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Abstract. The equality between the balanced and the Gauduchon cones is

discussed in several situations. In particular, it is shown that equality does not

hold on many twistor spaces, and it holds on Moishezon manifolds. Moreover,
it is proved that a SKT manifold of dimension three on which the balanced

cone equals the Gauduchon cone is in fact Kähler.

1. Introduction

Let X be a closed complex manifold of dimension n. A class in the Bott-Chern
cohomology group H1,1

BC(X,R) is called pseudoeffective if it contains a closed pos-

itive current. The set of such classes forms a closed convex cone in H1,1
BC(X,R)

called the pseudoeffective cone and it is denoted it by E 1
BC . If furthermore X is

Kähler manifold, let M ⊆ Hn−1,n−1
BC (X,R) the closure of the convex cone gener-

ated by classes of currents of the form p∗(ω̃1 ∧ · · · ∧ ω̃n−1), where p : X̃ → X is

some modification and ω̃i are Kähler forms on X̃. The cone M , called the movable
cone, was introduced by Boucksom, Demailly, Păun and Peternell [5] who made
the following conjecture:

Conjecture 1.1 (Conjecture 2.3, [5]). For any Kähler manifold,

(E 1
BC)∗ = M .

This remarkable conjecture has recently been confirmed for projective manifolds
by Witt Nyström [27], while the general case is still open. Extending the work of
Toma [25] from projective to Kähler setting, it was observed by Fu and Xiao [16,
Theorem A.2] (see also [8, Remark 2.8]) that Conjecture 1.1 implies that for Kähler
manifolds the movable cone is in fact the balanced cone B of all positive d-closed
smooth (n− 1, n− 1)-forms in Hn−1,n−1

BC (X,R).
A Hermitian metric g on X with co-closed Kähler form ω is called balanced.

The class of balanced manifolds, i.e., the class of closed complex manifolds carrying
balanced metrics, was introduced by Michelsohn [19] who observed that prescrib-
ing a balanced metric (or equivalently its Kähler form) is the same as prescribing
a positive d-closed smooth (n − 1, n − 1)-form. This class of manifolds has at-
tracted considerable interest in the recent years. Most notably, Alessandrini and
Bassanelli proved in [2] that unlike the class of Kähler manifolds, the class of bal-
anced manifolds is closed under bimeromorphisms. Furthermore, Fu, Li and Yau
[14] stressed the importance of balanced manifolds from the perspective of heterotic
string theory and constructed interesting non-Kähler examples in dimension three.
Motivated by Conjecture 1.1, Fu and Xiao formulated the following:
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Conjecture 1.2 (Conjecture A.4., [16]). For any compact balanced manifold

(E 1
BC)∗ = B.

We give first many counter-examples to Conjecture 1.2. To formulate our result,
recall that on a closed complex manifold X one can define define the Gauduchon
cone G as the set of all classes in the Aeppli cohomology group Hn−1,n−1

A (X,R)
which can be represented by a Gauduchon metric, i.e, by a ∂∂̄-closed positive
(n− 1, n− 1)-form. Lamari’s positivity criterion [18, Lemme 3.3] can be stated as

(E 1
BC)∗ = G . Furthermore, let

ιn−1 : Hn−1,n−1
BC (X,R)→ Hn−1,n−1

A (X,R)

be the map induced by the identity. Since a balanced metric is also a Gauduchon
metric, we have ιn−1(B) ⊆ G . Therefore, the claim in Conjecture 1.2 is ιn−1(B) =
G , provided the ambient manifold is balanced.

Theorem 1.3. There exists twistor spaces such that ιn−1(B) $ G .

Since the twistor spaces are known to carry balanced metrics [19], we obtain
many counter-examples to the Fu-Xiao conjecture.

On the other hand, based on the main result of Witt Nyström [27], we confirm
the validity of Conjecture 1.2 for Moishezon manifolds. For such manifolds, the
∂∂̄-lemma holds, and so the map ιn−1 is an isomorphism. We prove:

Theorem 1.4. For any Moishezon manifold B = G .

In particular, Theorems 1.3 and 1.4 are pieces of evidence in favor of a conjecture
of Popovici [22, Conjecture 6.1].

