In the manifold case, (2.5) is a direct consequence of (2.4).

To prove (2.6), by adding the equalities (2.4) over all r with 1 ≤ r ≤ d,
we obtain

β∗(X̄, F ) =

2n∑
r=0

r(βr(X)− βr(F )). (2.7)

Due to Poincaré duality applied to both X and F , we have

2n∑
r=0

rβr(X) =

2n∑
r=0

(2n− r)βr(X) = 2nβ∗(X)−
2n∑
r=0

rβr(X)

and
2n∑
r=0

rβr(F ) =
n∑
r=0

rβr(F ) =
n∑
r=0

(n− r)βr(F ) = nβ∗(F )−
n∑
r=0

rβr(F ),

respectively. Hence,

2n∑
r=0

rβr(X) = nβ∗(X),
2n∑
r=0

rβr(F ) =
n

2
β∗(F ), (2.8)

and (2.6) follows from (2.7), (2.8), and the maximality assumption. �
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2.2. A non-vanishing result. An ingredient needed for the proofs of re-
sults announced in §1 is an observation of the first author [5] regarding the
non-vanishing of the cohomology of real hypersurface. We include a short
proof here for the convenience of the reader.

Lemma 2.6. Let X ⊂ PN be a maximal complete intersection of dimension
n and υ ∈ H1(X(R)) the class of hyperplane sections H(R) ⊂ X(R). Then
υr 6= 0 for every r ∈ N, r ≤ [n2 ]. In particular, βr(X(R)) ≥ 1 for every
r ∈ N, r ≤ [n2 ].

Proof (cf., [5]). Let d be the degree of X ⊂ PN . If d is odd, then υr 6= 0 for
every 0 ≤ r ≤ n, just because (υr ∪ υn−r) ∩ [X(R)] = d mod 2.

If d is even, the result is a straightforward consequence of the following
properties:

• If k is odd, then Hk(X;Z)=0.
• If k is even and n < k ≤ 2n, then Hk(X;Z) is isomorphic to Z and

generated by hn−
k
2 where h ∈ H2(X;Z) is Poincaré dual to the class

of hyperplane sections H ⊂ X.
• If k is even and 0 ≤ k < 2n, then Hk(X;Z) is isomorphic to Z and

hn−
k
2 is a d-multiple of a generator.

• if n is even, then h
n
2 is a primitive element of Hn(X;Z) (see, for

example, [5, Lemma 1.2]).

Indeed, from the enumerated above properties and exactness of the F2-
cohomology sequence of the pair (PN , X) it follows that

dimH∗(PN , X) = dimH∗(PN ) + dimH∗(X)− 2
([n

2

]
+ 1
)
.

On the other hand, from the exactness of the F2-cohomology sequence of
the pair (PN (R), X(R)) we get

dimH∗(PN (R), X(R)) = dimH∗(PN (R)) + dimH∗(X(R))− 2(`+ 1),

where ` is determined by the property that υr 6= 0 for r ≤ l and υr = 0 for
r > `. Now, it remains to apply the Smith inequality in the relative setting
(see [2], Chap. 3, Theorem 4.1),

dimH∗(PN (R), X(R)) ≤ dimH∗(PN , X)

and to use the maximality assumption, dimH∗(X(R)) = dimH∗(X). �

2.3. Elementary computations. The following computations are used in
the proof of Theorem 1.2.
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Lemma 2.7. Let X be a maximal real nonsingular projective variety of odd
dimension n. Then, the following relations hold:

n−1
2∑
l=0

∑
i+j=2l

βi(X(R))βj(X(R)) =
1

4
β2
∗ , (2.9)

n−1
2∑
l=0

βl(X(R)) =
1

2
β∗ , (2.10)

n−1
2∑
l=0

2l−1∑
i=0

βi(X(R)) =
n− 1

4
β∗. (2.11)

Proof. By Poincaré duality, we find:

2

n−1
2∑
l=0

∑
i+j=2l

βi(X(R))βj(X(R))

=

n−1
2∑
l=0

∑
i+j=2l

βi(X(R))βj(X(R)) +

n−1
2∑
l=0

∑
i+j=2n−2l

βn−i(X(R))βn−j(X(R))

=

n−1
2∑
l=0

∑
i+j=2l

βi(X(R))βj(X(R)) +

n∑
l′=n+1

2

∑
i′+j′=2l′

βi′(X(R))βj′(X(R))

=

n∑
k=0

∑
a+b=2k

βa(X(R))βb(X(R))

=β2
even(X(R)) + β2

odd(X(R)).

Since X(R) is an odd-dimensional manifold, using again the Poincaré duality
we see that βodd(X(R)) = βeven(X(R)), while by the maximality of X we
have βodd(X(R)) + βeven(X(R)) = β∗. Therefore

βodd(X(R)) = βeven(X(R)) =
1

2
β∗,

wherefrom (2.9) follows immediately.

Again by Poincaré duality, we have

2

n−1
2∑
l=0

βl(X(R)) =

n−1
2∑
l=0

βl(X(R)) +

n−1
2∑
l=0

βn−l(X(R))

=

n−1
2∑
l=0

βl(X(R)) +

n∑
l′=n+1

2

βl′(X(R))

=β∗(X(R)).
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This implies (2.10) due to the maximality of X.

A direct computation shows that
n−1
2∑
l=0

2l−1∑
i=0

βi(X(R)) =

n∑
j=0

⌈
n− 1− j

2

⌉
βj(X(R)). (2.12)

Arguing as before, by Poincaré duality, we obtain

2

n∑
j=0

⌈
n− 1− j

2

⌉
βj(X(R))

=
n∑
j=0

⌈
n− 1− j

2

⌉
βj(X(R)) +

n∑
j=0

⌈
n− 1− j

2

⌉
βn−j(X(R))

=
n∑
j=0

⌈
n− 1− j

2

⌉
βj(X(R)) +

n∑
i=0

⌈
i− 1

2

⌉
βi(X(R))

=
n∑
a=0

(⌈
n− 1− a

2

⌉
+

⌈
a− 1

2

⌉)
βa(X(R))

=
n− 1

2

n∑
a=0

βa(X(R)). (2.13)

The conclusion of the lemma follows now from (2.12), (2.13) and the maxi-
mality of X. �

WhenX is even dimensional, we need similar identities. We will only state
them, as the proof is elementary and follows the one in the odd dimensional
case.

