
Math 3100 Exam 2 - Solutions

March 30, 2021

1 Instructions

Give a complete solution to each of the problems below. You are welcome to
type your solutions in LATEX and then submit the tex file, or you can write
your solutions out on paper and submit a scanned pdf copy of work. In either
case, you should submit your solutions by placing it in our shared folder in
Vanderbilt’s Box. Also, in either case you should write complete solutions,
giving a professional presentation, as we’ve come to expect from the homework.

For the problems you are allowed to use without proof any result that we
have proved in class or any theorem from the book that appears in or before
Section 5.4. You are welcome to use other resources as well, but you should
justify with a proof any results. If you significantly use an external resource
then you should cite your source. You must justify any claims you make even
if it is not specifically requested by the problem.

The solutions should be your own and you should not use any resource that
involves active participation from another person. You should avoid discussing
the exam with other people in any way, even a comment like “number 2 was
tricky” or “number 3 wasn’t too bad” conveys a significant amount of informa-
tion and it would be improper to make or hear such comments.

Any questions regarding the exam should be asked directly to the instructor
via email.

2 Problems

Problem 1 (20 points). A subset A ⊂ R is said to be complete if every Cauchy
sequence in A converges to a point that is contained in A. Show that a subset
of R is complete if and only if it is closed.

First suppose that every Cauchy sequence in A converges to a point in A.
Let x ∈ R be any accumulation point of A. We may then construct a sequence
{xn}∞n=1 by choosing, for each n ≥ 1, some point xn ∈ A∩ (x−1/n, x+ 1/n). If
N ≥ 1 and m,n ≥ 2N then we have xn, xm ∈ (x− 1/2N, x+ 1/2N) and hence
|xn − xm| < 1/N , hence {xn}∞n=1 is Cauchy and so, by hypothesis, converges
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to a point in A. But for N ≥ 1 and n ≥ N we also have |xn − x| < 1/N
and hence {xn}∞n=1 converges to x. Thus x ∈ A and since A contains all of its
accumulation points it it closed.

Conversely, suppose that A is closed, and let {xn}∞n=1 be a Cauchy sequence
in A. Since the reals are complete we know that {xn}∞n=1 converges to some
point x ∈ R. If xn = x for some n then we have x = xn ∈ A. Otherwise, if
x 6= xn for all n ≥ 1, then for each ε > 0 there exists N ≥ 1 such that for n ≥ N
we have xn ∈ (x− ε, x+ ε) \ {x}. This shows that A ∩ ((x− ε, x+ ε) \ {x}) is
non-empty for all ε > 0 and hence x is an accumulation point of A. Since A is
closed it follows that x ∈ A, and hence {xn}∞n=1 converges to a point in A.

Problem 2 (20 points). Let D = Q∩ [0, 1] and suppose f : D → R. Show that
the following conditions are equivalent:

1. f is uniformly continuous.

2. f is continuous and for each point t ∈ [0, 1] the function f has a limit at
t.

3. There exists a continuous function g : [0, 1] → R such that g(x) = f(x)
for each x ∈ D.

We will first show 2 =⇒ 3. Suppose that f is continuous and has a limit
g(t) at each point t ∈ [0, 1]. Note that since f is continuous we have that
g(t) = f(t) for each t ∈ D and so g is an extension of f . It therefore remains to
show that g is continuous.

Fix some point t ∈ [0, 1] and choose a sequence {tn}∞n=1 in [0, 1] such that
{tn}∞n=1 converges to to t. Since each g(tn) is defined as the limit of f at tn
we may then choose for each n ≥ 1 a point xn ∈ D such that |xn − tn| < 1/n
and |f(xn) − g(tn)| < 1/n. Since {xn − tn}∞n=1 converges to 0 we have that
{xn}∞n=1 also converges to t. Moreover, since {xn}∞n=1 is a sequence in D, then
we have that {f(xn)}∞n=1 converges to g(t). Since {f(xn)− g(tn)}∞n=1 converges
to 0 it then follows that {g(tn)}∞n=1 also converges to g(t). Since {tn}∞n=1 was an
arbitrary sequence in [0, 1] that converges to t it then follows that g is continuous
at t, and since t ∈ [0, 1] was arbitrary it follows that g is continuous on [0, 1].

To see 3 =⇒ 1 just note that since g is continuous and [0, 1] is compact it
follows that g is uniformly continuous, and hence so is f , since it is the restriction
of g to D.

It is then left to show 1 =⇒ 2. Suppose that f is uniformly continuous,
t ∈ [0, 1], and let {xn}∞n=1 be a sequence in D that converges to t. If ε > 0,
then as f is uniformly continuous there exists δ > 0 such that for x, y ∈ D, with
|x−y| < δ we have |f(x)−f(y)| < ε. Since {xn}∞n=1 is Cauchy there exists N ≥ 1
such that for n,m ≥ N we have |xn − xm| < δ and hence |f(xn)− f(xm)| < ε.
Thus, it follows that {f(xn)}∞n=1 is also Cauchy, and hence converges. Since
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{xn}∞n=1 was an arbitrary sequence converging to t it then follows that f has a
limit at t (this is Theorem 2.1 in the book).