Conjecture 1.5. If X is a compact complex manifold on which the ∂∂̄-lemma
holds, then B = G .

Our last result is motivated by a conjecture of Fino and Vezzoni [12]. Recall
that a Hermitian metric g with Kähler form ω on a compact complex manifold X
of dimension n is called strongly Kähler with torsion (SKT for short) if ω is ∂∂̄-
closed. It is known that a metric which is both balanced and SKT is d-closed, hence
Kähler [3]. Moreover, all the known examples of manifolds admitting a balanced
metric and a SKT metric are Kähler. For instance, in [15] Fu, Li and Yau show that
the examples of balanced non-Kähler manifolds they constructed do not carry SKT
metrics. Verbitsky [26] showed that a twistor space with a SKT metric is Kähler. In
[6], it is shown that a manifold in the Fujiki class C (which is a balanced manifold
by [1]) and which supports a SKT metric is Kähler. In [13], it is proved that a
nilmanifold which is balanced and SKT is Kähler. It is therefore tempting to make
the following conjecture

Conjecture 1.6 (Problem 3, [12]). A balanced and SKT compact complex manifold
is Kähler.

We address here this conjecture for the class of complex manifolds of dimension
three satisfying ι2(B) = G .

Theorem 1.7. Let X be a compact complex manifold of dimension three such that
ι2(B) = G . If X carries a SKT metric, then X is Kähler.
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2. Preliminaries

Definition 2.1. Let (X, g) be a compact complex manifold of complex dimension
n equipped with a Hermitian metric g, and let ω denote its Kähler form.

i) If d(ωn−1) = 0, then g is called a balanced metric. A complex manifold
which admits a balanced metric is called a balanced manifold.

ii) If ∂∂̄ω = 0, then g is called a strongly Kähler with torsion (SKT) metric.
A complex manifold which admits a SKT metric is called a SKT manifold.

iii) If dω = 0, then g is called a Kähler metric. A complex manifold which
admits a Kähler metric is called a Kähler manifold.

Since the Kähler form of a Hermitian metric determines the metric, by an abuse
of terminology we will not distinguish between the two notions. Moreover, according
to Michelsohn [19, page 279], given a positive (n − 1, n − 1)-form Φ on an n-
dimensional manifold, there exists a positive (1, 1)-form η such that Φ = ηn−1.
Therefore, prescribing a balanced or a Gauduchon metric is equivalent to prescribing
a positive (n− 1, n− 1)-form which is d or ∂∂̄-closed, respectively.

2.1. Bott-Chern and Aeppli cohomologies and positive cones. Given a com-
pact complex manifold X of dimension n, we define the Bott-Chern cohomology
groups

Hp,q
BC(X,C) =

{α ∈ C∞p,q(X) | dα = 0}
{i∂∂̄β |β ∈ C∞p−1,q−1(X)}

,

and the Aeppli cohomology groups

Hp,q
A (X,C) =

{α ∈ C∞p,q(X) | i∂∂̄α = 0}
{∂β + ∂̄γ |β ∈ C∞p−1,q(X), γ ∈ C∞p,q−1(X)}

As C-vector spaces, Hp,q
BC(X,C) and Hp,q

A (X,C) are finite dimensional for every
p, q ≥ 0, as it follows from the Hodge theory developed by M. Schweitzer [23].

We use the notation [s] for the class of a d-closed form or current s in H•,•BC and
{t} for the class of a i∂∂̄-closed form or current t in H•,•A .

The groups Hp,q
BC(X,C) and Hn−p,n−q

A (X,C) are dual via the pairing

Hp,q
BC(X,C)×Hn−p,n−q

A (X,C)→ C, ([α], {β})→
∫
X

α ∧ β.

Let X be a compact complex manifold of dimension n. The Gauduchon cone of
X is

GX = {{Ω} ∈ Hn−1,n−1
A (X,R) Ω is a Gauduchon metric}

Similarly, we define the balanced cone:

BX = {[Ω] ∈ Hn−1,n−1
BC (X,R) Ω is a balanced metric}.