Lemma 2.8. Let X be a maximal real nonsingular projective variety of even
dimension n. Then, the following relations hold:

n
2∑
l=1

∑
a+b=2l−1

a<b

βa(X(R))βb(X(R)) =
1

2
βeven(X(R))βodd(X(R)) , (2.14)

n
2∑
l=1

2l−2∑
i=0

βi(X(R)) =
n

4
β∗ −

1

2
βodd(X(R)). � (2.15)

3. Cut-and-Paste construction of Hilbert squares over the
reals

For smooth varieties a simple, well known, construction of the Hilbert
square consists in the following. Given a smooth variety X, one lifts the
involution τ : X×X → X×X permuting the factors to an involution Bl(τ)
on the blowup Bl∆(X ×X) of X ×X along the diagonal ∆ ⊂ X ×X. The
quotient of Bl∆(X×X) by Bl(τ) is then naturally isomorphic to the Hilbert
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square X [2]. By construction, the branch locus E ⊂ X [2] of the double
ramified covering Bl∆(X × X) → X [2] is naturally isomorphic to P(T ∗X)
(in the Grothendieck notation) and coincides with the exceptional divisor of

the canonical projection X [2] → X(2) to the symmetric square X(2) of X.

This construction works over any field. Applying it to a smooth variety
X defined over the reals, we observe that X [2](R) is a disjoint union of
connected components

X [2](R) = X
[2]
main(R)

⊔
X

[2]
extra(R), X

[2]
extra(R) =

⊔
1≤i<j≤r

(Fi × Fj)

where F1, . . . , Fr are the connected components of X(R) and X
[2]
main(R) is

the component of X [2](R) that contains E(R).

Furthermore, E(R) ⊂ X [2]
main(R) is naturally diffeomorphic to PR(T ∗X(R)).

The normal line bundle of E(R) in X
[2]
main(R) is trivial, and E(R) divides

X
[2]
main(R) in r + 1 submanifolds with boundary:

X
[2]
main(R) =

r⋃
i=0

Hi,

where

∂H0 = E(R), IntH0
∼= (X/ c) \X(R)

∂Hi = PR(T ∗Fi), IntHi
∼= F

(2)
i \∆Fi, i = 1, . . . , r.

Here ∆Fi is the diagonal in F
(2)
i , for every i = 1, . . . , r. Each manifold

Hi, i = 1, . . . , r is glued to H0 along their common boundary PR(T ∗Fi) ⊂
PR(T ∗X(R)). For convenience, let H = tri=1Hi, and notice that ∂H = E(R).

Denote by

in0 : E(R) = ∂H0 → H0, in : E(R) = ∂(tri=1Hi)→
r⊔
i=1

Hi

the inclusion maps. Let ink0 and ink be the induced maps between the kth

cohomology groups, and in∗0 and in∗ denote the induced maps

in∗0 : H∗(H0)→ H∗(E(R)) and in∗ : H∗(H)→ H∗(E(R)),

respectively, where

H∗(E(R)) =
⊕
i≥0

H i(E(R)) and H∗(H) =
⊕
i≥0

H i(H).

We will write the corresponding induced maps in homology by lowering the
degree index. We let µ = (in0, in) : E(R)→ H0 t (tri=1H) and use similarly
induced notations for the induced maps in cohomology and homology.
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3.1. Compatibility of characteristic classes. A natural bijection be-
tween the set of double coverings of a topological space M and H1(M)
consists in taking the first Stiefel-Whitney class of the associated real line
vector bundle. Given a double covering π : N → M, the corresponding co-
homology class b ∈ H1(M) is called the characteristic class of the covering.

In our context, we denote by b0 ∈ H1(H0 \ ∂H0) = H1(H0) the char-
acteristic class of the double covering X \ X(R) → H0 \ ∂H0, while b ∈
H1(X(R)(2) \ ∆X(R)) is the characteristic class of the double covering

X(R) × X(R) \ ∆X(R) → X(R)(2) \ ∆X(R). Notice that this double cov-
ering is trivial when restricted to the connected components Fi × Fj of

X(R)(2) \∆X(R) with i 6= j. Accordingly, the restriction of b to these com-
ponents is trivial, and b can be viewed as an element of H1(H \ ∂H) =
H1(H). Under this identification, we see that b = (b1, . . . , br), where bi ∈
H i(F

(2)
i \∆Fi) = H1(Hi) is the characteristic class of the the double covering

Fi × Fi \∆Fi → F
(2)
i \∆Fi, for every i = 1, . . . , r.

Let η denote the tautological line bundle of E(R) = PR(T ∗X(R)) and
γ ∈ H1(E(R)) its first Stiefel-Whitney class. Due to the cut-and-paste con-
struction and naturality of the characteristic classes, we have the following
compatibility relations:

in1
0(b0) = γ = in1(b). (3.1)

3.2. The Betti numbers of Hi. Here, we compute the Betti numbers of

the components of X
[2]
main(R) and the rank of the corresponding inclusion

maps induced in homology/cohomology. To simplify the notation, through-
out the rest of the article βk(X) = βk(X(C)) will always be denoted by βk,
and, similarly, we will use the notation β∗ for β∗(X) = β∗(X(C)).

Lemma 3.1. If X is a maximal n-dimensional real nonsingular projective
variety, then the following formulas hold:

1) βk(H0) =

2n∑
i=2n−k

βi, for every integer 0 ≤ k ≤ n− 1.

2) β∗(H0) =
n

2
β∗.

