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Chapter 1

Spectral theory

If A is a complex unital algebra then we denote by G(A) the set of elements
which have a two sided inverse. If x ∈ A, the spectrum of x is

σA(x) = {λ ∈ C | x− λ 6∈ G(A)}.

The complement of the spectrum is called the resolvent and denoted ρA(x).

Proposition 1.0.1. Let A be a unital algebra over C, and consider x, y ∈ A.
Then σA(xy) ∪ {0} = σA(yx) ∪ {0}.

Proof. If 1− xy ∈ G(A) then we have

(1− yx)(1 + y(1− xy)−1x) = 1− yx+ y(1− xy)−1x− yxy(1− xy)−1x

= 1− yx+ y(1− xy)(1− xy)−1x = 1.

Similarly, we have
(1 + y(1− xy)−1x)(1− yx) = 1,

and hence 1− yx ∈ G(A). �

Knowing the formula for the inverse beforehand of course made the proof of
the previous proposition quite a bit easier. But this formula is quite natural to
consider. Indeed, if we just consider formal power series then we have

(1− yx)−1 =

∞∑
k=0

(yx)k = 1 + y(

∞∑
k=0

(xy)k)x = 1 + y(1− xy)−1x.

1.1 Banach and C∗-algebras

A Banach algebra is a Banach space A, which is also an algebra such that

‖xy‖ ≤ ‖x‖‖y‖.

3



4 CHAPTER 1. SPECTRAL THEORY

A Banach algebra A is involutive if it possesses an anti-linear involution ∗,
such that ‖x∗‖ = ‖x‖, for all x ∈ A.

If an involutive Banach algebra A additionally satisfies

‖x∗x‖ = ‖x‖2,

for all x ∈ A, then we say that A is a C∗-algebra. If a Banach or C∗-algebra
is unital, then we further require ‖1‖ = 1.

Note that if A is a unital involutive Banach algebra, and x ∈ G(A) then
(x−1)∗ = (x∗)−1, and hence σA(x∗) = σA(x).

Example 1.1.1. Let K be a locally compact Hausdorff space. Then the space
C0(K) of complex valued continuous functions which vanish at infinity is a C∗-
algebra when given the supremum norm ‖f‖∞ = supx∈K |f(x)|. This is unital
if and only if K is compact.

Example 1.1.2. Let H be a complex Hilbert space. Then the space of all
bounded operators B(H) is a C∗-algebra when endowed with the operator norm
‖x‖ = supξ∈H,‖ξ‖≤1 ‖xξ‖.

Lemma 1.1.3. Let A be a unital Banach algebra and suppose x ∈ A such that
‖1− x‖ < 1, then x ∈ G(A).

Proof. Since ‖1− x‖ < 1, the element y =
∑∞
k=0(1− x)k is well defined, and it

is easy to see that xy = yx = 1. �

Proposition 1.1.4. Let A be a unital Banach algebra, then G(A) is open, and
the map x 7→ x−1 is a continuous map on G(A).

Proof. If y ∈ G(A) and ‖x− y‖ < ‖y−1‖ then ‖1− xy−1‖ < 1 and hence by the
previous lemma xy−1 ∈ G(A) (hence also x = xy−1y ∈ G(A)) and

‖xy−1‖ ≤
∞∑
n=0

‖(1− xy−1)‖n

≤
∞∑
n=0

‖y−1‖n‖y − x‖n =
1

1− ‖y‖−1‖y − x‖
.

Hence,

‖x−1 − y−1‖ = ‖x−1(y − x)y−1‖

≤ ‖y−1(xy−1)−1‖‖y−1‖‖y − x‖ ≤ ‖y−1‖2

1− ‖y−1‖‖y − x‖
‖y − x‖.

Thus continuity follows from continuity of the map t 7→ ‖y−1‖2
1−‖y−1‖t t, at t = 0. �

Proposition 1.1.5. Let A be a unital Banach algebra, and suppose x ∈ A, then
σA(x) is a non-empty compact set.
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Proof. If ‖x‖ < |λ| then x
λ − 1 ∈ G(A) by Lemma 1.1.3, also σA(x) is closed by

Proposition 1.1.4, thus σA(x) is compact.
To see that σA(x) is non-empty note that for any linear functional ϕ ∈ A∗,

we have that f(z) = ϕ((x− z)−1) is analytic on ρA(x). Indeed, if z, z0 ∈ ρA(x)
then we have

(x− z)−1 − (x− z0)−1 = (x− z)−1(z − z0)(x− z0)−1.

Since inversion is continuous it then follows that

lim
z→z0

f(z)− f(z0)

z − z0
= ϕ((x− z0)−2).

We also have limz→∞ f(z) = 0, and hence if σA(x) were empty then f would be
a bounded entire function and we would then have f = 0. Since ϕ ∈ A∗ were
arbitrary this would then contradict the Hahn-Banach theorem. �

Theorem 1.1.6 (Gelfand-Mazur). Suppose A is a unital Banach algebra such
that every non-zero element is invertible, then A ∼= C.

Proof. Fix x ∈ A, and take λ ∈ σ(x). Since x− λ is not invertible we have that
x− λ = 0, and the result then follows. �

If f(z) =
∑n
k=0 akz

k is a polynomial, and x ∈ A, a unital Banach algebra,
then we define f(x) =

∑n
k=0 akx

k ∈ A.

Proposition 1.1.7. Let A be a unital Banach algebra, x ∈ A and f a polyno-
mial. then σA(f(x)) = f(σA(x)).

Proof. If λ ∈ σA(x), and f(z) =
∑n
k=0 akz

k then

f(x)− f(λ) =

n∑
k=1

ak(xk − λk)

= (x− λ)
∑
k=1

ak

k−1∑
j=0

xjλk−j−1,

hence f(λ) ∈ σA(x). conversely if µ 6∈ f(σA(x)) and we factor f − µ as

f − µ = αn(x− λ1) · · · (x− λn),

then since f(λ) − µ 6= 0, for all λ ∈ σA(x) it follows that λi 6∈ σA(x), for
1 ≤ i ≤ n, hence f(x)− µ ∈ G(A). �

If A is a unital Banach algebra and x ∈ A, the spectral radius of x is

r(x) = sup
λ∈σA(x)

|λ|.

Note that by Proposition 1.1.5 the spectral radius is finite, and the supremum
is attained. Also note that by Proposition 1.0.1 we have the very useful equality
r(xy) = r(yx) for all x and y in a unital Banach algebra A. A priori the spectral
radius depends on the Banach algebra in which x lives, but we will show now
that this is not the case.
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Proposition 1.1.8. Let A be a unital Banach algebra, and suppose x ∈ A.
Then limn→∞ ‖xn‖1/n exists and we have

r(x) = lim
n→∞

‖xn‖1/n.

Proof. By Proposition 1.1.7 we have r(xn) = r(x)n, and hence

r(x)n ≤ ‖xn‖,

showing that r(x) ≤ lim infn→∞ ‖xn‖1/n.
To show that r(x) ≥ lim supn→∞ ‖xn‖1/n, consider the domain Ω = {z ∈ C |

|z| > r(x)}, and fix a linear functional ϕ ∈ A∗. We showed in Proposition 1.1.5
that z 7→ ϕ((x−z)−1) is analytic in Ω and as such we have a Laurent expansion

ϕ((z − x)−1) =

∞∑
n=0

an
zn
,

for |z| > r(x). However, we also know that for |z| > ‖x‖ we have

ϕ((z − x)−1) =

∞∑
n=1

ϕ(xn−1)

zn
.

By uniqueness of the Laurent expansion we then have that

ϕ((z − x)−1) =

∞∑
n=1

ϕ(xn−1)

zn
,

for |z| > r(x).

Hence for |z| > r(x) we have that limn→∞
ϕ(xn−1)
|z|n = 0, for all linear

functionals ϕ ∈ A∗. By the uniform boundedness principle we then have

limn→∞
‖xn−1‖
|z|n = 0, hence |z| > lim supn→∞ ‖xn‖1/n, and thus

r(x) ≥ lim sup
n→∞

‖xn‖1/n. �

Exercise 1.1.9. Suppose A is a unital Banach algebra, and I ⊂ A is a closed
two sided ideal, then A/I is again a unital Banach algebra, when given the norm
‖a+ I‖ = infy∈I ‖a+ y‖, and (a+ I)(b+ I) = (ab+ I).

Exercise 1.1.10. Let A be a unital Banach algebra and suppose x, y ∈ A such
that xy = yx. Show that r(xy) ≤ r(x)r(y).

1.2 The Gelfand transform

Let A be a abelian Banach algebra, the spectrum of A, denoted by σ(A), is
the set of continuous ∗-homomorphsims ϕ : A → C such that ‖ϕ‖ = 1, which
we endow with the weak*-topology as a subset of A∗.
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Note that if A is unital, and ϕ : A→ C is a ∗-homomorphism, then it follows
easily that ker(ϕ)∩G(A) = ∅. In particular, this shows that ϕ(x) ∈ σ(x), since
x − ϕ(x) ∈ ker(ϕ). Hence, for all x ∈ A we have |ϕ(x)| ≤ r(x) ≤ ‖x‖. Since,
ϕ(1) = 1 this shows that the condition ‖ϕ‖ = 1 is automatic in the unital case.

It is also easy to see that when A is unital σ(A) is closed and bounded, by
the Banach-Alaoglu theorem it is then a compact Hausdorff space.

Proposition 1.2.1. Let A be a unital Banach algebra. Then the association
ϕ 7→ ker(ϕ) gives a bijection between the spectrum of A and the space of maximal
ideals.

Proof. If ϕ ∈ σ(A) then ker(ϕ) is clearly an ideal, and if we have a larger ideal
I, then there exists x ∈ I such that ϕ(x) 6= 0, hence 1 − x/ϕ(x) ∈ ker(ϕ) ⊂ I
and so 1 = (1− x/ϕ(x)) + x/ϕ(x) ∈ I which implies I = A.

Conversely, if I ⊂ A is a maximal ideal, then I ∩ G(A) = ∅ and hence
‖1 − y‖ ≥ 1 for all y ∈ I. Thus, I is also an ideal and 1 6∈ I which shows
that I = I by maximality. We then have that A/I is a unital Banach algebra,
and since I is maximal we have that all non-zero elements of A/I are invertible.
Thus, by the Gelfand-Mazur theorem we have A/I ∼= C and hence the projection
map π : A→ A/I ∼= C gives a continuous homomorphism with kernel I. �

Suppose A is a unital C∗-algebra which is generated (as a unital C∗-algebra)
by a single element x, if λ ∈ σA(x) then we can consider the closed ideal gen-
erated by x − λ which is maximal since x generates A. This therefore induces
a map from σA(x) to σ(A). We leave it to the reader to check that this map is
actually a homeomorphism.

Let A be a unital abelian Banach algebra, the Gelfand transform is the
map Γ : A→ C(σ(A)) defined by

Γ(x)(ϕ) = ϕ(x).

Theorem 1.2.2. Let A be a unital abelian Banach algebra, then the Gelfand
transform is a contractive homomorphism, and Γ(x) is invertible in C(σ(A)) if
and only if x is invertible in A.

Proof. It is easy to see that the Gelfand transform is a contractive homomor-
phism. Also, if x ∈ G(A), then Γ(a)Γ(a−1) = Γ(aa−1) = Γ(1) = 1, hence Γ(x) is
invertible. Conversely, if x 6∈ G(A) then since A is abelian we have that the ideal
generated by x is non-trivial, hence by Zorn’s lemma we see that x is contained
in a maximal ideal I ⊂ A, and from Proposition 1.2.1 there exists ϕ ∈ σ(A)
such that Γ(x)(ϕ) = ϕ(x) = 0. Hence, in this case Γ(x) is not invertible. �

Corollary 1.2.3. Let A be a unital abelian Banach algebra, then σ(Γ(x)) =
σ(x), and in particular ‖Γ(x)‖ = r(Γ(x)) = r(x), for all x ∈ A.

