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Abstract

We show that each of the topological 4-manifolds CP2#kCP2, for k = 5, 6, 7, 8 admits a
smooth structure which has an Einstein metric of scalar curvature s > 0, a smooth struc-
ture which carries an Einstein metric with s < 0 and infinitely many non-diffeomorphic
smooth structures which do not admit Einstein metrics. We also exhibit new examples of
higher dimensional manifolds carrying Einstein metrics of both positive and negative scalar
curvature.

1. Introduction

Recently, new methods have been developed [1, 10] to construct symplectic 4-manifolds
with small topology and exotic smooth structures. Moreover, the method proposed by J. Park
[10] was later refined [8, 11] to produce interesting examples of minimal complex surfaces
of general type. In this paper we show how these constructions can be used in regard to the
existence or non-existence of Einstein metrics.

In [4], Catanese and LeBrun have shown that there exist homeomorphic, non-
diffeomorphic manifolds such that one of them admits an Einstein metric of positive sign
while the other admits an Einstein metric of negative sign. The manifold which has positive
scalar curvature Einstein metric is CP2#8CP2, while the second manifold is a deformation
of the Barlow surface. The key ingredient in their proof was to show that the Barlow sur-
face, a simply connected minimal surface of general type with K 2 = 1 can be deformed to
a surface with ample canonical bundle. In particular, they showed that there exists a simply
connected complex surface of general type with pg = 0, K 2 = 1 and having ample canonical
bundle. The ampleness of the canonical bundle ensures the existence of a Kähler–Einstein
metric of negative scalar curvature [2, 16].

Based on ideas from [10], Lee and Park [8] and more recently Park, Park and Shin
[11] constructed new examples of simply connected, minimal surfaces of general type with
pg = 0, K 2 = 1, 2 or 3. We show that their examples satisfy the ampleness condition. As far
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as the authors are aware, these are the examples of complex surfaces with ample canonical
line bundles with the smallest known topological invariants.

THEOREM 1·1. There exists a simply connected complex surface of general type, with
pg = 0, K 2 = 2 or 3, and ample canonical bundle.

Remark 1·2. In [12] Park, Park and Shin found a complex surface of general type with
pg = 0, K 2 = 4. Using the same techniques as the ones in the proof of the above theorem,
they were also able to show the ampleness of the canonical line bundle for this new example.

On CP2#8CP2, Catanese and LeBrun exhibit [4] two smooth structures, each mani-
fold admitting an Einstein, but the metrics have opposite signs, while Park [10] constructs
a smooth structure which does not admit an Einstein metric. We extend their results to
CP2#kCP2, for k = 5, 6, 7, and we also exhibit an infinite family of differential structures
for which no Einstein metric exists.

THEOREM 1·3. Each of the topological 4-manifolds CP2#kCP2, for k = 5, 6, 7, 8 admits
a smooth structure which has an Einstein metric of scalar curvature s > 0, a smooth struc-
ture which has an Einstein metric with s < 0 and infinitely many non-diffeomorphic smooth
structures which do not admit Einstein metrics.

It is a well known fact that in dimensions 2 and 3 the sign of the Einstein metric is a
topological invariant. This led Besse [3, p.19] to consider the conjecture that no smooth
compact n−manifold can admit Einstein metrics with different scalar curvature signs. As
we’ve seen in the previous theorem, in dimension four, a change of the differential structure
can change the sign of the Einstein metric. For higher dimensions, as far as the authors
know, Catanese and LeBrun constructed [4] the only known counterexamples to Besse’s
conjecture. These examples are in dimensions 4k, where k � 2. In these dimensions, we are
able to provide many new examples with the same property:

PROPOSITION 1·4. Let N1 = CP2#8CP2, N2 = CP2#7CP2, N3 = CP2#6CP2 and
N4 = CP2#5CP2. Then the manifold N obtained by taking the k−fold products, k � 2, of
arbitrary N1, N2, N3 or N4, admits two Einstein metrics g1, g2 such that the signs of the
scalar curvature are sg1 = − 1, sg2 = + 1. Moreover, these metrics are Kähler-Einstein with
respect to two distinct complex structures J1, J2.