Proof. By Poincaré-Alexander-Lefschetz duality, we find

βr(H0) = β2n−r(X/ c, X(R)),

and the proof of the claims follow from applying Lemma 2.5 to the pair
(X, c). �

Lemma 3.2. If X is a maximal n-dimensional real nonsingular projective
variety, then

rank(ink0) =
k∑
i=0

βi

for every k < n.
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Proof. We argue by induction, and proceed by noticing first that rank(in0
0) =

β0. Indeed, from the short exact sequence

0→ H0(H0, ∂H0)→ H0(H0)→ Im(in0
0)→ 0,

and Poincaré-Alexander-Lefschetz duality, we obtain

rank(in0
0) =β0(H0)− β0(H0, ∂H0)

=β0(X/ c \X(R))− β0(X/ c, X(R))

=β2n(X/ c, X(R))− β0(X/ c, X(R)).

Since X is maximal, from (2.5) we obtain β2n(X/ c, X(R)) = β2n and
β0(X/ c, X(R)) = 0. Therefore rank(in0

0) = β2n = β0.
Consider next the cohomology long exact sequence of the pair (H0, ∂H0).

We find

0→ Hk−1(∂H0)

Im(ink−1
0 )

→ Hk(H0, ∂H0)→ Hk(H0)→ Im(ink0)→ 0, (3.2)

for every k ≥ 1. By Poincaré-Alexander-Lefschetz duality, Künneth formula
and (2.5), from (3.2) we have:

rank(ink−1
0 )+ rank(ink0)

=βk−1(∂H0) + βk(H0)− βk(H0, ∂H0)

=βk−1(E(R)) + βk(X/ c \X(R))− βk(X/ c, X(R))

=
k−1∑
i=0

βi(X(R)) + β2n−k(X/ c, X(R))− βk(X/ c, X(R))

=
k−1∑
i=0

βi(X(R)) +
2n∑

i=2n−k
(βi − βi(X(R)))−

2n∑
i=k

(βi − βi(X(R)))

=

k−1∑
i=0

βi(X(R))−
2n−k−1∑
i=k

βi +

2n−k−1∑
i=k

βi(X(R))

=
2n−k−1∑
i=0

βi(X(R))−
2n−k−1∑
i=k

βi. (3.3)

Since k < n and X is maximal, we find

2n−k−1∑
i=0

βi(X(R)) =
n∑
i=0

βi(X(R)) = β∗,

and (3.3) can be rewritten as

rank(ink−1
0 ) + rank(ink0) =

k−1∑
i=0

βi +

2n∑
i=2n−k

βi. (3.4)
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Assume now that rank(ink−1
0 ) =

k−1∑
i=0

βi. From (3.4) we find that rank(ink0) =

2n∑
i=2n−k

βi, which, by Poincaré duality, is equivalent to rank(ink0) =
k∑
i=0

βi,

concluding the induction argument. �

Analogs of Lemmas 3.1 and 3.2 for Hi, i = 1, . . . , r, are already available
in the literature, in a wider context. For convenience, we collect below
several results extracted from Theorem 4.2 in [12] and its proof.

Let F be a compact C∞-manifold of real dimension m. The complement
of the diagonal in its symmetric square F (2) \ ∆F is naturally seen as the
interior of a smooth compact 2m-dimensional manifold HF with boundary
PR(T ∗F ). Let

inkF : Hk(F (2) \∆F ) = Hk(HF )→ Hk(∂HF ) = Hk(PR(T ∗F ))

be the restriction homomorphism.

Theorem 3.3. Let z1, . . . , zs be a basis for H∗(F ) and let Zi be a closed

pseudomanifold in F that represents the class zi. Let b ∈ H1(F (2) \∆F ) be

the class of the double cover g : (F ×F )\∆F → F (2) \∆F. For every integer
k ≥ 0, we have:

1) A basis for Hk(F (2) \∆F ) is given by the elements g∗(zi ⊗ zj) with

deg zi+deg zj = k and i < j, together with the elements bj [Z
(2)
i \∆Zi]

such that 2 deg zi+j = k, i ≥ 0 and satisfying 0 ≤ j ≤ m−1−deg zi.
2) inkF (g∗(zi ⊗ zj)) = 0 for all i < j.

3) The restrictions inkF (bj [Z
(2)
i \∆Zi]) satisfying 2 deg zi + j = k, i ≥ 0

and 0 ≤ j ≤ m−1−deg zi form a basis of Im(inkF ) ⊆ Hk (PR(T ∗F )) .

�

Adapted to our situation, we get the following corollaries.

Corollary 3.4. If X is an n-dimensional nonsingular real projective variety,
then, for every i = 1, . . . , r and k ≥ 0, the following formulas hold:

1) β2k(Hi) =
∑

a+b=2k
a<b

βa(Fi)βb(Fi)+
1

2
βk(Fi)(βk(Fi)−1)+

k∑
l=2k−n+1

βl(Fi).

2) β2k+1(Hi) =
∑

a+b=2k+1
a<b

βa(Fi)βb(Fi) +

k∑
l=2k+1−n+1

βl(Fi).

3) β∗(Hi) =
1

2
β∗(Fi)(β∗(Fi)− 1) +

n∑
k=0

(n− k)βk(Fi).

4) If, in addition, X is maximal, then β∗(H) =
1

2

r∑
i=1

β2
∗(Fi) +

n− 1

2
β∗.
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Corollary 3.5. If X is an n-dimensional real projective manifold, then

rank(inm) =
∑

[m
2

]≥k≥m−n+1

βk(X(R)),

for every m ∈ {0, . . . , 2n}.
We conclude this section with the following results generalizing Proposi-

tion 3.2 in [6]. The proof presented in [6, Proposition 3.2] extends literally
to higher dimensions and will be omitted.

Proposition 3.6. Let X be a compact complex manifold of dimension n
equipped with a real structure c . We have:

1) The relation

χ(X [2](R)) =
1

2
β∗ − βodd +

1

2
χ(X(R))2 − χ(X(R)). (3.5)

2) If Tors2H∗(X;Z) = 0, the relation

β∗(X
[2]) =

1

2
β∗(β∗ − 1) + nβ∗ − βodd, (3.6)

3) If Tors2H∗(X;Z) 6= 0, the relation

β∗(X
[2]) ≥ 1

2
β∗(β∗ − 1) + nβ∗ − βodd. (3.7)

3.3. Special submanifolds of Hilbert squares. Let X be a compact
complex manifold of dimension n equipped with a real structure c, and
Y ⊆ X a smooth, c-invariant, complex submanifold of codimension m, with
Y (R) 6= ∅, and denote by υ ∈ Hm(X(R)) the cohomology class of Y (R).