Problem 3 (20 points). Suppose f : [0,∞) → [0,∞) is differentiable and f ′

is uniformly continuous on [0,∞). Show that there exist constants A,B,C ≥ 0
such that for all x ∈ [0,∞) we have f(x) ≤ Ax2 +Bx+ c.

Since f ′ is uniformly continuous there exists δ > 0 such that for all x, y ∈
[0,∞) with |x− y| < 2δ we have |f ′(x)− f ′(y)| < 1. Hence if x ∈ [0,∞), then
by the triangle inequality, for n ≥ 1 we have

|f ′(x)− f ′(0)| ≤ |f ′(x)− f ′(nδ)|+
n∑
k=1

|f(kδ)− f((k − 1)δ)|

≤ |f ′(x)− f ′(nδ)|+ n.

If we take n so that (n+1)δ ≥ x > nδ then we have n < x/δ and |f ′(x)−f ′(0)| <
1 + x/δ. Hence for all x ∈ [0,∞) we have

|f ′(x)| ≤ |(1 + f ′(0))|+ 1

δ
x = Ax+B,

where A = 1
δ > 0 and B = |1 + f ′(0)|.

We now claim that for all x ∈ R we have f(x) ≤ f(0) +Bx+ Ax2. Indeed,
if this were not the case then for some x ∈ (0,∞) we would have f(x)− f(0) >
Bx + Ax2 and by the Mean Value Theorem there would exist some c ∈ (0, x)
such that

B +Ax ≥ B +Ac ≥ |f ′(c)| ≥ f ′(c) =
f(x)− f(0)

x− 0
> B +Ax,

giving a contradiction.

Problem 4 (20 points). Suppose f : [a, b] → R is twice differentiable on [a, b]
and suppose that the equation f(x) = x has at least three distinct solutions in
[a, b]. Prove that there exists c ∈ [a, b] such that f ′′(c) = 0.

Suppose we have a ≤ x1 < x2 < x3 ≤ b with f(xi) = xi. By the Mean Value
Theorem there then exists y1 ∈ (x1, x2) and y2 ∈ (x2, x3) with

f ′(y1) =
f(x2)− f(x1)

x2 − x1
= 1 =

f(x3)− f(x2)

x3 − x2
= f ′(y2).

Since f ′ is also differentiable on [a, b] and since y1 < y2, another application of
the Mean Value Theorem then gives a point c ∈ (y1, y2) such that

f ′′(c) =
f ′(y2)− f ′(y1)

y2 − y1
= 0.
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Problem 5 (20 points). Let f : [0, 1] → [0,∞) be a bounded function that is
Riemann integrable. Prove that for each n ≥ 1 the function [0, 1] 3 x 7→ f(x)xn

is Riemann integrable and the sequence
{∫ 1

0
f(x)xn dx

}∞
n=1

converges to 0.

Hint: First try showing that the function [0, 1] 3 x 7→ f(x)x is Riemann
integrable.

Suppose M > 0 is such that f(x) ≤M for all x ∈ [0, 1]. Fix ε > 0. Since f is
integrable there exists a partition P of [0, 1] such that U(P, f)−L(P, f) < ε/2.
If we take m ≥ 1 such that 1/m < ε/2M(b − a), then setting P ′ = P ∪ { km |
0 ≤ k ≤ m} we have that the mesh of P ′ is less than ε/2M(b − a) and since
P ′ is a refinement of P we have U(P ′, f) − L(P ′, f) < ε/2. We write P ′ as
P ′ = {x0, x1, . . . , xn}.

Note that on each interval [xi−1, xi] we have

|Mi(f(x)x)−mi(f(x)x)| ≤ xiMi(x)− xi−1mi(f)

≤ (xi − xi−1)Mi(f) + xi−1(Mi(f)−mi(f))

≤Mε/2M(b− a) + (Mi(f)−mi(f)),

and hence

U(P, f(x)x)− L(P, f(x)x) =

n∑
i=1

(Mi(f(x)x)−mi(f(x)x))(xi − xi−1)

≤
n∑
i=1

(xi − xi−1)Mε/2M(b− a) + (Mi(f)−mi(f))(xi − xi−1)

= ε/2 + (U(P ′, f)− L(P ′, f)) < ε.

Thus f(x)x is integrable and by induction it then follows that f(x)xn is inte-
grable for all n ≥ 1.

Now fix ε > 0 and set x1 = 1 − ε/2M . Since x1 < 1 the sequence {xn1}∞n=1

converges to 0. Hence there is some N > 0 such that for n ≥ N we have
xn+1
1 < ε/2M . If n ≥ N and we consider the partition P = {0, x1, 1}, then we

have

U(P, f(x)xn) =

(
sup

x∈[0,x1]

f(x)xn

)
(x1 − 0) +

(
sup

x∈[x1,x]

f(x)xn

)
(1− x1)

≤Mxn1x1 +M(1− x1)

< ε/2 + ε/2 = ε.

Since L(P, f(x)xn) ≥ 0 we then have |
∫ 1

0
f(x)xn dx| < ε. Since ε > 0 was

arbitrary this then shows that the sequence
{∫ 1

0
f(x)xn dx

}∞
n=1

converges to 0.
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