As a peculiar consequence of the Kählerian property of the metrics and of our
method of construction the volumes of these two Einstein metrics actually coincide:
V olg1(N ) = V olg2(N ).

The paper is organized as follows: in Section 2 we discuss the ampleness of the canonical
line bundles of some interesting examples of complex surfaces and the relation to the exist-
ence of Einstein metrics, while in Section 3 we introduce the Seiberg-Witten invariants and
use them to get results on non-existence of Einstein metrics. In Section 4 we treat the higher
dimensional case.

2. Ampleness of the (anti)canonical bundle: existence of Einstein metrics

In general the existence or non-existence of Einstein metrics on a given manifold is hard to
prove. In the case c1(M) > 0, in the unobstructed situations, i.e. for certain complex surfaces
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whose underlying differential structure is CP2#kCP2, 3 � k � 8, the existence of Kähler–
Einstein metrics was proved by Siu [13] and by Tian and Yau [14]. A complete solution to
the existence problem was given by Tian [15]:

THEOREM 2·1 (Tian). A compact complex surface (M4, J ) admits a compatible Kähler–
Einstein metric with s > 0 if and only if its anti-canonical line bundle K −1

M is ample and its
Lie algebra of holomorphic vector fields is reductive.

In the case when c1(M) < 0, a criterion for the existence of a Kähler–Einstein metric was
independently found by Aubin [2] and Yau [16]:

THEOREM 2·2 (Aubin,Yau). A compact complex manifold (M4, J ) admits a compatible
Kähler-Einstein metric with s < 0 if and only if its canonical line bundle KM is ample. When
such a metric exists, it is unique, up to an overall multiplicative constant.

In this section, we discuss some examples of smooth complex structures on CP2#kCP2,

6 � k � 8. For each such k, the natural smooth structure as the complex projective plane
blown-up at k generic points, can be endowed [15] with a Kähler–Einstein metric of positive
scalar curvature. On the other hand, Lee and Park [8] and more recently Park, Park and
Shin [11] have constructed new exotic smooth structures on CP2#kCP2, for any 6 � k � 8.

Moreover, these admit complex structures yielding interesting examples of minimal surfaces
of general type. We will show that each of these surfaces has ample canonical line bundle,
and therefore admits a Kähler-Einstein metric of negative scalar curvature.

The examples constructed in these papers are very similar. In this article we are going to
treat the most complicated example, of a simply connected minimal surface of general type
with pg = 0 and K 2 = 3 from [11], in depth. The other examples can be treated similarly,
and we only sketch an outline of the proofs.

We begin with a description of the example of a minimal surface of general type with
pg = 0 and K 2 = 3, as in [11]. We start with two degenerate cubics on CP2. The first cubic
is given by a smooth conic B and a transverse line A. From an arbitrary point Q on the line
A, we consider the tangent lines L1, L2 to the conic. Let P, R be the points of tangency
and L3 the line defined by these points. We consider the pencil of cubics associated to
A + B and L1 + L2 + L3. We need to blow up CP2 at nine base points of the pencil to
obtain an elliptic fibration, g : Y → CP1. The rational elliptic surface Y has four singular
fibers: two degenerate fibers of type I8 and I2, and two nodal fibers of type I1. Moreover,
it admits 4 sections. First we blow up the singular points of the nodal fibers to smoothen
them. Then, we blow up: the singular I8 fiber five times, where the exceptional divisors
are F1, G7, G8, . . . , G10, the I2 fiber at two points, with exceptional divisors F4, F8, the
first nodal fiber at two points, with exceptional divisors F2, F5, and the second nodal fiber
at 10 points, with exceptional divisors F3, F6, F7, H6, H7, I2, . . . , I6, as represented in the
Figure 1. We obtain a new rational surface Z , which is the blow-up of CP2 at 9 + 2 + 5 +
2 + 2 + 10 = 30 points. Then, Z contains four particular disjoint chains of rational curves
consisting of proper transforms of the singular fibers, proper transform of some sections
and some of the exceptional divisors introduced in the blowing-up process. These chains
are G = ∑10