The Gauduchon cone is an open convex cone. According to Gauduchon [17], it is
never empty. The balanced cone is open and convex. It can be empty, as there are
examples compact complex manifolds which do not admit balanced metrics (e.g.,
see [19]).

The natural morphisms induced by the identity

ι1 : H1,1
BC(X,R)→ H1,1

A (X,R)

and
ιn−1 : Hn−1,n−1

BC (X,R)→ Hn−1,n−1
A (X,R)
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are well-defined, but in general, they are neither injective, nor surjective. They are
however isomorphisms if X is Kähler, or more generally on manifolds satisfying the
∂∂̄-lemma. Nevertheless, we have

ιn−1(BX) ⊆ GX ,

and so ιn−1(BX) ⊆ GX .
For # ∈ {BC,A} and p ∈ {1, n− 1} we define the following cones:

(1) the #−pseudoeffective cone

E p
X,# = {γ ∈ Hp,p

# (X,R) | ∃T ≥ 0, T ∈ γ},

where by T we denote here a current.
(2) the #−nef cone

N p
X,# = {γ ∈ Hp,p

# (X,R) | ∀ε > 0,∃αε ∈ γ, αε ≥ −εωp},

where ω is the Kähler form of a fixed Hermitian metric on X and αε denotes
a smooth (p, p)−form.

Remark 2.2. The pseudoeffective and nef cones E 1
X,BC and N 1

X,BC were first

introduced by Demailly [9, Definition 1.3].

We recall next some of the properties and relations between the above cones.

Proposition 2.1. Let X be a compact complex manifold of dimension n. Then

i) The cone E 1
X,BC is closed and N 1

X,BC ⊆ E 1
X,BC .

ii) The cones N p
X,# are closed, where p ∈ {1, n− 1} and # ∈ {BC,A}.

iii) N n−1
X,A = GX .

Moreover, if X is balanced, then

iv) N n−1
X,BC = BX .

v) E 1
X,A is closed.

Proof. For complete proofs we refer the interested reader to Lemmas 2.2, 2.3 and
2.5 in [8]. �

We will often use the following result [8, Theorem 2.4] (see also [16, Remark
3.3]), which we state for the convenience of the reader:

Theorem 2.2. Let X be a compact complex manifold of dimension n. Then

i) N 1
X,BC = (E n−1

X,A )∗,

ii) N n−1
X,A = (E 1

X,BC)∗.

Moreover, if X is balanced, then

iii) N 1
X,A = (E n−1

X,BC)∗,

iv) N n−1
X,BC = (E 1

X,A)∗.

We conclude this section with the following result which indicates that the bal-
anced cone is a natural generalization on balanced manifolds of the movable cone
whose definition is confined to the Fujiki class C manifolds.

Proposition 2.3. Let π : X → Y be a blow-up with smooth center between two
balanced compact complex manifolds of dimension n.Then π∗BX = BY .
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Proof. The inclusion BY ⊆ π∗BX is just Corollary 4.9 in [2]. Conversely, let ωn−1

be a balanced metric on X. From Theorem 2.2 iv), in order to show that the class
[π∗ω

n−1] is balanced, it is enough to check that ([π∗ω
n−1], {T}) ≥ 0 where T is an

arbitrary (1, 1)-current on Y which is positive and ∂∂̄-closed. By [2], given such

a current T , there exists T̃ a positive (1, 1)-current on X which is ∂∂̄-closed, such

that π∗T̃ = T and {T̃} = π∗{T}. Then

([π∗ω
n−1], {T}) = ([ωn−1], {T̃}) =

∫
X

T̃ ∧ ωn−1 ≥ 0

The above inequality is strict when the class {T} 6= 0, and this shows that [π∗ω
n−1]

is in the interior of the cone N n−1
BC , which is the balanced cone. �

Remark 2.3. In [28, Proposition 2.3], Xiao observed that one always has π∗BX ⊆
BY .

3. B = G manifolds

Let X be a closed Hermitian manifold such that ιn−1(BX) = GX . Imposing such
condition has several implications on the complex structure of X.