1.3 Continuous functional calculus

Let A be a C∗-algebra. An element x ∈ A is:
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• normal if xx∗ = x∗x.

• self-adjoint if x = x∗, and skew-adjoint if x = −x∗.

• positive if x = y∗y for some y ∈ A.

• a projection if x∗ = x2 = x.

• unitary if A is unital, and x∗x = xx∗ = 1.

• isometric if A is unital, and x∗x = 1.

• partially isometric if x∗x is a projection.

We denote by A+ the set of positive elements, and a, b ∈ A are two self-
adjoint elements then we write a ≤ b if b − a ∈ A+. Note that if x ∈ A then
x∗A+x ⊂ A+, in particular, if a, b ∈ A are self-adjoint such that a ≤ b, then
x∗ax ≤ x∗bx.

Proposition 1.3.1. Let A be a C∗-algebra and x ∈ A normal, then ‖x‖ = r(x).

Proof. We first show this if x is self-adjoint, in which case we have ‖x2‖ = ‖x‖2,
and by induction we have ‖x2n‖ = ‖x‖2n

for all n ∈ N. Therefore, ‖x‖ =
limn→∞ ‖x2n‖2n

= r(x).
If x is normal then by Exercise 1.1.10 we have

‖x‖2 = ‖x∗x‖ = r(x∗x) ≤ r(x∗)r(x) = r(x)2 ≤ ‖x‖2. �

Corollary 1.3.2. Let A and B be two unital C∗-algebras and Φ : A → B a
unital ∗-homomorphism, then Φ is contractive. If Φ is a ∗-isomorphism, then
Φ is isometric.

Proof. Since Φ is a unital ∗-homomorphism we clearly have Φ(G(A)) ⊂ G(B),
from which it follows that σB(Φ(x)) ⊂ σA(x), and hence r(Φ(x)) ≤ r(x), for all
x ∈ A. By Proposition 1.3.1 we then have

‖Φ(x)‖2 = ‖Φ(x∗x)‖ = r(Φ(x∗x)) ≤ r(x∗x) = ‖x∗x‖ = ‖x‖2.

If Φ is a ∗-isomorphism then so is Φ−1 which then shows that Φ is isometric.
�

Corollary 1.3.3. Let A be a unital complex involutive algebra, then there is at
most one norm on A which makes A into a C∗-algebra.

Proof. If there were two norms which gave a C∗-algebra structure to A then by
the previous corollary the identity map would be an isometry. �

Lemma 1.3.4. Let A be a unital C∗-algebra, if x ∈ A is self-adjoint then
σA(x) ⊂ R.
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Proof. Suppose λ = α+iβ ∈ σA(x) where α, β ∈ R. If we consider y = x−α+it
where t ∈ R, then we have i(β + t) ∈ σA(y) and y is normal. Hence,

(β + t)2 ≤ r(y)2 = ‖y‖2 = ‖y∗y‖
= ‖(x− α)2 + t2‖ ≤ ‖x− α‖2 + t2,

and since t ∈ R was arbitrary it then follows that β = 0. �

Lemma 1.3.5. Let A be a unital Banach algebra and suppose x 6∈ G(A). If
xn ∈ G(A) such that ‖xn − x‖ → 0, then ‖x−1

n ‖ → ∞.

Proof. If ‖x−1
n ‖ were bounded then we would have that ‖1−xx−1

n ‖ < 1 for some
n. Thus, we would have that xx−1

n ∈ G(A) and hence also x ∈ G(A). �

Proposition 1.3.6. Let B be a unital C∗-algebra and A ⊂ B a unital C∗-
subalgebra. If x ∈ A then σA(x) = σB(x).

Proof. Note that we always have G(A) ⊂ G(B). If x ∈ A is self-adjoint such
that x 6∈ G(A), then by Lemma 1.3.4 we have it ∈ ρA(x) for t > 0. By the
previous lemma we then have

lim
t→0
‖(x− it)−1‖ =∞,

and thus x 6∈ G(B) since inversion is continuous in G(B).
For general x ∈ A we then have

x ∈ G(A)⇔ x∗x ∈ G(A)⇔ x∗x ∈ G(B)⇔ x ∈ G(B).

In particular, we have σA(x) = σB(x) for all x ∈ A. �

Because of the previous result we will henceforth write simply σ(x) for the
spectrum of an element in a C∗-algebra.

Theorem 1.3.7. Let A be a unital abelian C∗-algebra, then the Gelfand trans-
form Γ : A→ C(σ(A)) gives an isometric isomorphism between A and C(σ(A)).

Proof. If x is self-adjoint then from Lemma 1.3.4 we have σ(Γ(x)) = σ(x) ⊂ R,
and hence Γ(x) = Γ(x∗). In general, if x ∈ A we can write x as x = a + ib

where a = x+x∗

2 and b = i(x∗−x)
2 are self-adjoint. Hence, Γ(x∗) = Γ(a − ib) =

Γ(a)− iΓ(b) = Γ(a) + iΓ(b) = Γ(x) and so Γ is a ∗-homomorphism.
By Proposition 1.3.1, if x ∈ A we then have

‖x‖2 = ‖x∗x‖ = r(x∗x)

= r(Γ(x∗x)) = ‖Γ(x∗)Γ(x)‖ = ‖Γ(x)‖2,

and so Γ is isometric, and in particular injective.
To show that Γ is surjective note that Γ(A) is self-adjoint, and closed since

Γ is isometric. Moreover, Γ(A) contains the constants and clearly separates
points, hence Γ(A) = C(σ(A)) by the Stone-Weierstrauss theorem. �
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Since we have seen above that if A is generated as a unital C∗-algebra
by a single normal element x ∈ A, then we have a natural homeomorphism
σ(x) ∼= σ(A). Thus by considering the inverse Gelfand transform we obtain an
isomorphism between C(σ(x)) and A which we denote by f 7→ f(x).

Theorem 1.3.8 (Continuous functional calculus). Let A and B be a unital C∗-
algebras, with x ∈ A normal, then this functional calculus satisfies the following
properties:

(i) The map f 7→ f(x) is a homomorphism from C(σ(x)) to A, and if f(z) =∑n
k=0 akz

k is a polynomial, then f(x) =
∑n
k=0 akx

k.

(ii) For f ∈ C(σ(x)) we have σ(f(x)) = f(σ(x)).

(iii) If Φ : A→ B is a C∗-homomorphism then Φ(f(x)) = f(Φ(x)).

(iv) If xn ∈ A is a sequence of normal elements such that ‖xn − x‖ → 0, Ω is
a compact neighborhood of σ(x), and f ∈ C(Ω), then for large enough n
we have σ(xn) ⊂ Ω and ‖f(xn)− f(x)‖ → 0.

Proof. Parts (i), and (ii) follow easily from Theorem 1.3.7. Part (iii) is obvious
for polynomials and then follows for all continuous functions by approximation.

For part (iv), the fact that σ(xn) ⊂ Ω for large n follows from continuity of
inversion. If we write C = supn ‖xn‖ and we have ε > 0 arbitrary, then we may
take a polynomial g : Ω→ C such that ‖f − g‖∞ < ε and we have

lim sup
n→∞

‖f(xn)− f(x)‖ ≤ 2‖f − g‖∞C + lim sup
n→∞

‖g(xn) + g(x)‖ < 2Cε.

Since ε > 0 was arbitrary we have limn→∞ ‖f(xn)− f(x)‖ = 0. �

1.3.1 The non-unital case

If A is not a unital C∗-algebra then we may consider the space Ã = A⊕C which
is a ∗-algebra with multiplication

(x⊕ α) · (y ⊕ β) = (xy + αy + βx)⊕ αβ,

and involution (x⊕ α)∗ = x∗ ⊕ α. We may also place a norm on Ã given by

‖x⊕ α‖ = sup
y∈A,‖y‖≤1

‖xy + αy‖.

We call Ã the unitization of A.

Proposition 1.3.9. Let A be a non-unital C∗-algebra, then the unitization Ã
is again a C∗-algebra, and the map x 7→ x⊕ 0 is an isometric ∗-isomorphism of
A onto a maximal ideal in Ã.



1.3. CONTINUOUS FUNCTIONAL CALCULUS 11

Proof. The map x 7→ x ⊕ 0 is indeed isometric since on one hand we have
‖x ⊕ 0‖ = supy∈A,‖y‖≤1 ‖xy‖ ≤ ‖x‖, while on the other hand if x 6= 0, and we
set y = x∗/‖x∗‖ then we have ‖x‖ = ‖xx∗‖/‖x∗‖ = ‖xy‖ ≤ ‖x⊕ 0‖.

The norm on Ã is nothing but the operator norm when we view Ã as acting
on A by left multiplication and hence we have that this is at least a semi-
norm such that ‖xy‖ ≤ ‖x‖‖y‖, for all x, y ∈ Ã. To see that this is actually
a norm note that if α 6= 0, but ‖x ⊕ α‖ = 0 then for all y ∈ A we have
‖xy + αy‖ ≤ ‖x ⊕ α‖‖y‖ = 0, and hence e = −x/α is a left identity for A.
Taking adjoints we see that e∗ is a right identity for A, and then e = ee∗ = e∗

is an identity for A which contradicts that A is non-unital. Thus, ‖ · ‖ is indeed
a norm.

It is easy to see then that Ã is then complete, and hence all that remains
to be seen is the C∗-identity. Since, each for each y ∈ A, ‖y‖ ≤ 1 we have
(y ⊕ 0)∗(x⊕ α) ∈ A⊕ 0 ∼= A it follows that the C∗-identity holds here, and so

‖(x⊕ α)∗(x⊕ α)‖ ≥ ‖(y ⊕ 0)∗(x⊕ α)∗(x⊕ α)(y ⊕ 0)‖
= ‖(x⊕ α)(y ⊕ 0)‖2.

Taking the supremum over all y ∈ A, ‖y‖ ≤ 1 we then have

‖(x⊕ α)∗(x⊕ α)‖ ≥ ‖x⊕ α‖2 ≥ ‖(x⊕ α)∗(x⊕ α)‖. �

Lemma 1.3.10. If A is a non-unital abelian C∗-algebra, then any norm 1
multiplicative linear functional ϕ ∈ σ(A) has a unique extension ϕ̃ ∈ Ã.

Proof. If we consider ϕ̃(x⊕ α) = ϕ(x) + α then the result follows easily. �

In particular, this shows that σ(A) is homeomorphic to σ(Ã) \ {ϕ0} where
ϕ0 is defined by ϕ(x, α) = α. Thus, σ(A) is locally compact.

If x ∈ A then the spectrum σ(x) of x is defined to be the spectrum of
x⊕ 0 ∈ Ã. Note that for a non-unital C∗-algebra A, since A ⊂ Ã is an ideal it
follows that 0 ∈ σ(x) whenever x ∈ A.

By considering the embedding A ⊂ Ã we are able to extend the spectral
theorem and continuous functional calculus to the non-unital setting. We leave
the details to the reader.

Theorem 1.3.11. Let A be a non-unital abelian C∗-algebra, then the Gelfand
transform Γ : A → C0(σ(A)) gives an isometric isomorphism between A and
C0(σ(A)).

Theorem 1.3.12. Let A be a C∗-algebra, and x ∈ A a normal element, then
if f ∈ C(σ(x)) such that f(0) = 0, then f(x) ∈ A ⊂ Ã.

Exercise 1.3.13. Suppose K is a non-compact, locally compact Hausdorff
space, and K ∪ {∞} is the one point compactification. Show that we have

a natural isomorphism C(K ∪ {∞}) ∼= C̃0(K).
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1.4 Applications of functional calculus

Given any element x in a C∗-algebra A, we can decompose x uniquely as a
sum of a self-adoint and skew-adjoint elements x+x∗

2 and x−x∗
2 . We refer to the

self-adjoint elements x+x∗

2 and ix
∗−x
2 the real and imaginary parts of x, note

that the real and imaginary parts of x have norms no grater than that of x.
Also, if x ∈ A is self-adjoint then from above we know that σ(x) ⊂ R,

hence by considering x+ = (0 ∨ t)(x) and x− = −(0 ∧ t)(x) it follows easily
from functional calculus that σ(x+), σ(x−) ⊂ [0,∞), x+x− = x−x+ = 0, and
x = x+ − x−. We call x+ and x− the positive and negative parts of x.