i=1 Gi , H = ∑7
i=1 Hi , I = ∑6

i=1 Ii and a chain of length one denoted by A,

represented by continuous lines in Figure 1.
We denoted by Fi , i = 1, . . . , 7 the seven smooth rational curves of self-intersection −1,

which are marked by discontinuous lines in Figure 1 and by F8 the remaining exceptional



412 RAREŞ RǍSDEACONU AND IOANA ŞUVAINA

Fig. 1. The manifold Z = CP2#30CP2.

divisor from the last singular fiber, drawn as a dotted line. It is easy to see that the Poin-
caré duals of the curves Fi , i = 1, . . . , 7, together with all of the irreducible components
of our four chains G, H, I and A form a basis of H 2(Z , Q), which is torsion-free and 31-
dimensional.

All of the above four chains satisfy Artin’s contractibility criterion [5]. By contracting
them, we obtain a projective surface X with 4 singularities, each admitting 1-parameter
Q−Gorenstein smoothings. Let f : Z → X be the contraction map. Let Exc( f ) = ∑

Gi +∑
Hi + ∑

Ii + A denote the exceptional divisor of f.
Using the arguments from [8], it is proved in [11] that the projective surface X admits

a Q−Gorenstein smoothing, whose generic fiber is a smooth, simply-connected, minimal
surface of general type with K 2 = 3. Moreover, K X is nef and:

f ∗K X ≡Q

8∑
i=1

ai Fi +
10∑

i=1

bi Gi +
7∑

i=1

ci Hi +
6∑

i=1

di Ii + eA. (2·1)

In [11], the coefficients are explicitly given, but for our purpose it is important to know that
ai , bi , ci , di and e are strictly positive rational numbers. We should point out that there is a
slight difference in our notation from the one in [11], when it comes to labeling the curves
Fi .

First, we prove the ampleness of the canonical divisor of the singular surface X. Suppose
that K X fails to be ample. Since K X is already nef, according to the Nakai–Moishezon
criterion [5], there exists an irreducible curve C ⊂ X such that (K X · C) = 0.

The total transform of C in Z is

f ∗C ≡Q C ′ +
10∑

i=1

xi Gi +
7∑

i=1

yi Hi +
6∑

i=1

zi Ii + t A, (2·2)

where C ′ is the strict transform of C and xi , yi , zi , t are non-negative rational numbers. We
should note here that C ′ is not numerically equivalent to 0. To give an immediate proof for
this assertion, note that (C · H) > 0 for any ample line bundle H on the projective surface
X. But, if C ′ ≡Q 0 we would have

0 = (C ′ · f ∗ H) = ( f ∗C · f ∗ H) = (C · H),

and this is a contradiction.
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Now, a straightforward computation gives:

(K X · C) = ( f ∗K X · f ∗C) = ( f ∗K X · C ′) (2·3)

=
8∑

i=1

ai(Fi · C ′) +
10∑

i=1

bi (Gi · C ′) +
7∑

i=1

ci(Hi · C ′)

+
6∑

i=1

di(Ii · C ′) + e(A · C ′).

The intersection number of C ′ with any component of Exc( f ) is greater or equal to 0,

with equality if and only if C ′ does not intersect any of the irreducible components of
Exc( f ), i.e. C does not pass through the singular points of X. Hence, it follows that

10∑
i=1

bi (Gi · C ′) +
7∑

i=1

ci (Hi · C ′) +
6∑

i=1

di (Ii · C ′) + e(A · C ′) � 0.