Lemma 3.1. Let X be a complex manifold such that ιn−1(BX) = GX . Then ιn−1

is onto. If in addition X is a SKT manifold, then ι1 and ιn−1 are isomorphisms.

Proof. Since GX is open and non-empty, we see that X is balanced and that ιn−1

is surjective. In particular, since X is balanced, it follows that E 1
A is closed. Since

the cones N n−1
BC and N n−1

A are the closures of the cones BX and GX respectively,
we get that

ιn−1(N n−1
BC ) = N n−1

A . (3.1)

Dualizing (3.1), from Theorem 2.2 we obtain that ι1(E 1
BC) = E 1

A and that ι1 is
injective. Since X is SKT, it follows that the interior of E 1

A is non-empty, therefore
ι1 is also onto, hence an isomorphism. Therefore, ιn−1 is also an isomorphism. �

3.1. Twistor spaces and counter-examples to the Fu-Xiao conjecture. One
can interpret Lemma 3.1 as an obstruction to the equality of the balanced and
Gauduchon cones. We adopt this point of view and disprove next Conjecture A.4
in [16]. The counter-examples we propose are certain twistor spaces.

3.1.1. Twistor spaces. Let (M, g) be an oriented Riemannian 4−manifold. The
rank-6 vector bundle bundle of 2-forms Λ2 on M decomposes as the direct sum of
two rank-3 vector bundles

Λ2T ∗M = Λ+ ⊕ Λ−

By definition, Λ± are the eigenspaces of the Hodge ?-operator

? : Λ2T ∗M → Λ2T ∗M,

corresponding to the (±1)− eigenvalues of ?. The sections of Λ+ are called self-dual
2-forms, whereas the sections of Λ− are the anti-self-dual 2-forms.

The Riemannian curvature tensor can be thought of as an operator

R : Λ2T ∗M → Λ2T ∗M,
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called be the Riemannian curvature operator. The Riemannian curvature operator
decomposes under the action of SO(4) as

R =
s

6
Id+W− +W++

◦
r,

where W± are trace-free endomorphisms of Λ±, and they are called the self-dual
and anti-self-dual components of the Weyl curvature operator. The scalar curvature

s acts by scalar multiplication and
◦
r is the trace-free Ricci curvature operator.

Definition 3.1. An oriented Riemannian 4−manifold (M, g) is said to be anti-self-
dual (ASD) if W+ = 0.

Remark 3.2. This definition is conformally invariant [4], i.e. if (M, g) is ASD, so
is (M,ag) for any smooth positive function a.

A plethora of anti-self-dual 4−manifolds is rendered by a result of Taubes [24]
asserting that for any smooth, compact, oriented, 4-dimensional manifold X, the
connect sum M = X#kCP2 of X with k copies of the complex projective 2-space
equipped with the opposite of its complex orientation admits a metric with W+ = 0
for k sufficiently large. In particular, one can find ASD manifolds with arbitrarily
large first Betti number.

The twistor space of a conformal Riemannian manifold (M, [g]) is the total space
of the sphere bundle of the rank three real vector bundle of self-dual 2−forms

Z := S(Λ+).

Atiyah, Hitchin, and Singer [4] show that that Z comes naturally equipped with
an almost complex structure, which is integrable if and only if W+ = 0.

In [19], Michelsohn states that the twistor space of a closed ASD manifold always
carries a balanced metric, a result proved in [20] (see also [8, Sect. 4]).

3.1.2. Proof of Theorem 1.3. Let Z be the twistor space of a closed anti-self-dual
manifold M of real dimension four. If BZ = GZ by Lemma 3.1

j2 : H2,2
BC(Z ,C)→ H2,2

A (Z ,C)

is surjective. Hence the natural morphism

∂̄ : H2,2
A (Z ,C)→ H2,3

BC(Z ,C)

is zero. By duality, we obtain that

∂̄ : H1,0
A (Z ,C)→ H1,1

BC(Z ,C)

is zero, which in turn implies that the natural morphism

H1,0

∂̄
(Z ,C)→ H1,0

A (Z ,C)

is surjective. Here H•,•
∂̄

denotes the usual Dolbeault cohomology. From [11] we

know that H1,0

∂̄
(Z ,C) = 0, hence H1,0

A (Z ,C) = H0,1
A (Z ,C) = 0. On the other

hand, the morphism

H0,1

∂̄
(Z ,C)→ H0,1

A (Z ,C)

is always injective, therefore H0,1

∂̄
(Z ,C) = 0. But, from Corollary 3.2 in [11], it

follows that

dimH0,1

∂̄
(Z ,C) = dimH1

dR(M,C)

where H•dR denotes the de Rham cohomology.
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Summing up, on a twistor space on which BZ = GZ one has H1
dR(M,C) = 0.