1.4.1 The positive cone

Lemma 1.4.1. Suppose we have self-adjoint elements x, y ∈ A such that σ(x), σ(y) ⊂
[0,∞) then σ(x+ y) ⊂ [0,∞).

Proof. Let a = ‖x‖, and b = ‖y‖. Since x is self-adjoint and σ(x) ⊂ [0,∞)
we may use the spectral radius formula to see that ‖a − x‖ = r(a − x) = a.
Similarly we have ‖b− y‖ = b and since ‖x+ y‖ ≤ a+ b we have

sup
λ∈σ(x+y)

{a+ b− λ} = r((a+ b)− x) = ‖(a+ b)− (x+ y)‖

≤ ‖x− a‖+ ‖y − b‖ = a+ b.

Therefore, σ(x+ y) ⊂ [0,∞). �

Proposition 1.4.2. Let A be a C∗-algebra. A normal element x ∈ A is

(i) self-adjoint if and only if σ(x) ⊂ R.

(ii) positive if and only if σ(x) ⊂ [0,∞).

(iii) unitary if and only if σ(x) ⊂ T.

(iv) a projection if and only if σ(x) ⊂ {0, 1}.

Proof. Parts (i), (iii), and (iv) all follow easily by applying continuous functional
calculus. For part (ii) if x is normal and σ(x) ⊂ [0,∞) then x = (

√
x)2 =

(
√
x)∗
√
x is positive. It also follows easily that if x = y∗y where y is normal

then σ(x) ⊂ [0,∞). Thus, the difficulty arises only when x = y∗y where y is
perhaps not normal.

Suppose x = y∗y for some y ∈ A, to show that σ(x) ⊂ [0,∞), decompose x
into its positive and negative parts x = x+−x− as described above. Set z = yx−
and note that z∗z = x−(y∗y)x− = −x3

−, and hence σ(zz∗) ⊂ σ(z∗z) ⊂ (−∞, 0].
If z = a+ib where a and b are self-adjoint, then we have zz∗+z∗z = 2a2+2b2,

hence we also have σ(zz∗ + z∗z) ⊂ [0,∞) and so by Lemma 1.4.1 we have
σ(z∗z) = σ((2a2 + 2b2)− zz∗) ⊂ [0,∞). Therefore σ(−x3

−) = σ(z∗z) ⊂ {0} and
since x− is normal this shows that x3

− = 0, and consequently x− = 0. �
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Corollary 1.4.3. Let A be a C∗-algebra. An element x ∈ A is a partial isometry
if and only if x∗ is a partial isometry.

Proof. Since x∗x is normal, it follows from the previous proposition that x is a
partial isometry if and only if σ(x∗x) ⊂ {0, 1}. Since σ(x∗x)∪{0} = σ(xx∗)∪{0}
this gives the result. �

Corollary 1.4.4. Let A be a C∗-algebra, then the set of positive elements forms
a closed cone. Moreover, if a ∈ A is self-adjoint, and A is unital, then we have
a ≤ ‖a‖.

Note that if x ∈ A is an arbitrary element of a C∗-algebra A, then from above
we have that x∗x is positive and hence we may define the absolute value of x
as the unique element |x| ∈ A such that |x|2 = x∗x.

Proposition 1.4.5. Let A be a unital C∗-algebra, then every element is a linear
combination of four unitaries.

Proof. If x ∈ A is self-adjoint and ‖x‖ ≤ 1, then u = x + i(1 − x2)1/2 is a
unitary and we have x = u + u∗. In general, we can decompose x into its
real and imaginary parts and then write each as a linear combination of two
unitaries. �

Proposition 1.4.6. Let A be a C∗-algebra, and suppose x, y ∈ A+ such that
x ≤ y, then

√
x ≤ √y. Moreover, if A is unital and x, y ∈ A are invertible, then

y−1 ≤ x−1.

Proof. First consider the case that A is unital and x and y are invertible, then
we have

y−1/2xy−1/2 ≤ 1,

hence

x1/2y−1x1/2 ≤ ‖x1/2y−1x1/2‖ = r(x1/2y−1x1/2)

= r(y−1/2xy−1/2) ≤ 1.

Conjugating by x−1/2 gives y−1 ≤ x−1.
We also have

‖y−1/2x1/2‖2 = ‖y−1/2xy−1/2‖ ≤ 1,

therefore

y−1/4x1/2y−1/4 ≤ ‖y−1/4x1/2y−1/4‖ = r(y−1/4x1/2y−1/4)

= r(y−1/2x1/2) ≤ ‖y−1/2x1/2‖ ≤ 1.

Conjugating by y1/4 gives x1/2 ≤ y1/2.
In the general case we may consider the unitization of A, and note that if

ε > 0, then we have 0 ≤ x + ε ≤ y + ε, where x + ε, and y + ε are invertible,
hence from above we have

(x+ ε)1/2 ≤ (y + ε)1/2.

Taking the limit as ε→ 0 we obtain the result. �
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In general, a continuous real valued function f defined on an interval I is said
to be operator monotone if f(a) ≤ f(b) whenever σ(a), σ(b) ⊂ I, and a ≤ b.
The previous proposition shows that the functions f(t) =

√
t, and f(t) = −1/t,

t > 0 are operator monotone.

Corollary 1.4.7. Let A be a C∗-algebra, then for x, y ∈ A we have |xy| ≤
‖x‖|y|.

Proof. Since |xy|2 = y∗x∗xy ≤ ‖x‖2y∗y, this follows from the previous proposi-
tion. �

1.4.2 Extreme points

Given a involutive normed algebra A, we denote by (A)1 the unit ball of A, and
As.a. the subspace of self-adjoint elements.

Proposition 1.4.8. Let A be a C∗-algebra.

(i) The extreme points of (A+)1 are the projections of A.

(ii) The extreme points of (As.a.)1 are the self-adjoint unitaries in A.

(iii) Every extreme point of (A)1 is a partial isometry in A.

Proof. (i) If x ∈ (A+)1, then we have x2 ≤ 2x, and x = 1
2x

2 + 1
2 (2x−x2). Hence

if x is an extreme point then we have x = x2 and so x is a projection. For the
converse we first consider the case when A is abelian, and so we may assume
A = C0(K) for some locally compact Hausdorff space K. If x is a projection
then x = 1E is the characteristic function on some open and closed set E ⊂ K,
hence the result follows easily from the fact that 0 and 1 are extreme points of
[0, 1].

For the general case, suppose p ∈ A is a projection, if p = 1
2 (a + b) then

1
2a = p − b ≤ p, and hence 0 ≤ (1 − p)a(1 − p) ≤ 0, thus a = ap = pa. We
therefore have that a, b, and p commute and hence the result follows from the
abelian case.

(ii) First note that if A is unital then 1 is an extreme point in the unit ball.
Indeed, if 1 = 1

2 (a+ b) where a, b ∈ (A)1, then we have the same equation when
replacing a and b by their real parts. Thus, assuming a and b are self-adjoint we
have 1

2a = 1 − 1
2b and hence a and b commute. By considering the unital C∗-

subalgebra generated by a and b we may assume A = C(K) for some compact
Hausdorff space K, and then it is an easy exercise to conclude that a = b = 1.

If u is a unitary in A, then the map x 7→ ux is a linear isometry of A, thus
since 1 is an extreme point of (A)1 it follows that u is also an extreme point. In
particular, if u is self-adjoint then it is an extreme point of (As.a.)1.

Conversely, if x ∈ (As.a.)1 is an extreme point then if x+ = 1
2 (a + b) for

a, b ∈ (A+)1, then 0 = x−x+x− = 1
2 (x−ax− + x−bx−) ≥ 0, hence we have

(a1/2x−)∗(a1/2x−) = x−ax− = 0. We conclude that ax− = x−a = 0, and
similarly bx− = x−b = 0. Thus, a − x− and b − x− are in (As.a.)1 and x =
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1
2 ((a − x−) + (b − x−)). Since x is an extreme point we conclude that x =
a− x− = b− x− and hence a = b = x+.

We have shown now that x+ is an extreme point in (A+)1 and thus by part
(i) we conclude that x+ is a projection. The same argument shows that x− is
also a projection, and thus x is a self-adjoint unitary.

(iii) If x ∈ (A)1 such that x∗x is not a projection then by applying functional
calculus to x∗x we can find an element y ∈ A+ such that x∗xy = yx∗x 6= 0,
and ‖x(1 ± y)‖2 = ‖x∗x(1 ± y)2‖ ≤ 1. Since xy 6= 0 we conclude that x =
1
2 ((x+ xy) + (x− xy)) is not an extreme point of (A)1. �

1.4.3 Ideals and quotients

Theorem 1.4.9. Let A be a C∗-algebra, and let I ⊂ A be a left ideal, then
there exists an increasing net {aλ}λ ⊂ I of positive elements such that for all
x ∈ I we have

‖xaλ − x‖ → 0.

Moreover, if A is separable then the net can be taken to be a sequence.

Proof. Consider Λ to be the set of all finite subsets of I ⊂ A ⊂ Ã, ordered by
inclusion. If λ ∈ Λ we consider

hλ =
∑
x∈λ

x∗x, aλ = |λ|hλ(1 + |λ|hλ)−1.

Then we have aλ ∈ I and 0 ≤ aλ ≤ 1. If λ ≤ λ′ then we clearly have hλ ≤ hλ′

and hence by Proposition 1.4.6 we have that

1

|λ′|

(
1

|λ′|
+ hλ′

)−1

≤ 1

|λ|

(
1

|λ|
+ hλ′

)−1

≤ 1

|λ|

(
1

|λ|
+ hλ

)−1

.

Therefore

aλ = 1− 1

|λ|

(
1

|λ|
+ hλ

)−1

≤ 1− 1

|λ′|

(
1

|λ′|
+ hλ′

)−1

= aλ′ .

If y ∈ λ then we have

(y(1− aλ))∗(y(1− aλ)) ≤
∑
x∈λ

(x(1− aλ))∗(x(1− aλ)) = (1− aλ)hλ(1− aλ).

But ‖(1 − aλ)hλ(1 − aλ)‖ = ‖hλ(1 + |λ|hλ)−2‖ ≤ 1
4|λ| , from which it follows

easily that ‖y − yaλ‖ → 0, for all y ∈ I.
If A is separable then so is I, hence there exists a countable subset {xn}n∈N ⊂

I which is dense in I. If we take λn = {x1, . . . , xn}, then clearly an = aλn also
satisfies

‖y − yan‖ → 0. �
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We call such a net {aλ} a right approximate identity for I. If I is self-
adjoint then we also have ‖aλx−x‖ = ‖x∗aλ−x∗‖ → 0 and in this case we call
{aλ} an approximate identity. Using the fact that the adjoint is an isometry
we also obtain the following corollary.

Corollary 1.4.10. Let A be a C∗-algebra, and I ⊂ A a closed two sided ideal.
Then I is self-adjoint. In particular, I is a C∗-algebra.

Exercise 1.4.11. Show that if A is a C∗-algebra such that x ≤ y =⇒ x2 ≤ y2,
for all x, y ∈ A+, then A is abelian.

Exercise 1.4.12. Let A be a C∗-algebra and I ⊂ A a non-trivial closed two
sided ideal. Show that A/I is again a C∗-algebra.



Chapter 2

Bounded linear operators

Recall that if H is a Hilbert space then B(H), the algebra of all bounded linear
operators is a C∗-algebra with norm

‖x‖ = sup
ξ∈H,‖ξ‖≤1

‖xξ‖,

and involution given by the adjoint, i.e., x∗ is the unique bounded linear operator
such that

〈ξ, x∗η〉 = 〈xξ, η〉,

for all ξ, η ∈ H.

Lemma 2.0.13. Let H be a Hilbert space and consider x ∈ B(H), then ker(x) =
R(x∗)⊥.