Thus
∑8

i=1 ai (Fi · C ′) � 0. In this case, either there is an i0 ∈ {1, . . . , 8} such that
(C ′ · Fi0) < 0, or (C ′ · Fi ) = 0 for all i = 1, . . . , 8, and C ′ does not meet any component
of Exc( f ). In the first case C ′ must coincide with Fi0 . However, the computations in [8,
11] show that ( f ∗K X · Fi) > 0 for all i = 1, . . . , 8, which is impossible by our assumption.
Therefore C ′ must have vanishing intersection number with all of the Fi ’s and also with all
of the components of Exc( f ). But, as the Poincaré duals of the irreducible components of
Exc( f ) and of the F ′

i s generate H 2(Z , Q), C ′ must be numerically trivial on Z , and this is
a contradiction. Hence, X has ample canonical bundle.

For k = 7, 8, i.e. for complex structures of general type on CP2#7CP2 and CP2#8CP2,

we use the examples constructed in Sections 3 and 7 of [8]. In both cases, the authors start
with an appropriate relatively minimal rational elliptic surface, which is further blown-up
to a complex surface Z̃ , which contains disjoint chains of curves, satisfying Artin’s con-
tractibility criterion. Collapsing these chains, f : Z̃ → X , Lee and Park [8] obtain a sin-
gular variety X which admits a 1-parameter Q−Gorenstein smoothing. The general fiber is
a smooth, simply connected, minimal complex surface of general type, homeomorphic to
CP2#kCP2. An important step in their proof was that both K X and f ∗K X are nef. Moreover,
f ∗K X is numerically equivalent to a rational combination of effective curves, where all the
coefficients are strictly positive. The curves appearing in the decomposition have all negat-
ive self-intersection and their Poincaré duals form a set of generators for H 2(Z̃ , Q). These
properties were the only needed ingredients to prove the stronger result that K X is in fact
ample. As the computations are analogous to the previous proof, we refrain from repeating
them.

PROPOSITION 2·3. On the topological space CP2#kCP2, for k = 6, 7, 8, there exists an
exotic smooth structure which admits a complex structure with ample canonical line bundle.

Proof. For each k = 6, 7, 8, we have associated above a singular complex surface X
with ample Q−Cartier canonical divisor. Each of these examples admits a 1-parameter
Q−Gorenstein smoothing [8, 11], which provides an exotic smooth structure on CP2#kCP2

for k = 6, 7, 8. Since ampleness is an open property [5], the canonical bundle of the general
fiber of these smoothings is automatically ample.
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The above proposition, for k = 6, 7, is a reformulation of the Theorem 1·1.

COROLLARY 2·4. Each of the manifolds CP2#kCP2 for k = 5, 6, 7, 8 admits an exotic
smooth structure on which there is an Einstein metric with negative scalar curvature.

Proof. For k = 6, 7, 8 we showed the existence of a smooth structure which admits a com-
plex structure with ample canonical line bundle. The same result is also true for CP2#5CP2,

see Remark 1·2. For these differential and complex structures Aubin, Yau’s Theorem 2·2
proves the existence of Kähler–Einstein metrics of negative scalar curvature.

Remark 2·5. On the topological manifold CP2#8CP2, there exist two constructions of
smooth structures supporting complex structures with ample canonical bundle, the one men-
tioned above and the one provided by Catanese and LeBrun [4]. It is not known what is the
relation between these smooth structures, and hence if we have more than one differential
structure which admits an Einstein metric of negative scalar curvature.

3. Exotic structures: non-existence of Einstein metrics

The classical obstruction to the existence of an Einstein metric on an oriented, compact,
smooth, Riemannian, four-manifold (M, g) is the Hitchin–Thorpe Inequality:

(2χ ± 3τ)(M) � 0 (3·1)

with equality when the Einstein manifold (M, g) is covered by the hyperkähler K 3 surface
or by the flat four-torus, or by the above with the reversed orientations. Here χ(M), τ (M)

denote the Euler characteristic and the signature of the manifold M, respectively. Using
the Seiberg–Witten theory, LeBrun was able to find new obstructions to the existence of
Einstein metrics [6, 7]. The novelty of his results is that the existence of Einstein metrics
depends on the differential structure rather then just topological data. The techniques de-
veloped by LeBrun rely on the existence of a non-trivial solution of the Seiberg–Witten
equations. We briefly introduce the needed notions of the Seiberg-Witten theory and state
the main obstruction theorem.