Therefore on the twistor spacesX over the anti-self-dual 4-foldsM withH1
dR(M,C) 6=

0 the balanced cone cannot be equal to the Gauduchon cone. The existence of
such anti-self-dual manifolds is ensured by the aforementioned theorem of Taubes
[24]. �

3.2. The balanced and Gauduchon cones on Moishezon manifolds. The
result of the previous section indicates that a generalization of Conjecture 2.3 in
[5] to balanced manifolds fails. For projective manifolds, the recent work of Witt
Nyström [27] implies that B = G . We extend next Witt Nyström’s result to Moishe-
zon manifolds.

Proposition 3.2. If π : X → Y is a blow-up with smooth center in Y and if
ιn−1(BX) = GX , then ιn−1(BY ) = GY .

Proof. Since the Gauduchon cone on X is never empty, it follows that the balanced
cone on X is non-empty, hence X is balanced. Therefore Y is balanced [1]. Conse-
quently, E 1

A,X and E 1
A,Y are closed and the equality ιn−1(BX) = GX is equivalent

to E 1
A,X = E 1

BC,X ([8] Theorem 2.4). So let T be a positive current, i∂∂̄T = 0 on

Y . Let π∗T be its total transform on X as defined in [2]. Since E 1
A,X = E 1

BC,X , the

class {π∗T} ∈ H1,1
A (X,R) contains a d-closed positive (1, 1)-current R. Therefore

the class of T = π∗π
∗T contains π∗R, a d-closed positive current. �

As a consequence of Proposition 3.2, we have:

Proof of Theorem 1.4. If Y is projective, from [27], as in the proof of Proposition
2.10 in [8] we have BY = GY . In general, a Moishezon manifold can be made
projective by a sequence of blow-ups with smooth centers. For each blow-up in the
sequence we can apply Proposition 3.2 and the conclusion follows. �

Remark 3.3. An interesting question is whether the condition ιn−1(B) = G is a
bimeromorphic invariant, i.e., given X and Y two bimeromorphic compact complex
manifolds, is it true that ιn−1(BX) = GX if and only if ιn−1(BY ) = GY ?

We conclude with the following observation which serves as an introduction to
the next section.

Proposition 3.3. Let X be a compact complex surface. Then ι1(BX) = GX if and
only if X is Kähler.

Proof. If ι1(BX) = GX , since GX 6= ∅ then BX 6= ∅, therefore X is balanced.
Therefore X is Kähler since a balanced metric on a surface is Kähler. Conversely,
if X is Kähler, from Proposition 2.7 in [8] it follows that BX = GX . �

4. B = G on SKT threefolds

According to Popovici’s Conjecture 1.5, every complex manifold on which the
∂∂̄-lemma holds, has the property B = G . In particular, since the Gauduchon cone
G is open and non-empty, the manifold is balanced. While Conjecture 1.5 is still
open, there are known examples on which B = G , and it’s natural to consider the
class of manifolds which satisfies that condition ιn−1(B) = G . We address here
Conjecture 1.6 of Fino and Vezzoni on this class of balanced manifolds.
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Proof of Theorem 1.7. Let η be a SKT metric on X.
Step 1. By Lemma 3.1, ι1 is an isomorphism. Hence, there exists a (1, 0) form

α on X such that γ = ∂̄α+ η+ ∂ᾱ is a d-closed (1, 1) form. From ι1(E 1
BC) = E 1

A it

follows that the class of γ in H1,1
BC(X,R) is in E 1

BC . This means that there exists a

d-closed positive (1, 1)-current T such that [γ] = [T ] in H1,1
BC(X,R).