Proof. If ξ ∈ ker(x), and η ∈ H, then 〈ξ, x∗η〉 = 〈xξ, η〉 = 0, hence ker(x) ⊂
R(x∗)⊥. If ξ ∈ R(x∗)⊥ then for any η ∈ H we have 〈xξ, η〉 = 〈ξ, x∗η〉 = 0, hence
ξ ∈ ker(x). �

Lemma 2.0.14. Let H be a Hilbert space, then an operator x ∈ B(H) is

(i) normal if and only if ‖xξ‖ = ‖x∗ξ‖, for all ξ ∈ H.

(ii) self-adjoint if and only if 〈xξ, ξ〉 ∈ R, for all ξ ∈ H.

(iii) positive if and only if 〈xξ, ξ〉 ≥ 0, for all ξ ∈ H.

(iv) an isometry if and only if ‖xξ‖ = ‖ξ‖, for all ξ ∈ H.

(v) a projection if and only if x is the orthogonal projection onto some closed
subspace of H.

(vi) a partial isometry if and only if there is a closed subspace K ⊂ H such
that x|K is an isometry while x|K⊥ = 0.

Proof.

17
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(i) If x is normal than for all ξ ∈ H we have ‖xξ‖2 = 〈x∗xξ, ξ〉 = 〈xx∗ξ, ξ〉 =
‖x∗ξ‖2. Conversely, is 〈(x∗x − xx∗)ξ, ξ〉 = 0, for all ξ ∈ H, then for all
ξ, η ∈ H, by polarization we have

〈(x∗x− xx∗)ξ, η〉 =

3∑
k=0

ik〈(x∗x− xx∗)(ξ + ikη), (ξ + ikη)〉 = 0.

Hence x∗x = xx∗.

(ii) If x = x∗ then 〈xξ, ξ〉 = 〈ξ, xξ〉 = 〈xξ, ξ〉. The converse follows again by a
polarization argument.

(iii) If x = y∗y, then 〈xξ, ξ〉 = ‖yξ‖2 ≥ 0. Conversely, if 〈xξ, ξ〉 ≥ 0, for
all ξ ∈ H then we know from part (b) that x is self-adjoint, and for all
a > 0 we have 〈(x+ a)ξ, ξ〉 ≥ a‖ξ‖2. This shows that x+ a is an injective
operator with dense image (since the orthogonal complement of the range
is trivial). Moreover, by the Cauchy-Schwarz inequality we have

a‖ξ‖2 ≤ 〈(x+ a)ξ, ξ〉 ≤ ‖(x+ a)ξ‖‖ξ‖,

and hence a‖ξ‖ ≤ ‖(x+ a)ξ‖, for all ξ ∈ H. In particular this shows that
the image of x + a is closed since if {(x + a)ξn} is Cauchy then {ξn} is
also Cauchy. Therefore (x+ a) is invertible and a‖(x+ a)−1ξ‖ ≤ ‖ξ‖, for
all ξ ∈ H, showing that (x + a)−1 is bounded. Since a > 0 was arbitrary
this shows that σ(x) ⊂ [0,∞) and hence x is positive.

(iv) If x is an isometry then x∗x = 1 and hence ‖xξ‖2 = 〈x∗xξ, ξ〉 = ‖ξ‖2 for
all ξ ∈ H. The converse again follows from the polarization identity.

(v) If x is a projection then let K = R(x) = ker(x)⊥, and note that for all
ξ ∈ K, η ∈ ker(x), xζ ∈ R(x) we have 〈xξ, η+xζ〉 = 〈ξ, xζ〉, hence xξ ∈ K,
and xξ = ξ. This shows that x is the orthogonal projection onto the
subspace K.

(vi) This follows directly from iv and v. �

Proposition 2.0.15 (Polar decomposition). Let H be a Hilbert space, and x ∈
B(H), then there exists a partial isometry v such that x = v|x|, and ker(v) =
ker(|x|) = ker(x). Moreover, this decomposition is unique, in that if x = wy
where y ≥ 0, and w is a partial isometry with ker(w) = ker(y) then y = |x|, and
w = v.

Proof. We define a linear operator v0 : R(|x|) → R(x) by v0(|x|ξ) = xξ, for
ξ ∈ H. Since ‖|x|ξ‖ = ‖xξ‖, for all ξ ∈ H it follows that v0 is well defined and
extends to a partial isometry v from R(|x|) to R(x), and we have v|x| = x. We
also have ker(v) = R(|x|)⊥ = ker(|x|) = ker(x).

To see the uniqueness of this decomposition suppose x = wy where y ≥ 0,
and w is a partial isometry with ker(w) = ker(y). Then |x|2 = x∗x = yw∗wy =

y2, and hence |x| = (|x|2)1/2 = (y2)1/2 = y. We then have ker(w) = R(|x|)
⊥

,
and ‖w|x|ξ‖ = ‖xξ‖, for all ξ ∈ H, hence w = v. �
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2.1 Trace class operators

Given a Hilbert space H, an operator x ∈ B(H) has finite rank if R(x) =
ker(x∗)⊥ is finite dimensional, the rank of x is dim(R(x)). We denote the space
of finite rank operators by FR(H). If x is finite rank than R(x∗) = R(x∗| ker(x∗)⊥)

is also finite dimensional being the image of a finite dimensional space, hence
we see that x∗ also has finite rank. If ξ, η ∈ H are vectors we denote by ξ ⊗ η
the operator given by

(ξ ⊗ η)(ζ) = 〈ζ, η〉ξ.
Note that (ξ ⊗ η)∗ = η ⊗ ξ, and if ‖ξ‖ = ‖η‖ = 1 then ξ ⊗ η is a rank one
partial isometry from Cη to Cξ. Also note that if x, y ∈ B(H), then we have
x(ξ ⊗ η)y = (xξ)⊗ (y∗η).

From above we see that any finite rank operator is of the form pxq where
p, q ∈ B(H) are projections onto finite dimensional subspaces. In particular this
shows that FR(H) = sp{ξ ⊗ η | ξ, η ∈ H}

Lemma 2.1.1. Suppose x ∈ B(H) has polar decomposition x = v|x|. Then for
all ξ ∈ H we have

2|〈xξ, ξ〉| ≤ 〈|x|ξ, ξ〉+ 〈|x|v∗ξ, v∗ξ〉.

Proof. If λ ∈ C such that |λ| = 1, then we have

0 ≤ ‖(|x|1/2 − λ|x|1/2v∗)ξ‖2

= ‖|x|1/2ξ‖2 − 2Re(λ〈|x|1/2ξ, |x|1/2v∗ξ〉) + ‖|x|1/2v∗ξ‖2.

Taking λ such that λ〈|x|1/2ξ, |x|1/2v∗ξ〉 ≥ 0, the inequality follows directly. �

If {ξi} is an orthonormal basis for H, and x ∈ B(H) is positive, then we
define the trace of x to be

Tr(x) =
∑
i

〈xξi, ξi〉.

Lemma 2.1.2. If x ∈ B(H) then Tr(x∗x) = Tr(xx∗).

Proof. By Parseval’s identity and Fubini’s theorem we have∑
i

〈x∗xξi, ξi〉 =
∑
i

∑
j

〈xξi, ξj〉〈ξj , xξi〉

=
∑
j

∑
i

〈ξi, x∗ξj〉〈ξi, x∗ξj〉 =
∑
j

〈xx∗ξj , ξj〉. �

Corollary 2.1.3. If x ∈ B(H) is positive and u is a unitary, then Tr(u∗xu) =
Tr(x). In particular, the trace is independent of the chosen orthonormal basis.

Proof. If we write x = y∗y, then from the previous lemma we have

Tr(y∗y) = Tr(yy∗) = Tr((yu)(u∗y∗)) = Tr(u∗(y∗y)u). �
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An operator x ∈ B(H) is said to be of trace class if ‖x‖1 := Tr(|x|) < ∞.
We denote the set of trace class operators by L1(B(H)) or L1(B(H),Tr).

Given an orthonormal basis {ξi}, and x ∈ L1(B(H)) we define the trace of
x by

Tr(x) = Σi〈xξi, ξi〉.

By Lemma 2.1.1 this is absolutely summable, and

2|Tr(x)| ≤ Tr(|x|) + Tr(v|x|v∗) ≤ 2‖x‖1.

Lemma 2.1.4. L1(B(H)) is a two sided self-adjoint ideal in B(H) which co-
incides with the span of the positive operators with finite trace. The trace is
independent of the chosen basis, and ‖ · ‖1 is a norm on L1(B(H)).

Proof. If x, y ∈ L1(B(H)) and we let x+y = w|x+y| be the polar decomposition,
then we have w∗x,w∗y ∈ L1(B(H)), therefore

∑
i〈|x+y|ξi, ξi〉 =

∑
i〈w∗xξi, ξi〉+

〈w∗yξi, ξi〉 is absolutely summable. Thus x+ y ∈ L1(B(H)) and

‖x+ y‖1 ≤ ‖w∗x‖1 + ‖w∗y‖1 ≤ ‖x‖1 + ‖y‖1.

Thus, it follows that L1(B(H)) is a linear space which contains the span of the
positive operators with finite trace, and ‖ · ‖1 is a norm on L1(B(H)).

If x ∈ L1(B(H)), and a ∈ B(H) then

4a|x| =
3∑
k=0

ik(a+ ik)|x|(a+ ik)∗,

and for each k we have

Tr((a+ ik)|x|(a+ ik)∗) = Tr(|x|1/2|a+ ik|2|x|1/2) ≤ ‖a+ ik‖2 Tr(|x|).

Thus if we take a to be the partial isometry in the polar decomposition of x
we see that x is a linear combination of positive operators with finite trace, (in
particular, the trace is independent of the basis). This also shows that L1(B(H))
is a self-adjoint left ideal, and hence is also a right ideal. �

Theorem 2.1.5. If x ∈ L1(B(H)), and a, b ∈ B(H) then

‖x‖ ≤ ‖x‖1

‖axb‖1 ≤ ‖a‖ ‖b‖ ‖x‖1,

and
Tr(ax) = Tr(xa).

Proof. Since the trace is independent of the basis, and ‖x‖ = supξ∈H,‖ξ‖≤1 ‖xξ‖
it follows easily that ‖x‖ ≤ ‖x‖1.

Since for x ∈ L1(B(H)), and a ∈ B(H) we have |ax| ≤ ‖a‖|x| it follows that
‖ax‖1 ≤ ‖a‖‖x‖1. Since ‖x‖1 = ‖x∗‖1 we also have ‖xb‖1 ≤ ‖b‖‖x‖1.
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Since the definition of the trace is independent of the chosen basis, if x ∈
L1(B(H)) and u ∈ U(H) we have

Tr(xu) =
∑
i

〈xuξi, ξi〉 =
∑
i

〈uxuξi, uξi〉 = Tr(ux).

Since every operator a ∈ B(H) is a linear combination of four unitaries this also
gives

Tr(xa) = Tr(ax). �

We also remark that for all ξ, η ∈ H, the operators ξ⊗ η satisfy Tr(ξ⊗ η) =
〈ξ, η〉. Also, it’s easy to check that FR(H) is a dense subspace of L1(B(H)),
endowed with the norm ‖ · ‖1.

Proposition 2.1.6. The space of trace class operators L1(B(H)), with the norm
‖ · ‖1 is a Banach space.

Proof. From Lemma 2.1.4 we know that ‖ · ‖1 is a norm on L1(B(H)) and
hence we need only show that L1(B(H)) is complete. Suppose xn is Cauchy in
L1(B(H)). Since ‖xn − xm‖ ≤ ‖xn − xm‖1 it follows that xn is also Cauchy in
B(H), therefore we have ‖x−xn‖ → 0, for some x ∈ B(H), and by continuity of
functional calculus we also have ‖|x|−|xn|‖ → 0. Thus for any finite orthonormal
set η1, . . . , ηk we have

k∑
i=1

〈|x|ηi, ηi〉 = lim
n→∞

k∑
i=1

〈|xn|ηi, ηi〉

≤ lim
n→∞

‖xn‖1 <∞.