The Hilbert square Y [2] ⊆ X [2] is a c-invariant complex submanifold of
codimension 2m. Its real locus, Y [2](R), is transversal to E(R) and intersects

the latter along PR(T ∗Y (R)). The cycle Y [2](R) defines a cohomology class

ΥY in H2m(X [2](R)).

Let j0, j and κ denote the inclusions H0 ↪→ X [2](R), tri=1Hi ↪→ X [2](R),

and E(R) ↪→ X [2](R),respectively. For every integer i ≥ 0, consider the
induced commutative diagram of restrictions:

H2i(H0)
in∗0

''
H2i(X [2](R))

j∗ ''

j∗0
77

κ∗ // H2i(E(R))

H2i(tri=1Hi)

in∗

77

(3.8)

Let

θY =j∗0(ΥY ) = [(Y/ c) \ Y (R)] ∈ H2m(H0)

σY =j∗(ΥY ) = [Y (R)(2) \∆Y (R)] ∈ H2m(tri=1Hi).
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By the commutativity of diagram (3.8), we have

in2m
0 (θY ) = in2m(σY ) = κ∗(ΥY ). (3.9)

As is well-known, the cohomology ring H∗(E(R)) is the polynomial ring
H∗(X(R))[γ]/〈γn + w1γ

n−1 + · · · + wn〉, where w1, . . . , wn are the Stiefel-
Whitney classes of X, and γ is the first Stiefel-Whitney class of the tautolog-
ical line bundle of E(R) = PR(T ∗X(R)) denoted by η. Here, and throughout
the paper, we omit the symbol π∗ for cohomology classes on X(R) pulled
back to E(R), where π : E(R)→ X(R) is the projection.

Lemma 3.7. We have

κ∗(ΥY ) = γmυ + γm−1 Sq1 υ + · · ·+ γ Sqm−1 υ + Sqm υ.

Proof. The statement is the real analog of Lemma 6.1 in [12]. The proof
below follows the same lines.

Let V = Y [2](R) ∩ E(R), and notice that

V = PR(T ∗Y (R)) ⊆ PR(T ∗X(R))|Y (R) ⊆ PR(T ∗X(R)) = E(R)

is the zero set of the transverse section of the real vector bundle Hom(η∨, N)
associated to the subbundle η ⊆ π∗T ∗X(R), where N is the pullback of the
normal bundle of Y (R) in X(R) to E(R). As a consequence, the cohomology
class of V in PR(T ∗X(R))|Y (R) is the top Stiefel-Whitney class of the rank
m vector bundle η ⊗N

w`(η ⊗N) =wm1 (η) + wm−1
1 (η)w1(N) + · · ·+ wm(N)

= γm + γm−1w1(N) + · · ·+ wm(N). (3.10)

Let now s : Y (R)→ X(R) denote the inclusion. Since, by [10] we have

Sqi υ = s∗wi(N),

by pushing forward (3.10) to E(R), the conclusion of the lemma follows. �

4. Proof of Theorem 1.1

We follow here the same strategy as in the proof of [6, Theorem 1.1]. As
a first step, we show the following:

Proposition 4.1. Let X be a real nonsingular projective variety of dimen-
sion n ≥ 2. If X [2] is maximal, then X(R) 6= ∅.

Proof. By contradiction, let assume that X [2] is maximal and X(R) = ∅.
Then X [2](R) is the smooth quotient manifold X/ c, of real dimension 2n,
and so

β∗(X
[2](R)) = β∗(X/ c).

Since X(R) = ∅, the first relevant homology groups in the Smith sequence
in Theorem 2.1 satisfy

0→ H2n(X/ c)
∆2n−−→ H2n−1(X/ c)

tr∗2n−1−−−−→ H2n−1(X)→ · · ·
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Since X/ c is connected, we have β2n(X/ c) = 1 and we find

β2n−1(X/ c) = 1 + rank(tr∗2n−1) ≤ β2n + β2n−1

where βi states for βi(X). We assume

βp+1(X/ c) ≤
2n∑

k=p+1

βk.

Using again the exactness of the Smith sequence, we find

0→ Im(tr∗p+1) → Hp+1(X)
pr∗,p−−−→ Hp+1(X/ c)

∆p+1−−−→ Hp(X/ c)→ Im(tr∗p)→ 0

Hence

βp(X/ c) = rank(tr∗p) + βp+1(X/ c) + rank(tr∗p+1)− βp+1 ≤
2n∑
k=p

βk.

By descending induction, we find that

βi(X/ c) ≤
2n∑
k=i

βk, for alln ≤ i ≤ 2n.

By Poincaré duality, or by inspecting the Smith sequence starting from the
other end, we also find

βi(X/ c) ≤
i∑

k=0

βk, for all 0 ≤ i ≤ n.

Therefore, we obtain

β∗(X/ c) ≤ (n+ 1)β0 + nβ1 + · · ·+ 2βn−1 + βn + 2βn+1 + · · ·+ (n+ 1)β2n.

Since X is connected, we have β0 = β2n = 1 and find

β∗(X
[2](R)) = β∗(X/ c) ≤ 2 + nβ∗. (4.1)

Also, since X is projective, β2 ≥ 1 and we notice that

β∗ ≥ β∗ − βodd ≥ β0 + β2 + β2n ≥ 3. (4.2)

To finish the proof, we use now the third item of Proposition 3.6, (4.2) and
(4.1) to notice that

β∗(X
[2]) ≥ 1

2
β∗(β∗ + 1) + (n− 1)β∗ − βodd

≥ 2β∗ + (n− 1)β∗ − βodd

=nβ∗ + (β∗ − βodd)

> 2 + nβ∗

≥β∗(X [2](R)),

contradicting the maximality of X [2]. �
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Remark 4.2. The projectivity assumption can be replaced by “compact
complex” with β2k ≥ 1 for at least one k, 0 < k < n”.