For simplicity, we consider only the case when H1(M, Z) has no 2−torsion. Then
there is a one-to-one correspondence between the set of Spinc structures and the set
{c ∈ H 2(M, Z)|c ≡ w2(M) mod 2} of characteristic classes in H 2(M, Z). The Seiberg–
Witten invariant is defined as an integer valued function

SWM : {c ∈ H 2(M, Z) | c ≡ w2(M) mod 2} −→ Z. (3·2)

This counts the number of solutions of a generic perturbation of the Seiberg–Witten equa-
tions modulo gauge transformations and counted with orientations (see for example [9]). We
call c a basic class if SWM(c)� 0.

The Seiberg–Witten invariant is a diffeomorphism invariant in the case b+ > 1. In the case
of b+ = 1, the invariant depends on the choice of an orientation of H 2(M, Z) and H 1(M, R).

But, as we are interested in manifolds for which the existence of an Einstein metric is to-
pologically unobstructed, the inequality (3·1) must be strictly satisfied. Hence, in the case
when the SWM(c) � 0, we have c2 � (2χ + 3τ)(M) > 0. But for any arbitrary metric
g, c2 = c2

+ − c2
− > 0 where we denote by c± the (anti)-self-dual part of the harmonic rep-

resentative 2-form. Thus c+ � 0, and in this special situation (see [9, theorem 6·9·2] ) the
Seiberg–Witten invariant does not depend on the choice of metric.

We are now ready to state LeBrun’s obstruction, see [7, theorem 3·3]:
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THEOREM 3·1 (LeBrun). Let X be a compact oriented 4−manifold with a non-trivial

Seiberg-Witten invariant and with (2χ + 3τ)(X) > 0. Then

M = X#kCP2

does not admit an Einstein metric if k � (2χ + 3τ)(X)/3.

There has recently been done a lot of work on constructing exotic structures with small
topology. In this paper we will use a construction due to Akhmedov, Baykur and Park [1].

Here we are interested in exotic structures on M = CP2#3CP2. In [1, section 3·4], the
authors construct a minimal symplectic manifold X homeomorphic, but not diffeomorphic,
to M. To give the reader a better understanding of this manifold, we sketch its construc-
tion. We start with two product manifolds Y = T 2 × �2 and T 4, where T n is a torus of
dimension n and �2 is a Riemann surface of genus 2. If we consider the diagonal class
[T 2 × point] + [point × T 2] ∈ H2(T 4, Z), then a smooth representative in this class is a
Riemann surface of genus 2 with self-intersection 2. Blowing up two points on a smooth
representative gives �′ ⊂ (T 4#2CP2) a smooth Riemann surface of genus 2 and 0−self-
intersection. If we endow the manifolds Y and T 4#2CP2 with the canonical symplectic
structures, we can choose the representative �′ to be a symplectic submanifold. We can now
take the symplectic sum X ′ = Y #�2(T 4#2CP2) along the two genus 2 symplectic submani-
folds point × �2 ⊂ Y and �′ ⊂ (T 4#2CP2). X ′ is a symplectic manifold with topological
invariants: Euler characteristic χ(X ′) = 6 and signature τ(X ′) = − 2. As X ′ is not simply
connected we need to make six Luttinger surgeries along well chosen tori (see [1]). We ob-
tain a new simply connected, minimal, symplectic manifold X, with the same topological
invariants as X ′.

Notice that the definition of the Seiberg–Witten invariant in [1] is for the Poincaré dual of
the characteristic class. The results are nevertheless the same. The manifold X has a unique
basic class β = c1(K X ) ∈ H 2(X, Z), such that its Seiberg–Witten invariant SWX (β) = 1.