Hence x ∈ L1(B(H)) and ‖x‖1 ≤ limn→∞ ‖xn‖1.
If we let ε > 0 be given and consider N ∈ N such that for all n > N we have

‖xn − xN‖1 < ε/3, and then take H0 ⊂ H a finite dimensional subspace such
that ‖xNPH⊥0 ‖1, ‖xPH⊥0 ‖1 < ε/3. Then for all n > N we have

‖x− xn‖1
≤ ‖(x− xn)PH0‖1 + ‖xPH⊥0 − xNPH⊥0 ‖1 + ‖(xN − xn)PH⊥0 ‖1
≤ ‖(x− xn)PH0

‖1 + ε.

Since ‖x − xn‖ → 0 it follows that ‖(x − xn)PH0
‖1 → 0, and since ε > 0 was

arbitrary we then have ‖x− xn‖1 → 0. �

Theorem 2.1.7. The map ψ : B(H) → L1(B(H))∗ given by ψa(x) = Tr(ax),
for a ∈ B(H), x ∈ L1(B(H)), is a Banach space isomorphism.

Proof. From Theorem 2.1.5 we have that ψ is a linear contraction.
Suppose ϕ ∈ L1(B(H))∗, then (ξ, η) 7→ ϕ(ξ⊗η) defines a bounded sesquilin-

ear form on H and hence there exists a bounded operator a ∈ B(H) such that
〈aξ, η〉 = ϕ(ξ ⊗ η), for all ξ, η ∈ H. Since the finite rank operators is dense in
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L1(B(H)), and since operators of the form ξ ⊗ η span the finite rank operators
we have ϕ = ψa, thus we see that ψ is bijective.

We also have

‖a‖ = sup
ξ,η∈H,
‖ξ‖,‖η‖≤1

|〈aξ, η〉|

= sup
ξ,η∈H,
‖ξ‖,‖η‖≤1

|Tr(a(ξ ⊗ η))| ≤ ‖ψa‖.

Hence ψ is isometric. �

2.2 Hilbert-Schmidt operators

Given a Hilbert space H and x ∈ B(H), we say that x is a Hilbert-Schmidt op-
erator on H if |x|2 ∈ L1(B(H)). We define the set of Hilbert-Schmidt operators
by L2(B(H)), or L2(B(H),Tr).

Lemma 2.2.1. L2(B(H)) is a self-adjoint ideal in B(H), and if x, y ∈ L2(B(H))
then xy, yx ∈ L1(B(H)), and

Tr(xy) = Tr(yx).

Proof. Since |x+ y|2 ≤ |x+ y|2 + |x− y|2 = 2(|x|2 + |y|2) we see that L2(B(H))
is a linear space, also since |ax|2 ≤ ‖a‖2|x|2 we have that L2(B(H)) is a left
ideal. Moreover, if x = v|x| is the polar decomposition of x then we have
xx∗ = v|x|2v∗, and thus x∗ ∈ L2(B(H)) and Tr(xx∗) = Tr(x∗x). In particular,
L2(B(H)) is also a right ideal.

By the polarization identity

4y∗x =

3∑
k=0

ik|x+ iky|2,

we have that y∗x ∈ L1(B(H)) for x, y ∈ L2(B(H)), and

4 Tr(y∗x) =

3∑
k=0

ik Tr((x+ iky)∗(x+ iky))

=

3∑
k=0

ik Tr((x+ iky)(x+ iky)∗) = 4 Tr(xy∗). �

From the previous lemma we see that the sesquilinear form on L2(B(H))
give by

〈x, y〉2 = Tr(y∗x)

is well defined and positive definite. We again have ‖axb‖2 ≤ ‖a‖ ‖b‖ ‖x‖2, and
any x ∈ L2(B(H)) can be approximated in ‖ · ‖2 by operators px where p is a
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finite rank projection. Thus, the same argument as for the trace class operators
shows that the Hilbert-Schmidt operators is complete in the Hilbert-Schmidt
norm.

Also, note that if x ∈ L2(B(H)) then since ‖y‖ ≤ ‖y‖2 for all y ∈ L2(B(H))
it follows that

‖x‖2 = sup
y∈L2(B(H)),
‖y‖2≤1

|Tr(y∗x)|

≤ sup
y∈L2(B(H)),
‖y‖2≤1

‖y‖‖x‖1 ≤ ‖x‖1.

Proposition 2.2.2. Let H be a Hilbert space and suppose x, y ∈ L2(B(H)),
then

‖xy‖1 ≤ ‖x‖2‖y‖2.

Proof. If we consider the polar decomposition xy = v|xy|, then by the Cauchy-
Schwarz inequality we have

‖xy‖1 = |Tr(v∗xy)| = |〈y, x∗v〉2|
≤ ‖x∗v‖2‖y‖2 ≤ ‖x‖2‖y‖2. �

If H and K are Hilbert spaces, then we may extend a bounded operator
x : H → K to a bounded operator x̃ ∈ B(H⊕K) by x̃(ξ⊕η) = 0⊕xξ. We define
HS(H,K) as the bounded operators x : H → K such that x̃ ∈ L2(B(H ⊕ K)).
In this way HS(H,K) forms a closed subspace of L2(B(H⊕K)).

Note that HS(H,C) is the dual Banach space of H, and is naturally anti-
isomorphic to H, we denote this isomorphism by ξ 7→ ξ. We call this the
conjugate Hilbert space of H, and denote it by H. Note that we have the

natural identification H = H. Also, we have a natural anti-linear map x 7→ x
from B(H) to B(H) given by xξ = xξ.

If we wish to emphasize that we are considering only the Hilbert space as-
pects of the Hilbert-Schmidt operators, we often use the notation H⊗K for the
Hilbert-Schmidt operators HS(H,K). In this setting we call H⊗K the Hilbert
space tensor product ofH withK. Note that if {ξi}i and {ηj}j form orthonor-
mal bases for H and K, then {ξi ⊗ ηj}i,j forms an orthonormal basis for H⊗K.
We see that the algebraic tensor productH⊗K ofH and K can be realized as the
subspace of finite rank operators, i.e., we have H⊗K = sp{ξ⊗η | ξ ∈ H, η ∈ K}.

If x ∈ B(H) and y ∈ B(K) then we obtain an operator x ⊗ y ∈ B(H ⊗ K)
which is given by (x ⊗ y)h = xhy∗. We then have that ‖x ⊗ y‖ ≤ ‖x‖‖y‖,
and (x ⊗ y)(ξ ⊗ η) = (xξ) ⊗ (yη) for all ξ ∈ H, and η ∈ K. We also have
(x ⊗ y)∗ = x∗ ⊗ y∗, and the map (x, y) 7→ x ⊗ y is separately linear in each
variable. If A ⊂ B(H) and B ⊂ B(K) are algebras then the tensor product
A ⊗ B is the algebra generated by operators of the form a ⊗ b for a ∈ A and
b ∈ B.

If (X,µ) is a measure space then we have a particularly nice description of
the Hilbert-Schmidt operators on L2(X,µ).
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Theorem 2.2.3. For each k ∈ L2(X×X,µ×µ) the integral operator Tk defined
by

Tkξ(x) =

∫
k(x, y)ξ(y)dµ(y), ξ ∈ L2(X,µ),

is a Hilbert-Schmidt operator on L2(X,µ). Moreover, the map k 7→ Tk is a
unitary operator from L2(X × X,µ × µ) to L2(B(L2(X,µ))). Moreover, if we
define k∗(x, y) = k(x, y) then we have T ∗k = Tk∗ .

Proof. For all η ∈ L2(X,µ), the Cauchy-Schwarz inequality gives

‖k(x, y)ξ(y)η(x)‖1 ≤ ‖k‖2‖‖ξ‖L2(X,µ)‖η‖2.

This shows that Tk is a well defined operator on L2(X,µ) and ‖Tk‖ ≤ ‖k‖2. If
{ξi}i gives an orthonormal basis for L2(X,µ) and k(x, y) =

∑
αi,jξi(x)ξj(y) is

a finite sum then for η ∈ L2(X,µ) we have

Tkη =
∑

αi,j〈ξ, ξj〉ξi = (
∑

αi,jξi ⊗ ξj)η.

Thus, ‖Tk‖2 = ‖
∑
αi,jξi ⊗ ξj‖2 = ‖k‖2, which shows that k 7→ Tk is a unitary

operator.
The same formula above also shows that T ∗k = Tk∗ . �

2.3 Compact operators

We denote by H1 the unit ball in H.

Theorem 2.3.1. For x ∈ B(H) the following conditions are equivalent:

(i) x ∈ FR(H)
‖·‖

.

(ii) x restricted to H1 is continuous from the weak to the norm topology.

(iii) x(H1) is compact in the norm topology.

(iv) x(H1) has compact closure in the norm topology.

Proof. (i) =⇒ (ii) Let {ξα}α be net in H1 which weakly converges to ξ. By
hypothesis for every ε > 0 there exists y ∈ FR(H) such that ‖x − y‖ < ε. We
then have

‖xξ − xξα‖ ≤ ‖yξ − yξα‖+ 2ε.

Thus, it is enough to consider the case when x ∈ FR(H). This case follows
easily since then the range of x is then finite dimensional where the weak and
norm topologies agree.

(ii) =⇒ (iii) H1 is compact in the weak topology and hence x(H1) is
compact being the continuous image of a compact set.

(iii) =⇒ (iv) This implication is obvious.
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(iv) =⇒ (i) Let Pα be a net of finite rank projections such that ‖Pαξ−ξ‖ →
0 for all ξ ∈ H. Then Pαx are finite rank and if ‖Pαx−x‖ 6→ 0 then there exists
ε > 0, and ξα ∈ H1 such that ‖xξα − Pαxξα‖ ≥ ε. By hypothesis we may pass
to a subnet and assume that xξα has a limit ξ in the norm topology. We then
have

ε ≤ ‖xξα − Pαxξα‖ ≤ ‖ξ − Pαξ‖+ ‖(1− Pα)(xξα − ξ)‖
≤ ‖ξ − Pαξ‖+ ‖xξα − ξ‖ → 0,

which gives a contradiction. �

If any of the above equivalent conditions are satisfied we say that x is a
compact operator. We denote the space of compact operators by K(H).
Clearly K(H) is a norm closed two sided ideal in B(H).

Exercise 2.3.2. Show that the map ψ : L1(B(H))→ K(H)∗ given by ψx(a) =
Tr(ax) implements a Banach space isomorphism between L1(B(H)) and K(H)∗.

2.4 Locally convex topologies on the space of
operators

Let H be a Hilbert space. On B(H) we define the following locally convex
topologies:

• The weak operator topology (WOT) is defined by the family of semi-
norms T 7→ |〈Tξ, η〉|, for ξ, η ∈ H.

• The strong operator topology (SOT) is defined by the family of semi-
norms T 7→ ‖Tξ‖, for ξ ∈ H.

Note that the from coarsest to finest topologies we have

WOT ≺ SOT ≺ Uniform.

Also note that since an operator T is normal if and only if ‖Tξ‖ = ‖T ∗ξ‖
for all ξ ∈ H, it follows that the adjoint is SOT continuous on the set of normal
operators.

Lemma 2.4.1. Let ϕ : B(H)→ C be a linear functional, then the following are
equivalent:

(i) There exists ξ1, . . . , ξn, η1, . . . , ηn ∈ H such that ϕ(T ) =
∑n
i=1〈Tξi, ηi〉,

for all T ∈ B(H).

(ii) ϕ is WOT continuous.

(iii) ϕ is SOT continuous.
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Proof. The implications (i) =⇒ (ii) and (ii) =⇒ (iii) are clear and so we will
only show (iii) =⇒ (i). Suppose ϕ is SOT continuous. Thus, the inverse image
of the open ball in C is open in the SOT and hence by considering the semi-
norms which define the topology we have that there exists a constant K > 0,
and ξ1, . . . , ξn ∈ H such that

|ϕ(T )|2 ≤ K
n∑
i=1

‖Tξi‖2.