Proof of Theorem 1.1. The non-emptiness of X(R) being now ensured by
Proposition 4.1, the remaining part of the proof of Theorem 1.1 is identical
to the proof of Theorem 1.1 in [6]. We include the main ideas for convenience
of the reader.

Pick a point p ∈ X(R), whose existence is ensured by Proposition 4.1,

and consider the map f : X → X(2) given by

f(x) = {p, x}.

Since the Hilbert-Chow map π : X [2] → X(2) is an isomorphism when
restricted to X [2] \ E and f(X \ {p}) ∩ π(E) = ∅, the restriction of f to
X \ {p} induces a map

φ : X \ {p} → X [2].

The map φ extends to the blowup q : BlpX → X of X at the point p, and
so we have a commutative diagram

BlpX
φ //

q

��

X [2]

π
��

X
f // X(2).

By [6, Lemma 4.2] 4, the map

φ∗ : H∗(X [2])→ H∗(BlpX)

is surjective. Consider next the commutative diagram

H∗G(X [2]) //

R[2]

��

H∗G(BlpX)

R

��
H∗(X [2])

φ∗ // H∗(BlpX),

where the notation H∗G(Y ) stands for the equivariant cohomology with F2-
coefficients of a topological space Y equipped with the action of a group G.
In our case G = F2 acting by complex conjugation on the corresponding
complex variety.

By [6, Proposition 2.6], since X [2] is maximal, the restriction map

R[2] : H∗G(X [2])→ H∗(X [2])

is surjective, implying the surjectivity of the restriction map

R : H∗G(BlpX)→ H∗(BlpX).

4Lemma 4.2 in [6] is stated and proved for surfaces, but the same proof can be easily
adapted in arbitrary dimension.
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Applying once again [6, Proposition 2.6], we find that Blp(X) is maximal,
and so there remains to notice that Blp(X) is maximal if and only if X is
maximal. �

5. Projective complete intersections

This section is devoted to the proof of Theorem 1.2. We assume through-
out this section that X is a maximal real nonsingular projective complete
intersection of dimension n.

5.1. A reduction in the computation of the deficiency. Our approach
varies according to the parity of the dimension of X.

5.1.1. Odd dimension. We assume first that the dimension n of X is odd.
In this case, χ(X(R)) = 0, since X(R) is a closed odd dimensional manifold.
Moreover, βodd = βn = β∗−(n+1), as it follows from the Lefschetz theorem
on hyperplane sections. Therefore, using (3.5) and (3.6), the deficiency of

X [2] can be computed as follows:

D(X [2]) =β∗(X
[2])− β∗(X [2](R))

=β∗(X
[2])− 2βeven(X [2](R)) + χ(X [2](R))

=
1

2
β2
∗ + nβ∗ − 2βodd − 2βeven(X [2](R))

=
1

2
β2
∗ + (n− 2)β∗ + 2n+ 2− 2βeven(X [2](R)). (5.1)

Notice now that

βeven(X [2](R)) =βeven(X
[2]
main(R)) + βeven(X

[2]
extra(R))

= 2

n−1
2∑
l=0

(
β2l(X

[2]
main(R)) + β2l(X

[2]
extra(R))

)
. (5.2)

To compute β2l(X
[2]
main(R)) for every integer l such that 2l ≤ n − 1, we use

the Mayer-Vietoris sequence

· · · → H2l(E(R))
µ2l−−→

r⊕
i=0

H2l(Hi)→ H2l(X
[2]
main(R))→ H2l−1(E(R))

µ2l−1−−−→ . . .

which gives rise to the short exact sequence

0→ Coker(µ2l)→ H2l(X
[2]
main(R))→ Ker(µ2l−1)→ 0,

and so

β2l(X
[2]
main(R)) = dim Coker(µ2l) + dim Ker(µ2l−1)

=β2l(H0) +
r∑
i=1

β2l(Hi) + β2l−1(E(R))

− rank(µ2l)− rank(µ2l−1). (5.3)
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Therefore, for every integer l such that 0 ≤ 2l ≤ n− 1, we have

β2l(X
[2](R)) =β2l(X

[2]
main(R)) + β2l(X

[2]
extra(R))

=β2l(X
[2]
extra(R)) + β2l(H0) +

r∑
i=1

β2l(Hi) + β2l−1(E(R))

− rank(µ2l)− rank(µ2l−1). (5.4)

Notice that by the Künneth formula we have

β2l(X
[2]
extra(R)) =

∑
1≤s<t≤r

β2l(Fs × Ft)

=
∑
i+j=2l

∑
1≤s<t≤r

βi(Fs)βj(Ft). (5.5)

5.1.2. Even dimension. We assume here that the dimension n of X is even.
As it follows from the Lefschetz theorem on hyperplane sections, we have
βodd = 0. Therefore, using (3.5) and (3.6), the deficiency of X [2] can be
computed as follows:

D(X [2]) =β∗(X
[2])− β∗(X [2](R))

=β∗(X
[2])− 2βodd(X [2](R))− χ(X [2](R))

=
1

2
β2
∗ + (n− 1)β∗ − 2βodd(X [2](R))− 1

2
χ(X(R))2 + χ(X(R)).

Since X is maximal, we have χ(X(R)) = β∗ − 2βodd(X(R)), and we find

D(X [2]) =nβ∗ + 2β∗βodd(X(R))− 2β2
odd(X(R))− 2βodd(X(R))

− 2βodd(X [2](R))

=nβ∗ + 2βeven(X(R))βodd(X(R))− 2βodd(X(R))

− 2βodd(X [2](R)). (5.6)

By the same arguments as in the odd dimensional case, we get:

βodd(X [2](R)) =βodd(X
[2]
main(R)) + βodd(X

[2]
extra(R))

= 2

n
2∑
l=1

(
β2l−1(X

[2]
main(R)) + β2l−1(X

[2]
extra(R))

)
(5.7)

where

β2l−1(X
[2]
main(R)) = dim Coker(µ2l−1) + dim Ker(µ2l−2)

=β2l−1(H0) +
r∑
i=1

β2l−1(Hi) + β2l−2(E(R))

− rank(µ2l−1)− rank(µ2l−2) (5.8)
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and

β2l−1(X
[2]
extra(R)) =

∑
1≤s<t≤r

β2l−1(Fs × Ft)

=
∑

i+j=2l−1

∑
1≤s<t≤r

βi(Fs)βj(Ft). (5.9)

As a result we have now reduced the computation of the deficiency of the
Hilbert square is reduced to the computation of the ranks of the restriction
maps in the Mayer-Vietoris sequence.