Moreover, X contains a null-homologous torus �, with a preferred simple loop λ. In [1,
section 4], it is shown that 0−surgery on � with respect to λ yields a symplectic manifold
X0, which also has an unique basic class β0 = c1(K X0). Then 1/n−surgery, n � 1 on �

with respect to λ generates a family of manifolds Xn which are homeomorphic to X1 = X.

Corresponding to the basic class β of X there is a unique basic class βn of Xn for which the
Seiberg–Witten invariant is non-zero, and it can be computed as follows:

SWXn (βn) = SWX (β) + (n − 1)SWX0(β0) = 1 + (n − 1) = n.

Hence, the family Xn, n � 1 consists of homeomorphic, pairwise non-diffeomorphic mani-
folds. As βn is the unique basic class on Xn, and the Seiberg–Witten invariant of Xn, n > 1
is not ±1, the manifold Xn does not admit a symplectic structure. Of course, its basic class
satisfies β2

n = β2 = 6 = (2χ + 3τ)(X) = (2χ + 3τ)(Xn).

Let Mn,k = Xn#kCP2, k = 2, 3, 4, 5. Then, the conditions of Theorem 3·1 are satisfied and
we have the following:

PROPOSITION 3·2. The manifolds CP2#lCP2 for l = 5, 6, 7, 8 support infinitely many
non-diffeomorphic exotic smooth structures none of which admits an Einstein metric.

Proof. Using Theorem 3·1, the only thing that remains to be argued is that the collec-
tion {Mn,k}n contains infinitely many, homeomorphic, but pairwise not diffeomorphic, man-
ifolds. For this, we use again the Seiberg–Witten invariant and the commutativity of our
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construction. We fix the number l and blow-up k = l − 3 points on X = X1. We denote
by E1, . . . Ek the exceptional divisors. This gives a new symplectic manifold, which has
basic classes β ± P D(E1) ± · · · ± P D(Ek), where P D(Ei ) is the Poincare dual of Ei .

0−surgery on � with respect to λ gives the manifold X0#kCP2 with corresponding basic
classes β0 ± P D(E1) ± · · · ± P D(Ek). We have a similar relation for the Seiberg–Witten
invariant of Mn,k :

SWMn,k (βn ± P D(E1) ± · · · ± P D(Ek)) = SWX (β ± P D(E1) ± · · · ± P D(Ek))

+ (n − 1)SWX0(β0 ± P D(E1) ± · · · ± P D(Ek))

= 1 + (n − 1) = n.

Any manifold has a finite number of basic classes. As ln = max{SWMn,k (c)|c ∈
H 2(Mn,k, Z)} goes to infinity as n increases, we can always choose a subsequence of man-
ifolds, Yn, such that any manifold in the subsequence has the property that it is not diffeo-
morphic to any of the manifolds that precede it. Hence the manifolds Yn are homeomorphic
to CP2#(k + 3)CP2, but pairwise not diffeomorphic. Moreover, when n > 1 they don’t sup-
port a symplectic structure.

The question of the number of smooth structure which don’t admit Einstein metrics was
addressed in the literature before. Examples of manifolds which admit infinitely smooth
structures which don’t support an Einstein metric where exhibited in different papers by
Kotschick and LeBrun, among others. Their examples have large topological numbers.

Remark 3·3. We would like to note that since for each of the above smooth structures the
Seiberg–Witten invariant is non-trivial, the manifolds don’t admit Riemannian metrics of
positive constant scalar curvature. Moreover, as c2

1(Xn) > c2
1(Mn,k) > 0 there is a bound [6]

on the scalar curvature: ∫
Mn,k

s2
gdμ > 32π2c2

1(Xn) > 0

where dμ is the volume form with respect to g. Hence the manifolds Mn,k don’t admit
non-negative constant scalar curvature metrics, and their Yamabe invariant is negative.