If we then consider {⊕ni=1Tξi | T ∈ B(H)} ⊂ H⊕n, and let H0 be its closure, we
have that

⊕ni=1 Tξi 7→ ϕ(T )

extends to a well defined, continuous linear functional on H0 and hence by the
Riesz representation theorem there exists η1, . . . , ηn ∈ H such that

ϕ(T ) =

n∑
i=1

〈Tξi, ηi〉,

for all T ∈ B(H). �

Corollary 2.4.2. Let K ⊂ B(H) be a convex set, then the WOT, SOT, and
closures of K coincide.

Proof. By Lemma 2.4.1 the three topologies above give rise to the same dual
space, hence this follows from the the Hahn-Banach separation theorem. �

If H is a Hilbert space then the map id ⊗ 1 : B(H) → B(H⊗`2N) defined
by (id ⊗ 1)(x) = x ⊗ 1 need not be continuous in either of the locally con-
vex topologies defined above even though it is an isometric C∗-homomorphism
with respect to the uniform topology. Thus, on B(H) we define the following
additional locally convex topologies:

• The σ-weak operator topology (σ-WOT) is defined by pulling back the
WOT of B(H⊗`2N) under the map id⊗1.

• The σ-strong operator topology (σ-SOT) is defined by pulling back
the SOT of B(H⊗`2N) under the map id⊗1.

Note that the σ-weak operator topology can alternately be defined by the
family of semi-norms T 7→ |Tr(Ta)|, for a ∈ L1(B(H)). Hence, under the
identification B(H) = L1(B(H))∗, we have that the weak∗-topology on B(H)
agrees with the σ-WOT.

Lemma 2.4.3. Let ϕ : B(H)→ C be a linear functional, then the following are
equivalent:

(i) There exists a trace class operator a ∈ L1(B(H)) such that ϕ(x) = Tr(xa)
for all x ∈ B(H)
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(ii) ϕ is σ-WOT continuous.

(iii) ϕ is σ-SOT continuous.

Proof. Again, we need only show the implication (iii) =⇒ (i), so suppose ϕ is
σ-SOT continuous. Then by the Hahn-Banach theorem, considering B(H) as a
subspace of B(H ⊗ `2N) through the map id ⊗ 1, we may extend ϕ to a SOT
continuous linear functional on B(H⊗ `2N). Hence by Lemma 2.4.1 there exists
ξ1, . . . , ξn, η1, . . . , ηn ∈ H⊗`2N such that for all x ∈ B(H) we have

ϕ(x) =

n∑
i=1

〈(id⊗ 1)(x)ξi, ηi〉.

For each 1 ≤ i ≤ n we may define ai, bi ∈ HS(H, `2N) as the operators
corresponding to ξi, ηi in the Hilbert space isomorphism H⊗`2N ∼= HS(H, `2N).
By considering a =

∑n
i=1 b

∗
i ai ∈ L1(B(H)), it then follows that for all x ∈ B(H)

we have

Tr(xa) =

n∑
i=1

〈aix, bi〉2

=

n∑
i=1

〈(id⊗ 1)(x)ξi, ηi〉 = ϕ(x). �

By the Banach-Alaoglu theorem we obtain the following corollary.

Corollary 2.4.4. The unit ball in B(H) is compact in the σ-WOT.

Corollary 2.4.5. The WOT and the σ-WOT agree on bounded sets.

Proof. The identity map is clearly continuous from the σ-WOT to the WOT.
Since both spaces are Hausdorff it follows that this is a homeomorphism from
the σ-WOT compact unit ball in B(H). By scaling we therefore have that this
is a homeomorphism on any bounded set. �

Exercise 2.4.6. Show that the adjoint T 7→ T ∗ is continuous in the WOT, and
when restricted to the space of normal operators is continuous in the SOT, but
is not continuous in the SOT on the space of all bounded operators.

Exercise 2.4.7. Show that operator composition is jointly continuous in the
SOT on bounded subsets.

Exercise 2.4.8. Show that the SOT agrees with the σ-SOT on bounded subsets
of B(H).

Exercise 2.4.9. Show that pairing 〈x, a〉 = Tr(a∗x) gives an identification
between K(H)∗ and (L1(B(H)), ‖ · ‖1).
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2.5 Von Neumann algebras and the double com-
mutant theorem

A von Neumann algebra (over a Hilbert space H) is a ∗-subalgebra of B(H)
which contains 1 and is closed in the weak operator topology.

Note that since subalgebras are of course convex, it follows from Corol-
lary 2.4.2 that von Neumann algebras are also closed in the strong operator
topology.

If A ⊂ B(H) then we denote by W ∗(A) the von Neumann subalgebra which
is generated by A, i.e., W ∗(A) is the smallest von Neumann subalgebra of B(H)
which contains A.

Lemma 2.5.1. Let A ⊂ B(H) be a von Neumann algebra. Then (A)1 is compact
in the WOT.

Proof. This follows directly from Corollary 2.4.4. �

Corollary 2.5.2. Let A ⊂ B(H) be a von Neumann algebra, then (A)1 and
As.a. are closed in the weak and strong operator topologies.

Proof. Since taking adjoints is continuous in the weak operator topology it fol-
lows that As.a. is closed in the weak operator topology, and by the previous
result this is also the case for (A)1. �

If B ⊂ B(H), the commutant of B is

B′ = {T ∈ B(H) | TS = ST, for all S ∈ B}.

We also use the notation B′′ = (B′)′ for the double commutant.

Theorem 2.5.3. Let A ⊂ B(H) be a self-adjoint set, then A′ is a von Neumann
algebra.

Proof. It is easy to see that A′ is a self-adjoint algebra containing 1. To see that
it is closed in the weak operator topology just notice that if xα ∈ A′ is a net
such that xα → x ∈ B(H) then for any a ∈ A, and ξ, η ∈ H, we have

〈[x, a]ξ, η〉 = 〈xaξ, η〉 − 〈xξ, a∗η〉

= lim
α→∞

〈xαaξ, η〉 − 〈xαξ, a∗η〉 = lim
α→∞

〈[xα, a]ξ, η〉 = 0. �

Corollary 2.5.4. A self-adjoint maximal abelian subalgebra A ⊂ B(H) is a von
Neumann algebra.

Proof. Since A is maximal abelian we have A = A′. �

Lemma 2.5.5. Suppose A ⊂ B(H) is a self-adjoint algebra containing 1. Then
for all ξ ∈ H, and x ∈ A′′ there exists xα ∈ A such that limα→∞ ‖(x−xα)ξ‖ = 0.
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Proof. Consider the closed subspace K = Aξ ⊂ H, and denote by p the projec-
tion onto this subspace. Since for all a ∈ A we have aK ⊂ K, it follows that
ap = pap. But since A is self-adjoint it then also follows that for all a ∈ A we
have pa = (a∗p)∗ = (pa∗p)∗ = pap = ap, and hence p ∈ A′.

We therefore have that xp = xp2 = pxp and hence xK ⊂ K. Since 1 ∈ A it
follows that ξ ∈ K and hence also xξ ∈ Aξ. �

Theorem 2.5.6 (Von Neumann’s double commutant theorem). Suppose A ⊂
B(H) is a self-adjoint algebra containing 1. Then A′′ is equal to the weak oper-
ator topology closure of A.

Proof. By Theorem 2.5.3 we have that A′′ is closed in the weak operator topol-
ogy, and we clearly have A ⊂ A′′, so we just need to show that A ⊂ A′′ is dense
in the weak operator topology. For this we use the previous lemma together
with a matrix trick.

Let ξ1, . . . , ξn ∈ H, x ∈ A′′ and consider the subalgebra Ã of B(Hn) ∼=
Mn(B(H)) consisting of diagonal matrices with constant diagonal coefficients
contained in A. Then the diagonal matrix whose diagonal entries are all x is
easily seen to be contained in Ã′′, hence the previous lemma applies and so there
exists a net aα ∈ A such that limα→∞ ‖(x− aα)ξk‖ = 0, for all 1 ≤ k ≤ n. This
shows that A ⊂ A′′ is dense in the strong operator topology. �

We also have the following formulation which is easily seen to be equivalent.

Corollary 2.5.7. Let A ⊂ B(H) be a self-adjoint algebra. Then A is a von
Neumann algebra if and only if A = A′′.

Corollary 2.5.8. Let A ⊂ B(H) be a von Neumann algebra, x ∈ A, and
consider the polar decomposition x = v|x|. Then v ∈ A.

Proof. Note that ker(v) = ker(|x|), and if a ∈ A′ then we have a ker(|x|) ⊂
ker(|x|). Also, we have

‖(av − va)|x|ξ‖ = ‖axξ − xaξ‖ = 0,

for all ξ ∈ H. Hence av and va agree on ker(|x|) +R(|x|) = H, and so v ∈ A′′ =
A. �

Proposition 2.5.9. Let (X,µ) be a probability space. Consider the Hilbert space
L2(X,µ), and the map M : L∞(X,µ) → B(L2(X,µ)) defined by (Mgξ)(x) =
g(x)ξ(x), for all ξ ∈ L2(X,µ). Then M is an isometric ∗-isomorphism from
L∞(X,µ) onto a maximal abelian von Neumann subalgebra of B(L2(X,µ)).

Proof. The fact that M is a ∗-isomorphism onto its image is clear. If g ∈
L∞(X,µ) then by definition of ‖g‖∞ we can find a sequence En of measurable
subsets of X such that 0 < µ(En), and |g|En

≥ ‖g‖∞ − 1/n, for all n ∈ N. We
then have

‖Mg‖ ≥ ‖Mg1En‖2/‖1En‖2 ≥ ‖g‖∞ − 1/n.

The inequality ‖g‖∞ ≤ ‖Mg‖ is also clear and hence M is isometric.
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To see that M(L∞(X,µ)) is maximal abelian let’s suppose T ∈ B(L2(X,µ))
commutes with Mf for all f ∈ L∞(X,µ). We define f ∈ L2(X,µ) by f = T (1X).

For each g, h ∈ L∞(X,µ), we have

|
∫
fghdµ| = |〈MgT (1X), h〉|

= |〈T (g), h〉| ≤ ‖T‖‖g‖2‖h‖2.

Since L∞(X,µ) ⊂ L2(X,µ) is dense in ‖ · ‖2, it then follows from Hölder’s
inequality that f ∈ L∞(X,µ), and T = Mf . �

Because of the previous result we will often identify L∞(X,µ) with the sub-
algebra of B(L2(X,µ)) as described above. This should not cause any confusion.

With minor modifications the previous result can be shown to hold for any
measure space (X,µ) which is a disjoint union of probability spaces, e.g., if
(X,µ) is σ-finite, or if X is arbitrary and µ is the counting measure.

Exercise 2.5.10. Let X be an uncountable set, B1 the set of all subsets of X,
B2 ⊂ B1 the set consisting of all sets which are either countable or have count-
able complement, and µ the counting measure on X. Show that the identity
map implements a unitary operator id : L2(X,B1, µ) → L2(X,B2, µ), and we
have L∞(X,B2, µ) ( L∞(X,B2, µ)′′ = idL∞(X,B1, µ) id∗.

2.6 Kaplansky’s density theorem

Proposition 2.6.1. If f ∈ C(C) then x 7→ f(x) is continuous in the strong
operator topology on any bounded set of normal operators in B(H).

Proof. By the Stone-Weierstrass theorem we can approximate f uniformly well
by polynomials on any compact set. Since multiplication is jointly SOT contin-
uous on bounded sets, and since taking adjoints is SOT continuous on normal
operators, the result follows easily. �

Proposition 2.6.2 (The Cayley transform). The map x 7→ (x − i)(x + i)−1

is strong operator topology continuous from the set of self-adjoint operators in
B(H) into the unitary operators in B(H).