5.2. The rank of Mayer-Vietoris restriction maps. LetH be a smooth,
c-invariant, hyperplane section of X, and denote by H`, 1 ≤ ` ≤ n, the it-
erated hyperplane sections. Without loss of generality, we can and will
assume that each H` is smooth and c-invariant. Let υ ∈ H1(X(R)) denote
the cohomology class of H(R). For every 1 ≤ ` ≤ n, the Hilbert square

H
[2]
` is a c-invariant, closed complex submanifold of complex codimension

2` in X [2]. The cycles H
[2]
` (R), 1 ≤ ` ≤ n, define cohomology classes Υl in

H2`(X [2](R)). Let

θ` = j∗0(Υl) ∈ H2`(H0), 1 ≤ ` ≤ n,

and set θ0 = 1 ∈ H0(H0) ' F2.

Lemma 5.1. Let X ⊆ PN be a real, maximal, n-dimensional complete

intersection. For every k = 0, . . . , n − 1, the collection of classes
{
bj0θ`

}
with j + 2` = k form a basis of Hk(H0).

Proof. By Poincaré-Alexander-Lefschetz duality and Lemma 2.5, it suffices

to show that for every k = 0, . . . , n− 1, the elements in the set
{
bj0θ`

}
with

j + 2` = k are linearly independent. Let c` ∈ F2, 0 ≤ ` ≤ [k/2] such that

[k/2]∑
`=0

c`b
k−2`
0 θ` = 0. (5.10)

Restricting (5.10) to Hk(E(R)) we find:

0 =

[k/2]∑
`=0

c` in∗0(bk−2`
0 θ`) =

[k/2]∑
`=0

c`γ
k−2` in∗0 j

∗
0(Υ`) =

[k/2]∑
`=0

c`γ
k−2`κ∗(Υ`).

Using now Lemma 3.7, we obtain the following relation in Hk(E(R)) :

[k/2]∑
`=0

c`γ
k−2`(γ`υ` + γ`−1 Sq1 υ` + · · ·+ γ Sq`−1 υ` + Sq` υ`) = 0.

Notice that the left-hand side is a degree k polynomial P (γ) in the variable γ,
with coefficients in H∗(X(R)). Thus, according to the Leray-Hirsch theorem,
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the coefficients of each γk−r, 0 ≤ r ≤ k must vanish, and we find:

[r/2]∑
j=0

cr−j Sqj υr−j = 0, for every r = 0, . . . , k. (5.11)

By Lemma 2.6, υr 6= 0 for every r ≤
[
n
2

]
, and the same holds for the

pullbacks π∗υr 6= 0, as it follows, once more, from the Leray-Hirsch theorem.
Using this, from (5.11) we inductively obtain c[k/2]−` = 0 for all 0 ≤ ` ≤
[k/2]. �

Proposition 5.2. Let X ⊆ PN be a real, maximal, non-singular complete
intersection of dimension n ≥ 1. Then

rank(µk) =

[k/2]∑
i=0

βi(X(R)).

for every 0 ≤ k ≤ n− 1.

Proof. By (3.1) and (3.9), we find in∗0(bj0) = in∗(bj) = γj and in∗0 (θ`) ∈
Im(in∗) for every j ≥ 0 and 0 ≤ ` ≤

[
n
2

]
, respectively. Therefore in∗0(bj0θ`) ∈

Im(in∗) for every integers j, ` ≥ 0 such that j + 2` = k. In particular, we
find Im(ink0) ⊆ Im(ink), for every 0 ≤ k ≤ n−1. The proof now follows from
Corollary 3.5. �

5.3. Proof of Theorem 1.2.

5.3.1. Odd dimension. For every integer l such that 0 ≤ 2l ≤ n− 1, a direct
computation using (5.5) and Corollary 3.4 shows that

β2l(X
[2]
extra(R)) +

r∑
i=1

β2l(Hi) =
∑
i+j=2l

∑
1≤s<t≤r

βi(Fs)βj(Ft) +

r∑
i=1

∑
a+b=2l
a<b

βa(Fi)βb(Fi)

+
r∑
i=1

1

2
βl(Fi)(βl(Fi)− 1) +

r∑
i=1

l∑
a=0

βa(Fi)

=
1

2

∑
a+b=2l

βa(X(R))βb(X(R))

+

l−1∑
a=0

βa(X(R)) +
1

2
βl(X(R)). (5.12)

According to Lemma 3.1,

β2l(H0) =
2n∑

i=2n−2l

βi(X) =
2l∑
j=0

βj(X) = l + 1,



22 KHARLAMOV AND RĂSDEACONU

so that, from (5.12) and Proposition 5.2, we infer that (5.4) can be written
as follows:

β2l(X
[2](R)) = (l + 1) +

1

2

∑
i+j=2l

βi(X(R))βj(X(R)) +
l−1∑
a=0

βa(X(R))

+
1

2
βl(X(R)) +

2l−1∑
i=0

βi(X(R))−
l∑

i=0

βi(X(R))−
l−1∑
i=0

βi(X(R))

= (l + 1) +
1

2

∑
i+j=2l

βi(X(R))βj(X(R))

+
2l−1∑
i=0

βi(X(R))− 1

2
βl(X(R))−

l−1∑
i=0

βi(X(R)). (5.13)

From Lemma 2.7 and formula (5.13) we find:

βeven(X [2](R)) = 2

n−1
2∑
l=0

β2l(X
[2](R))

= 2

n−1
2∑
l=0

(l + 1) +

n−1
2∑
l=0

∑
i+j=2l

βi(X(R))βj(X(R))

+ 2

n−1
2∑
l=1

2l−1∑
i=0

βi(X(R))−

n−1
2∑
l=0

βl(X(R))− 2

n−1
2∑
l=1

l−1∑
i=0

βi(X(R))

=
(n+ 1)(n+ 3)

4
+
β2
∗

4
+

(n− 2)β∗
2

− 2

n−1
2∑
l=1

l−1∑
i=0

βi(X(R)).