Step 2. We will show that [γ] is also in N 1
BC , i.e., that it is nef. If the irreducible

components of ∪c>0Ec(T ) are all smooth, then we can use Théorème 2 in [21]. We
have already checked that [γ] is pseudoeffective, and let Z be an irreducible analytic
subset of ∪c>0Ec(T ). If Z is a curve, then

∫
Z
γ =

∫
Z
η ≥ 0, hence [γ] is nef on Z.

If Z is a surface, then (see Lemma 2.1 in [6])∫
Z

γ ∧ γ =

∫
Z

η ∧ η + 2

∫
Z

∂α ∧ ∂̄α > 0 (4.1)

and it is well known that in this case Z is a Kähler surface. Let ω be a d-closed
positive (1, 1) form on Z. Then clearly from Stokes’ theorem we have

∫
Z
ω ∧ γ =∫

Z
ω ∧ η > 0 and this implies (see Theorem 4.5 (iii) in [10]) that [γ] is nef on Z.

This implies that [γ] is nef on X.
In general, fix g a Hermitian metric on X and let ε > 0 be arbitrary. Then, from

Theorem 3.2 in [10] it follows that there exists a closed current in the same class as
γ, denoted Tε = γ + i∂∂̄ϕε ≥ −εg and πε : Xε → X a sequence of blow-ups with
smooth centers such that

π∗εTε =
∑
i

λi[Di] + ωε (4.2)

where Di are smooth surfaces in Xε, λi > 0 and ωε is a smooth d-closed (1, 1)-form
on Xε.

Suppose

X = X0
π1←− X1

π2←− · · · πN−1←− XN−1
πN←− XN = Xε

is the sequence of blow-ups πε : Xε → X and denote by Cj the center of the
blow-up πj+1 : Xj+1 → Xj and by Ej the exceptional divisor of the blow-up
πj : Xj → Xj−1.

Now we construct by induction Hermitian metrics gj on Xj as follows: set g0 = g
on X0 = X and suppose that gj has been constructed on Xj . It is well-known that
one can put a metric on the line bundle O(−[Ej+1]) on Xj+1 such that its curvature,
denoted βj+1, is supported in a small neighborhood of Ej+1, that βj+1 is positive
in a smaller neighborhood of Ej+1, and that, for cj+1 a small enough non-negative
constant, gj+1 = π∗j+1gj +cj+1βj+1 is a Hermitian metric on Xj+1. We choose cj+1

such that

gj+1 ≥ e
− 1

(j+1)2 π∗j+1gj (4.3)

From (4.3) and from Tε ≥ −εg it follows that

TN ≥ −εe
1
12

+ 1
22

+...+ 1
(N−1)2 gN ≥ −e

π2

6 εgN

On Xε = XN we consider the current TN = π∗εTε which is in the same class as
γε = π∗εγ. Each of the divisors Di are either proper transforms of divisors on X
or else components of the exceptional divisor of πε : Xε → X. In the first case, as
above, we have ∫

Di

γε ∧ γε =

∫
Z

ηε ∧ ηε + 2

∫
Z

∂αε ∧ ∂̄αε > 0
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where ηε = π∗εη and αε = π∗εα, hence Di is a Kähler surface with a Kähler form ωi,
and from ∫

C

γε ≥ 0,

∫
Di

γε ∧ ωi ≥ 0

where C is some curve in Di, it follows that [γε] is nef on Di. In the second case,
Di is the projectivization of a rank 2 vector bundle on a curve, hence it is Kähler,
and again, from the inequalities∫

C

γε =

∫
C

ηε ≥ 0,

∫
Di

γε ∧ ωi =

∫
Di

ηε ∧ ωi ≥ 0

it follows that [γε] is nef on Di.