Proof. Suppose {xk}k is a net of self-adjoint operators such that xk → x in the
SOT. By the spectral mapping theorem we have ‖(xk + i)−1‖ ≤ 1 and hence for
all ξ ∈ H we have

‖(x− i)(x+ i)−1ξ − (xk − i)(xk + i)−1ξ‖
= ‖(xk + i)−1((xk + i)(x− i)− (xk − i)(x+ i))(x+ i)−1ξ‖
= ‖2i(xk + i)−1(x− xk)(x+ i)−1ξ‖ ≤ 2‖(x− xk)(x+ i)−1ξ‖ → 0. �

Corollary 2.6.3. If f ∈ C0(R) then x 7→ f(x) is strong operator topology
continuous on the set of self-adjoint operators.
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Proof. Since f vanishes at infinity, we have that g(t) = f
(
i 1+t

1−t

)
defines a

continuous function on T if we set g(1) = 0. By Proposition 2.6.1 x 7→ g(x) is
then SOT continuous on the space of unitaries. If U(z) = z−i

z+i is the Cayley
transform, then by Proposition 2.6.2 it follows that f = g◦U is SOT continuous
being the composition of two SOT continuous functions. �

Theorem 2.6.4 (Kaplansky’s density theorem). Let A ⊂ B(H) be a self-adjoint
subalgebra of B(H) and denote by B the strong operator topology closure of A.

(i) The strong operator topology closure of As.a. is Bs.a..

(ii) The strong operator topology closure of (A)1 is (B)1.

Proof. We may assume that A is a C∗-algebra. If {xk}k ⊂ A is a net of ele-
ments which converge in the SOT to a self-adjoint element xk, then since taking

adjoints is WOT continuous we have that
xk+x∗k

2 → x in the WOT. But As.a.

is convex and so the WOT and SOT closures coincide, showing (a). Moreover,
if {yk}k ⊂ As.a. such that yk → x in the SOT then by considering a function
f ∈ C0(R) such that f(t) = t for |t| ≤ ‖x‖, and |f(t)| ≤ ‖x‖, for t ∈ R, we
have ‖f(yk)‖ ≤ ‖x‖, for all k and f(yk)→ f(x) in the SOT by Corollary 2.6.3.
Hence (A)1 ∩As.a. is SOT dense in (B)1 ∩Bs.a..

Note that M2(A) is SOT dense in M2(B) ⊂ B(H⊕H). Therefore if x ∈ (B)1

then x̃ =

(
0 x
x∗ 0

)
∈ (M2(B))1 is self-adjoint. Hence from above there exists

a net of operators x̃n ∈ (M2(A))1 such that x̃n → x̃ in the SOT. Writing

x̃n =

(
an bn
cn dn

)
we then have that ‖bn‖ ≤ 1 and bn → x in the SOT. �

Corollary 2.6.5. A self-adjoint unital subalgebra A ⊂ B(H) is a von Neumann
algebra if and only if (A)1 is closed in the SOT.

Corollary 2.6.6. A self-adjoint unital subalgebra A ⊂ B(H) is a von Neumann
algebra if and only if A is closed in the σ-WOT.

2.6.1 Preduals

Proposition 2.6.7. Let A ⊂ B(H) be a von Neumann algebra, and let A∗ ⊂ A∗
be the subspace of σ-WOT continuous linear functionals, then (A∗)

∗ = A and
under this identification the weak∗-topology on A agrees with the σ-WOT.

Proof. By the Hahn-Banach Theorem, and Lemma 2.4.3 we can identify A∗
with L1(B(H))/A⊥, where A⊥ is the pre-annihilator

A⊥ = {x ∈ L1(B(H)) | Tr(ax) = 0, for all a ∈ A}.

From the general theory of Banach spaces it follows that (L1(B(H))/A⊥)∗ is
canonically isomorphic to the weak∗ closure of A, which is equal to A by Corol-
lary 2.6.6. The fact that the weak∗-topology on A agrees with the σ-WOT is
then obvious. �
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If A ⊂ B(H) and B ⊂ B(K) are von Neumann algebras, then a linear map
Φ : A → B is said to be normal if it is continuous from the σ-WOT of A to
the σ-WOT of B.

Exercise 2.6.8. Suppose A ⊂ B(H) and B ⊂ B(K) are von Neumann algebras,
and Φ : A→ B is a bounded linear map. Show that Φ is normal if and only if the
dual map Φ∗ : B∗ → A∗ given by Φ∗(ψ)(a) = ψ(Φ(a)) satisfies Φ∗(B∗) ⊂ A∗.

2.7 Borel functional calculus

If T ∈ Mn(C) is a normal matrix, then there are different perspectives one
can take when describing the spectral theorem for T . The first, a basis free
approach, is to consider the eigenvalues σ(T ) for T , and to each eigenvalue λ
associate to it the projection E(λ) onto the corresponding eigenspace. Since T
is normal we have that the E(λ)’s are pairwise orthogonal and we have

T =
∑

λ∈σ(T )

λE(λ).

The second approach is to use that since T is normal, it is diagonalizable.
We therefore could find a unitary matrix U such that UTU∗ is a diagonal matrix
with diagonal entries λi. If we denote by Ei,i the elementary matrix with a 1
in the (i, i) position and 0 elsewhere, then we have

T = U∗(

n∑
i=1

λiEi,i)U.

For bounded normal operators there are two similar approaches to the spec-
tral theorem. The first approach is to find a substitute for the projections E(λ)
and this leads naturally to the notion of a spectral measure. For the second
approach, this naturally leads to the interpretation of diagonal matrices cor-
responding to multiplication by essentially bounded functions on a probability
space.

Lemma 2.7.1. Let xα ∈ B(H) be an increasing net of positive operators such
that supα ‖xα‖ < ∞, then there exists a bounded operator x ∈ B(H) such that
xα → x in the SOT.

Proof. We may define a quadratic form on H by ξ 7→ limα ‖
√
xαξ‖2. Since

supα ‖xα‖ < ∞ we have that this quadratic form is bounded and hence there
exists a bounded positive operator x ∈ B(H) such that ‖

√
xξ‖2 = limα ‖

√
xαξ‖2,

for all ξ ∈ H. Note that xα ≤ x for all α, and supα ‖(x − xα)1/2‖ < ∞. Thus
for each ξ ∈ H we have

‖(x− xα)ξ‖2 ≤ ‖(x− xα)1/2‖2‖(x− xα)1/2ξ‖2

= ‖(x− xα)1/2‖2(‖
√
xξ‖2 − ‖

√
xαξ‖2)→ 0.

Hence, xα → x in the SOT. �
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Corollary 2.7.2. Let A ⊂ B(H) be a von Neumann algebra. If {pι}ι∈I ⊂ A
is a collection of pairwise orthogonal projections then p =

∑
ι∈I pι ∈ A is well

defined as a SOT limit of finite sums.

2.7.1 Spectral measures

Let K be a compact Hausdorff space and let H be a Hilbert space. A spectral
measure E on K relative to H is a mapping from the Borel subsets of K to
the set of projections in B(H) such that

(i) E(∅) = 0, E(K) = 1.

(ii) E(B1 ∩B2) = E(B1)E(B2) for all Borel sets B1 and B2.

(iii) For all ξ, η ∈ H the function

B 7→ Eξ,η(B) = 〈E(B)ξ, η〉

is a finite Radon measure on K.

Example 2.7.3. If K is a compact Hausdorff space and µ is a σ-finite Radon
measure on K, then the map E(B) = 1B ∈ L∞(K,µ) ⊂ B(L2(K,µ)) defines a
spectral measure on K relative to L2(K,µ).

We denote by B∞(K) the space of all bounded Borel functions on K. This
is clearly a C∗-algebra with the sup norm.

For each f ∈ B∞(K) it follows that the map

(ξ, η) 7→
∫
f dEξ,η

gives a continuous sesqui-linear form on H and hence it follows that there exists
a bounded operator T such that 〈Tξ, η〉 =

∫
f dEξ,η. We denote this operator

T by
∫
f dE so that we have the formula 〈(

∫
f dE)ξ, η〉 =

∫
f dEξ,η, for each

ξ, η ∈ H.

Theorem 2.7.4. Let K be a compact Hausdorff space, let H be a Hilbert space,
and suppose that E is a spectral measure on K relative to H. Then the associ-
ation

f 7→
∫
f dE

defines a continuous ∗-homomorphism from B∞(K) to B(H). Moreover, the
image of B∞(K) is contained in the von Neumann algebra generated by the
image of C(K), and if fn ∈ B∞(K) is an increasing sequence of non-negative
functions such that f = supn fn ∈ B∞, then

∫
fndE →

∫
fdE in the SOT.

Proof. It is easy to see that this map defines a linear contraction which preserves
the adjoint operation. If A,B ⊂ K are Borel subsets, and ξ, η ∈ H, then
denoting x =

∫
1AdE, y =

∫
1BdE, and z =

∫
1A∩BdE we have

〈xyξ, η〉 = 〈E(A)yξ, η〉 = 〈E(B)ξ, E(A)η〉
= 〈E(B ∩A)ξ, η〉 = 〈zξ, η〉.
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Hence xy = z, and by linearity we have that (
∫
f dE)(

∫
g dE) =

∫
fg dE for

all simple functions f, g ∈ B∞(K). Since every function in B∞(K) can be
approximated uniformly by simple functions this shows that this is indeed a
∗-homomorphism.

To see that the image of B∞(K) is contained in the von Neumann algebra
generated by the image of C(K), note that if a commutes with all operators of
the form

∫
f dE for f ∈ C(K) then for all ξ, η ∈ H we have

0 = 〈(a(

∫
f dE)− (

∫
f dE)a)ξ, η〉 =

∫
f dEξ,a∗η −

∫
f dEaξ,η.

Thus Eξ,a∗η = Eaξ,η and hence we have that a also commutes with operators
of the form

∫
g dE for any g ∈ B∞(K). Therefore by Theorem 2.5.6

∫
g dE is

contained in the von Neumann algebra generated by the image of C(K).
Now suppose fn ∈ B∞(K) is an increasing sequence of non-negative func-

tions such that f = supn fn ∈ B∞(K). For each ξ, η ∈ H we have∫
fn dEξ,η →

∫
f dEξ,η,

hence
∫
fn dE converges in the WOT to

∫
f dE. However, since

∫
fn dE is an

increasing sequence of bounded operators with ‖
∫
fn dE‖ ≤ ‖f‖∞, Lemma 2.7.1

shows that
∫
fn dE converges in the SOT to some operator x ∈ B(H) and we

must then have x =
∫
f dE. �

The previous theorem shows, in particular, that if A is a unital abelian C∗-
algebra, and E is a spectral measure on σ(A) relative to H, then we obtain a
unital ∗-representation π : A→ B(H) by the formula

π(x) =

∫
Γ(x)dE.

We next show that in fact every unital ∗-representation arises in this way.

Theorem 2.7.5. Let A be a unital abelian C∗-algebra, H a Hilbert space and
π : A→ B(H) a unital ∗-representation. Then there is a unique spectral measure
E on σ(A) relative to H such that for all x ∈ A we have

π(x) =

∫
Γ(x)dE.

Proof. For each ξ, η ∈ H we have that f 7→ 〈π(Γ−1(f))ξ, η〉 defines a bounded
linear functional on σ(A) and hence by the Riesz representation therorem there
exists a Radon measure Eξ,η such that for all f ∈ C(σ(A)) we have

〈π(Γ−1(f))ξ, η〉 =

∫
fdEξ,η.

Since the Gelfand transform is a ∗-homomorphism we verify easily that fdEξ,η =
dEπ(Γ−1(f))ξ,η = dEξ,π(Γ−1(f))η.
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Thus for each Borel set B ⊂ σ(A) we can consider the sesquilinear form
(ξ, η) 7→

∫
1BdEξ,η. We have |

∫
fdEξ,η| ≤ ‖f‖∞‖ξ‖‖η‖, for all f ∈ C(σ(A))

and hence this sesquilinear form is bounded and there exists a bounded operator
E(B) such that 〈E(B)ξ, η〉 =

∫
1BdEξ,η, for all ξ, η ∈ H. For all f ∈ C(σ(A))

we have

〈π(Γ−1(f))E(B)ξ, η〉 =

∫
1BdEξ,π(Γ−1(f))η =

∫
1BfdEξ,η.