Therefore, the deficiency of X [2] is given by:

D(X [2]) =
1

2
β2
∗ + (n− 2)β∗ + 2n+ 2− 2βeven(X [2](R))

=
1

2
β2
∗ + (n− 2)β∗ + 2n+ 2

− (n+ 1)(n+ 3)

2
− β2

∗
2
− (n− 2)β∗ + 4

n−1
2∑
l=1

l−1∑
i=0

βi(X(R))

= 4

n−1
2∑
l=1

l−1∑
i=0

βi(X(R))− n2 − 1

8

 ,

which concludes the proof of Theorem 1.2 when the dimension of X is odd.
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5.3.2. Even dimension. For every integer l such that 1 ≤ l ≤ n
2 , a direct

computation using (5.9) and Corollary 3.4 shows that

β2l−1(X
[2]
extra(R)) +

r∑
i=1

β2l−1(Hi) =

∑
i+j=2l−1

∑
1≤s<t≤r

βi(Fs)βj(Ft) +
r∑
i=1

∑
a+b=2l−1

a<b

βa(Fi)βb(Fi) +
r∑
i=1

l−1∑
c=0

βc(Fi) =

∑
a+b=2l−1

a<b

βa(X(R))βb(X(R)) +

l−1∑
c=0

βc(X(R)). (5.14)

Notice from Lemma 3.1 and the Lefschetz theorem on hyperplane sections
that β2l−1(H0) = l. By (5.14) and Proposition 5.2, we now infer that (5.8)
can be written as follows:

β2l−1(X [2](R)) = l +
∑

a+b=2l−1
a<b

βa(X(R))βb(X(R))

+
2l−2∑
i=0

βi(X(R))−
l−1∑
i=0

βi(X(R)). (5.15)

From Lemma 2.8 and formula (5.15) we find:

βodd(X [2](R)) = 2

n
2∑
l=1

β2l−1(X [2](R))

= 2

n
2∑
l=1

l +

n
2∑
l=1

∑
a+b=2l−1

a<b

βa(X(R))βb(X(R))

+ 2

n
2∑
l=1

2l−2∑
i=0

βi(X(R))− 2

n
2∑
l=1

l−1∑
i=0

βi(X(R))

=
n(n+ 2)

4
+ βeven(X(R))βodd(X(R)) +

n

2
β∗ − βodd(X(R))

− 2

n
2∑
l=1

l−1∑
i=0

βi(X(R)). (5.16)
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Using (5.6) and (5.16), we compute now the deficiency of X [2] :

D(X [2]) =nβ∗ + 2βeven(X(R))βodd(X(R))− 2βodd(X(R))− 2βodd(X [2](R))

=nβ∗ + 2βeven(X(R))βodd(X(R))− 2βodd(X(R))

− n(n+ 2)

2
− 2βeven(X(R))βodd(X(R))− nβ∗ + 2βodd(X(R))

+ 4

n
2∑
l=1

l−1∑
i=0

βi(X(R)

= 4

 n
2∑
l=1

l−1∑
i=0

βi(X(R))− n(n+ 2)

8

 ,

which concludes the proof of Theorem 1.2 in the case when the dimension
of X is even. �

5.4. Proof of Theorem 1.5. We assume first that X [2] is maximal. Then,
by Theorem 1.1, X is maximal, and thus applying Corollary 1.3 we conclude
that βi(X(R)) = 1 = β2i for every i such that 0 ≤ i ≤ k−1 with k = 1

2dimX.
From the maximality of X and Poincaré duality we find that βk(X(R)) =
β2k. This implies

χ(X(R)) =

k−1∑
i=0

(−1)iβi(X(R)) + βk(X(R)) +

2k∑
i=k+1

(−1)iβi(X(R))

=
k−1∑
i=0

(−1)i + β2k +
2k∑

i=k+1

(−1)i.

On the other hand, according to Lefschetz trace formula we have

χ(X(R)) =
k−1∑
i=0

(−1)i + trHk,k(X(C)) +
2k∑

i=k+1

(−1)i.

Taking the difference we obtain

β2k = trHk,k(X(C)).

However, the inequality hk,k(X(C)) < β2k holds for any nonsingular projec-
tive complete intersection of dimension 2k ≥ 2 except cubic surfaces in P3,
quadrics, and intersections of two quadrics (see [9]).

Conversely, notice that linear subspaces X ⊂ PN satisfy βi(X(R)) =
1 for all i such that 1 ≤ i ≤ dimX. In the case when X is a maximal
real nonsingular quadric or a maximal real nonsingular intersection of two
quadrics, then βi(X(R)) = 1 f or every integer i such that 0 ≤ i ≤

[
n
2

]
−1 (cf.

[8, Section 7.1] or [11, Proposition 1.10] and [11, Theorem 4.9]). Likewise, if
X is a maximal real nonsingular cubic surface in P3, then X is the blow-up
of P2 at 6 real points, and so β0(X(R)) = 1. Thus, in all the four cases
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the conditions in Corollary 1.3 are fulfilled. Hence, in all the four cases the
Hilbert square is maximal. �

Remark 5.3. The proof given above shows the maximality of the Hilbert
square for real linear spaces and maximal real quadrics of any dimension,
not only of even-dimensional ones.

6. Maximality criteria and the proof of Theorems 1.7 and 1.8

We start by proving first the following maximality criterium.

Proposition 6.1. Let X be a maximal real nonsingular n-dimensional al-
gebraic variety with Tors2H∗(X,Z) = 0. Then the defect of X [2] is given
by

D(X [2]) = 2

(
rankµ∗ −

n

2
β∗ −

1

2
βodd

)
.5

In particular, X [2] is maximal if and only if rankµ∗ =
n

2
β∗ +

1

2
βodd.