Therefore, the current TN = γε+ i∂∂̄π∗εϕε satisfies TN ≥ −e
π2

6 εgN and its Bott-
Chern class [γε] is nef on each Di. By using the techniques in [21], we can find a
C∞ function ψN on Xε such that

γε + i∂∂̄ψN ≥ −2e
π2

6 εgN

Namely, from Lemme 1 in [21], we first find a smooth function fε in a neighborhood

of ∪iDi such that γε + i∂∂̄fε ≥ −e
π2

6 εgN and then take for ψN a regularization
of the maximum between fε − C and π∗εϕε, where C is some large constant. Note
that π∗ϕε takes the value −∞ on ∪iDi.

Now we construct by induction C∞ functions ψε,j on Xj such that

γj + i∂∂̄ψε,j ≥ −2e
π2

6

(
1

20
+

1

21
+ ...+

1

2N−j

)
εgj (4.4)

where γj is the pull-back of γ to Xj .
Set ψε,N = ψN and suppose that ψε,j+1 has been constructed on Xj+1 such that

γj+1 + i∂∂̄ψε,j+1 ≥ −2e
π2

6

(
1

20
+

1

21
+ ...+

1

2N−j−1

)
εgj+1 (4.5)

If Cj is the center of the blow-up πj+1 : Xj+1 → Xj , then γj |Cj is nef since Cj
is a curve or a point and if Cj is a curve,

∫
Cj
γj ≥ 0, so from Lemme 1 in [21], there

exists Uj a neighborhood of Cj and λj a C∞ function on Uj such that

γj + i∂∂̄λj ≥ −e
π2

6

(
1 +

1

2
+ ...+

1

2N−j−1
+

1

2N−j+1

)
εgj

Pushing forward (4.5) to Xj we obtain

γj + i∂∂̄πj+1,∗ψε,j+1 ≥ −2e
π2

6

(
1 +

1

2
+ ...+

1

2N−j−1

)
ε(gj + cj+1πj+1,∗βj+1)

It is well-known that πj+1,∗βj+1 is i∂∂̄ exact (since βj+1 is in the same class as
−[Ej+1] and the push forward of [Ej+1] is 0), so let πj+1,∗βj+1 = i∂∂̄µj . Therefore

γj + i∂∂̄

[
πj+1,∗ψε,j+1 + 2e

π2

6

(
1 +

1

2
+ ...+

1

2N−j−1

)
εcj+1µj

]
≥

−2e
π2

6

(
1 +

1

2
+ ...+

1

2N−j−1

)
εgj

and, as in [21], using the function λj constructed above, and a function ζ as in
Lemme 2 in [21], we obtain a C∞ function ψε,j on Xj which satisfies (4.4).
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For j = 0 we obtain a C∞ function ψε,0 such that

γ + i∂∂̄ψε,0 ≥ −4e
π2

6 εg

This means that [γ] is nef.

Step 3. From Lemma 2.1 in [6] with k = 3 we obtain∫
X

γ3 =

∫
X

η3 + 6

∫
X

η ∧ ∂α ∧ ∂̄ᾱ > 0

and we can use Theorem 4.1 in [7]. Indeed, [γ] is a nef class, of positive self-
intersection, and X is a 3-fold that supports a SKT metric (see Remark 4.3 in [7]).
This implies that X is Kähler. �

Remark 4.1. Given Z a singular component of ∪c>0EcT , it is clear that, if p :

X̃ → X is a resolution of singularities of Z, then Z̃ (the proper transform of Z) is

Kähler and that p∗γ is nef on Z̃. This implies that, for every ε > 0, there exists ϕ̃ε
a C∞ function on Z̃ such that p∗γ+ i∂∂̄ϕ̃ε ≥ −εg̃ on Z̃. However, it is not obvious
to us that from this data one can construct a C∞ function ϕε on Z which satisfies
γ + i∂∂̄ϕε ≥ −εg (so that it is as in Définition 3 in [21]) since such a function has
to be locally the restriction of a C∞ function on a neighborhood of Z. This is the
reason for looking at the approximation current Tε in the proof of Theorem 1.7
above instead of working directly with the closed positive current T .

Remark 4.2. In [26] Verbitsky showed that a twistor space which supports a SKT
metric is Kähler. Our result does not imply Verbitsky’s result. On a twistor space,
it is not always true that the balanced cone equals the Gauduchon cone, as noticed
in the proof of Theorem 1.3.
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