The results of Theorem 1·3 are immediate by combining the results from 2·2, 2·4, 3·2.

4. Higher dimensional manifolds

Let S1 be a complex surface with ample canonical bundle and c2
1 = 1. As an example of

such surface, we can either take the one provided by Corollary 2·3, or the example con-
structed by Catanese and LeBrun [4]. Let S2, S3, S4 be the complex surfaces which admit
Kähler–Einstein metrics of negative scalar curvature and have c2

1 = 2, 3, 4, from Corollary
2·4. We are now ready to give the proof of Proposition 1·4.

Proof. Let N = Ni1 × · · · × Nik and let S = Si1 × · · · × Sik , where the i j are either 1, 2, 3
or 4. The manifolds Si and Ni are homeomorphic, hence by a theorem of Wall [17], they
are h-cobordant. These h-cobordisms can be used to construct an h-cobordism between N
and S. But as N , S are simply connected manifolds of dimension greater than 5, Smale’s
h-cobordism theorem tells us that they are diffeomorphic. We know that Ni and Si admit
Kähler–Einstein metrics of positive, negative scalar curvature, respectively. We can rescale
these metrics such that the scalar curvatures are ±1. On N , S we consider the product met-
rics associated to the corresponding i j . As we take products of Kähler–Einstein with the
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same scalar curvature, the new metrics are going to be Kähler–Einstein. The product com-
plex structures on N , S are of Kodaira dimension −∞ and 4k, respectively.

Remark 4·1. For dimension 4k, the number of manifolds constructed in Proposition 1·4
is (k + 1)(k + 2)(k + 3)/6. Hence the number of topological types which admit Einstein
metrics of both positive and negative sign can be made arbitrary large.
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[5] J. KOLLÁR and S. MORI. Birational geometry of algebraic varieties. Cambridge Tracts in Mathem-
atics. 134 (Cambridge University Press, 1998).

[6] C. LEBRUN. Four-manifolds without Einstein metrics. Math. Res. Lett. 3 no. 2 (1996), 133–147.
[7] C. LEBRUN. Ricci curvature, minimal volumes and Seiberg–Witten theory. Invent. Math. 145 no. 2

(2001), 279–316.
[8] Y. LEE and J. PARK. A simply connected surface of general type with pg = 0 and K 2 = 2. Invent.

Math. 170 no. 3 (2007), 483–505.
[9] J. W. MORGAN. The Seiberg-Witten equations and applications to the topology of smooth four-

manifolds. Mathematical Notes. 44 (Princeton University Press, 1996).
[10] J. PARK. Simply connected symplectic 4-manifolds with b+

2 = 1 and c2
1 = 2. Invent. Math. 159 no. 3

(2005), 657–667
[11] H. PARK, J. PARK and D. SHIN. A simply connected surface of general type with pg = 0 and K 2 = 3.

arXiv:0708.0273v3
[12] H. PARK, J. PARK and D. SHIN. A simply connected surface of general type with pg = 0 and K 2 = 4.

arXiv:0803.3667v1 [math.AG]
[13] Y. T. SIU. The existence of Kähler–Einstein metrics on manifolds with positive anticanonical line

bundle and a suitable finite symmetry group. Ann. of Math. (2) 127, no. 3 (1988), 585–627.
[14] G. TIAN and S- T. YAU. Kähler–Einstein metrics on complex surfaces with c1 > 0. Comm. Math.

Phys. 112 no. 1 (1987), 175–203.
[15] G. TIAN. On Calabi’s conjecture for complex surfaces with positive first chern class. Invent. Math.

101 no. 1 (1990), 101–172.
[16] S. -T. YAU. Calabi’s conjecture and some new results in algebraic geometry. Proc. Nat. Acad. U.S.A.

74 (1997), 1789–1799.
[17] C. T. C. WALL. On simply-connected 4-manifolds. J. London Math. Soc. 39 (1964), 141–149.