Proof. The Mayer-Vietoris sequence

· · · → Hk(E(R))
µk−→

r⊕
i=0

Hk(Hi)→ Hk(X
[2]
main(R))→ Hk−1(E(R))

µk−1−−−→ . . .

gives rise to a short exact sequence

0→ Coker(µk)→ Hk(X
[2]
main(R))→ Ker(µk−1)→ 0,

and so

βk(X
[2]
main(R)) = dim Coker(µk) + dim Ker(µk−1).

As a consequence, we have

β∗(X
[2]
main(R)) =

2n∑
k=0

βk(X
[2]
main(R))

=

2n∑
k=0

dim Coker(µk) + dim Ker(µk−1)

=

r∑
i=0

β∗(Hi) + β∗(E(R))− 2 rank(µ∗).

Furthermore, by Leray-Hirsch, we have β∗(E(R)) = β∗(Pn−1(R))β∗(X(R)).
In our case, X is maximal, and so

β∗(E(R)) = nβ∗. (6.1)

5It is not difficult to check that in the case of surfaces this formula for the Smith-Thom
deficiency of X [2] concords with that given in [6, Remark 5.4].
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Using now Lemma 3.1 and Corollary 3.4, we find

β∗(X
[2]
main(R)) =

r∑
i=0

β∗(Hi) + β∗(E(R))− 2 rank(µ∗)

=
1

2

r∑
i=1

β2
∗(Fi)−

1

2
β∗ + 2nβ∗ − 2 rank(µ∗). (6.2)

Notice now that by the Künneth formula we get

β∗(X
[2]
extra(R)) =

∑
1≤i<j≤r

β∗(Fi × Fj) =
1

2
(β2
∗ −

∑
1≤i≤r

β2
∗(Fi)). (6.3)

From (6.2) and (6.3), we find

β∗(X
[2](R)) =β∗(X

[2]
main(R)) + β∗(X

[2]
extra(R))

=
1

2

r∑
i=1

β2
∗(Fi)−

1

2
β∗ + 2nβ∗ − 2 rank(µ∗) +

1

2
β2
∗ −

1

2

∑
1≤i≤r

β2
∗(Fi)

=
1

2
β∗(β∗ − 1) + 2nβ∗ − 2 rank(µ∗). (6.4)

Invoking now the second item of Proposition 3.6, from (6.4) we find that the

maximality defect of X [2] is

D(X [2]) =β∗(X
[2])− β∗(X [2](R))

= 2

(
rank(µ∗)−

n

2
β∗ −

1

2
βodd

)
.

�

Proposition 6.1 yields an effective criterion for the maximality of Hilbert
squares in the absence of cohomology in odd degree. Before we state this
criterion, we recall the following well known observation which goes back to
Rokhlin and Thom.

Let M be a smooth compact n-dimensional manifold with boundary (nei-
ther ∂M or M is assumed connected). Denote by i : ∂M → M the inclu-
sion map, and by ik and i∗ the induced maps, Hk(∂M) → Hk(M) and
H∗(∂M)→ H∗(M), respectively.

Lemma 6.2. dim Ker(i∗) = rank(i∗) = 1
2 dim H∗(∂M).

Proof. It suffice to show that dim Ker(i∗) = 1
2 dim H∗(∂M). The Poincaré-

Lefschetz duality implies that for every 0 ≤ k ≤ n − 1 the k-dimensional
part of Ker(ik) is the orthogonal complement of Ker(in−1−k). Herefrom,

dim Ker(ik) + dim Ker(in−1−k) = βk(∂M) = βn−1−k(∂M).

The result follows by summing over k from 0 to n− 1. �
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Proposition 6.3. Let X be a maximal n-dimensional real nonsingular pro-
jective variety with Hodd(X) = 0. Then, X [2] is maximal if and only if one
of the following two equivalent conditions holds

1) Ker(in0∗) = Ker(in∗),
2) Im(in∗0) = Im(in∗).

Proof. By universal coefficient theorem, the assumption Hodd(X) = 0 im-

plies Tors2H∗(X,Z) = 0. Thus, Proposition 6.1 applies and shows that X [2]

is maximal if and only if rank(µ∗) =
n

2
β∗. As dim H∗(E(R)) = nβ∗, this is

equivalent to dim Ker(µ∗) =
n

2
β∗. Notice now that Ker(µ∗) = Ker(in0∗) ∩

Ker(in∗) and, by Lemma 6.2, dim Ker(in0∗) = dim Ker(in∗) =
n

2
β∗. There-

fore, the condition dim Ker(µ∗) =
n

2
β∗ is equivalent to Ker(in0∗) = Ker(in∗).

By duality, this is equivalent to Im(in∗0) = Im(in∗). �

Proof of Theorem 1.7. Since X [2] is maximal, by Proposition 6.3 we have
Im(in∗0) = Im(in∗). In particular, we find Im(ink0) = Im(ink), for every k =
{0, . . . , 2n− 1}. If k < n, using Corollary 3.5 and Lemma 3.2 we find

[k/2]∑
`=0

β`(X(R)) =

k∑
`=0

β`.

By induction, since β2i+1 = 0 for all i ≥ 1, we find that

βk(X(R)) = β2k for all k <
n

2
.

By Poincaré duality, this extends to k > n/2. Finally, by Theorem 1.1, X is

maximal, and so
n∑
k=0

βk(X(R)) =
n∑
i=0

β2k, which implies βk(X(R)) = β2k if

n = 2k. �

Proof of Theorem 1.8. By Proposition 6.3 and Lemma 6.2, it suffices to show
that Im(in∗0) ⊇ Im(in∗).

Let {Yα}α∈I be a finite collection of c-invariant, smooth submanifolds
of X, such that the group H∗(X(R)) is generated by the Poincaré dual of
the fundamental classes of Yα(R), α ∈ I. Without loss of generality, we can
assume Yα(R) 6= ∅ for every α ∈ I. By Theorem 3.3, Im(in∗) is generated by

the elements in∗(bj [Y
(2)
α (R) \ ∆Yα]), α ∈ I. It remains to notice that (3.9)

in Section 5.2 implies that for every α ∈ I and j ≥ 0

in∗(bj [Yα(R)(2) \∆Y (R)]) = γjκ∗(ΥYα) = in∗0(bj0θYα).

�
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