Thus it follows that E(B)∗ = E(B), and E(B′)E(B) = E(B′ ∩ B), for any
Borel set B′ ⊂ σ(A). In particular, E(B) is a projection and E gives a spectral
measure on σ(A) relative to H. The fact that for x ∈ A we have π(x) =∫

Γ(x)dE follows easily from the way we constructed E. �

If H is a Hilbert space and x ∈ B(H) is a normal operator, then by applying
the previous theorem to the C∗-subalgebra A generated by x and 1, and using
the identification σ(A) = σ(x) we obtain a homomorphism from B∞(σ(x)) to
B(H) and hence for f ∈ B∞(σ(x)) we may define

f(x) =

∫
fdE.

Note that it is straight forward to check that considering the function f(z) = z
we have

x =

∫
zdE(z).

We now summarize some of the properties of this functional calculus which
follow easily from the previous results.

Theorem 2.7.6 (Borel functional calculus). Let A ⊂ B(H) be a von Neumann
algebra and suppose x ∈ A is a normal operator, then the Borel functional
calculus defined by f 7→ f(x) satisfies the following properties:

(i) f 7→ f(x) is a continuous unital ∗-homomorphism from B∞(σ(x)) into A.

(ii) If f ∈ B∞(σ(x)) then σ(f(x)) ⊂ f(σ(x)).

(iii) If f ∈ C(σ(x)) then f(x) agrees with the definition given by continuous
functional calculus.

Corollary 2.7.7. Let A ⊂ B(H) be a von Neumann algebra, then A is the
uniform closure of the span of its projections.

Proof. By decomposing an operator into its real and imaginary parts it is enough
to check this for self-adjoint operators in the unit ball, and this follows from the
previous theorem by approximating the function f(t) = t uniformly by simple
functions on [−1, 1]. �

Corollary 2.7.8. Let A ⊂ B(H) be a von Neumann algebra, then the unitary
group U(A) is path connected in the uniform topology.
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Proof. If u ∈ U(A) is a unitary and we consider a branch of the log function
f(z) = log z, then from Borel functional calculus we have u = eix where x =
−if(u) is self-adjoint. We then have that ut = eitx is a uniform norm continuous
path of unitaries such that u0 = 1 and u1 = u. �

Corollary 2.7.9. If H is an infinite dimensional separable Hilbert space, then
K(H) is the unique non-zero proper norm closed two sided ideal in B(H).

Proof. If I ⊂ B(H) is a norm closed two sided ideal and x ∈ I \{0}, then for any
ξ ∈ R(x∗x), ‖ξ‖ = 1 we can consider y = (ξ ⊗ ξ)x∗x(ξ ⊗ ξ) ∈ I which is a rank
one self-adjoint operator with R(y) = Cξ. Thus y is a multiple of (ξ ⊗ ξ) and
hence (ξ⊗ξ) ∈ I. For any ζ, η ∈ H, we then have ζ⊗η = (ζ⊗ξ)(ξ⊗ξ)(ξ⊗η) ∈ I
and hence I contains all finite rank operators. Since I is closed we then have
that K(H) ⊂ I.

If x ∈ I is not compact then for some ε > 0 we have that dim(1[ε,∞)(x
∗x)H) =

∞. If we let u ∈ B(H) be an isometry from H onto 1[ε,∞)(x
∗x)H, then we have

that σ(u∗x∗xu) ⊂ [ε,∞). Hence, u∗x∗xu ∈ I is invertible which shows that
I = B(H). �

Exercise 2.7.10. Suppose that K is a compact Hausdorff space and E is a
spectral measure for K relative to a Hilbert space H, show that if f ∈ B∞(K),
and we have a decomposition of K into a countable union of pairwise disjoint
Borel sets K = ∪n∈NBn then we have that∫

fdE =
∑
n∈N

∫
Bn

fdE,

where the convergence of the sum is in the weak operator topology.

2.8 Abelian von Neumann algebras

Let A ⊂ B(H) be a von Neumann algebra, and suppose ξ ∈ H is a non-zero
vector. Then ξ is said to be cyclic for A if Aξ is dense in H. We say that ξ is
separating for A if xξ 6= 0, for all x ∈ A, x 6= 0.

Proposition 2.8.1. Let A ⊂ B(H) be a von Neumann algebra, then a non-zero
vector ξ ∈ H is cyclic for A if and only if ξ is separating for A′.

Proof. Suppose ξ is cyclic for A, and x ∈ A′ such that xξ = 0. Then xaξ =
axξ = 0 for all a ∈ A, and since Aξ is dense in H it follows that xη = 0 for all
η ∈ H. Conversely, if Aξ is not dense, then the orthogonal projection p onto its
complement is a nonzero operator in A′ such that pξ = 0. �

Corollary 2.8.2. If A ⊂ B(H) is an abelian von Neumann algebra and ξ ∈ H
is cyclic, then ξ is also separating.

Proof. Since ξ being separating passes to von Neumann subalgebras and A ⊂ A′
this follows. �
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Infinite dimensional von Neumann algebras are never separable in the norm
topology. For this reason we will say that a von Neumann algebra A is sepa-
rable if A is separable in the SOT. Equivalently, A is separable if its predual
A∗ is separable.

Proposition 2.8.3. Let A ⊂ B(H) be a separable von Neumann algebra. Then
there exists a separating vector for A.

Proof. Since A is separable, it follows that there exists a countable collection of
vectors {ξk}k ⊂ H such that xξk = 0 for all k only if x = 0. Also, since A is
separable we have that H0 = sp(A{ξk}k) is also separable. Thus, restricting A
to H0 we may assume that H is separable.

By Zorn’s lemma we can find a maximal family of non-zero unit vectors
{ξα}α such that Aξα ⊥ Aξβ , for all α 6= β. Since H is separable this family
must be countable and so we may enumerate it {ξn}n, and by maximality we
have that {Aξn}n is dense in H.

If we denote by pn the orthogonal projection onto the closure of Aξn then we
have that pn ∈ A′, hence, setting ξ =

∑
n

1
2n ξ if x ∈ A such that xξ = 0, then

for every n ∈ N we have 0 = 2npnxξ = 2nxpnξ = xξn and so x = 0 showing
that ξ is a separating vector for A. �

Corollary 2.8.4. Suppose H is separable, if A ⊂ B(H) is a maximal abelian
self-adjoint subalgebra (masa), then there exists a cyclic vector for A.

Proof. By Propostion 2.8.3 there exists a non-zero vector ξ ∈ H which is sepa-
rating for A, and hence by Proposition 2.8.1 is cyclic for A′ = A. �

The converse of the previous corollary also holds (without the separability
hypothesis), which follows from Proposition 2.5.9, together with the following
theorem.

Theorem 2.8.5. Let A ⊂ B(H) be an abelian von Neumann algebra and sup-
pose ξ ∈ H is a cyclic vector. Then for any SOT dense C∗-subalgebra A0 ⊂ A
there exists a Radon probability measure µ on K = σ(A0) with supp(µ) = K,
and an unitary U : L2(K,µ)→ H such that U∗AU = L∞(K,µ) ⊂ B(L2(X,µ)).

Proof. Fix a SOT dense C∗-algebra A0 ⊂ A, then by the Riesz representa-
tion theorem we obtain a finite Radon measure µ on K = σ(A0) such that
〈Γ(f)ξ, ξ〉 =

∫
fdµ for all f ∈ C(K). Since the Gelfand transform takes posi-

tive operator to positive functions we see that µ is a probability measure.
We define a map U0 : C(K)→ H by f 7→ Γ(f)ξ, and note that ‖U0(f)‖2 =

〈Γ(ff)ξ, ξ〉 =
∫
ffdµ = ‖f‖2. Hence U0 extends to an isometry U : L2(K,µ)→

H. Since ξ is cyclic we have that A0ξ ⊂ U(L2(K,µ)) is dense and hence U is
a unitary. If the support of µ were not K then there would exist a non-zero
continuous function f ∈ C(K) such that 0 =

∫
|f2|dµ = ‖Γ(f)ξ‖2, but since by

Corollary 2.8.2 we know that ξ is separating and hence this cannot happen.
If f ∈ C(K) ⊂ B(L2(K,µ)), and g ∈ C(K) ⊂ L2(K,µ) then we have

U∗Γ(f)Ug = U∗Γ(f)Γ(g)ξ = fg = Mfg.
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Since C(K) is ‖ · ‖2-dense in L2(K,µ) it then follows that U∗Γ(f)U = Mf , for
all f ∈ C(K) and thus U∗A0U ⊂ L∞(K,µ). Since A0 is SOT dense in A we
then have that U∗AU ⊂ L∞(K,µ). But since x 7→ U∗xU is WOT continuous
and (A)1 is compact in the WOT it follows that U∗(A)1U = (L∞(K,µ))1 and
hence U∗AU = L∞(K,µ). �

In general, if A ⊂ B(H) is an abelian von Neumann algebra and ξ ∈ H is a
non-zero vector, then we can consider the projection p onto the K = Aξ. We
then have p ∈ A′, and Ap ⊂ B(H) is an abelian von Neumann for which ξ is
a cyclic vector, thus by the previous result Ap is ∗-isomorphic to L∞(X,µ) for
some probability space (X,µ). An application of Zorn’s Lemma can then be
used to show that A is ∗-isomorphic to L∞(Y, ν) were (Y, ν) is a measure space
which is a disjoint union of probability spaces. In the case when A is separable
an even more concrete classification will be given below.

Theorem 2.8.6. Let A ⊂ B(H) be a separable abelian von Neumann algebra,
then there exists a separable compact Hausdorff space K with a Radon probability
measure µ on K such that A and L∞(K,µ) are ∗-isomorphic.

Proof. By Proposition 2.8.3 there exists a non-zero vector ξ ∈ H which is sepa-
rating for A. Thus if we consider K = Aξ we have that restricting each operator
x ∈ A to K is a C∗-algebra isomorphism and ξ ∈ K is then cyclic. Thus, the
result follows from Theorem 2.8.5. �

If x ∈ B(H) is normal such that A = W ∗(x) is separable (e.g., if H is
separable), then we may let A0 be the C∗-algebra generated by x. We then
obtain the following alternate version of the spectral theorem.

Corollary 2.8.7. Let A ⊂ B(H) be a von Neumann algebra. If x ∈ A is normal
such that W ∗(x) is separable, then there exists a Radon probability measure µ on
σ(x) and a ∗-homomorphism f 7→ f(x) from L∞(σ(x), µ) into A which agrees
with Borel functional calculus. Moreover, we have that σ(f(x)) is the essential
range of f .

Note that W ∗(x) need not be separable in general. For example, `∞([0, 1]) ⊂
B(`2([0, 1])) is generated by the multiplication operator corresponding to the
function t 7→ t.

Lemma 2.8.8. Let A ⊂ B(H) be a separable abelian von Neumann algebra,
then there exists a self-adjoint operator x ∈ A such that A = {x}′′.

Proof. Since A is separable we have that A is countably generated as a von
Neumann algebra. Indeed, just take a countable family in A which is dense in
the SOT. By functional calculus we can approximate any self-adjoint element
by a linear combination of projections and thus A is generated by a countable
collection of projections {pk}∞k=0.

Define a sequence of self adjoint elements xn =
∑n
k=0 4−kpk, and let x =∑∞

k=0 4−kpk. We denote by A0 = {x}′′. Define a continuous function f :
[−1, 2] → R such that f(t) = 1 if t ∈ [1 − 1

3 , 1 + 1
3 ] and f(t) = 0 if t ≤ 1

3 ,
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then we have that f(xn) = p0 for every n and hence by continuity of continuous
functional calculus we have p0 = f(x) ∈ A0. The same argument shows that
p1 = f(4(x − p0)) ∈ A0 and by induction it follows easily that pk ∈ A0 for all
k ≥ 0, thus A0 = A. �

Theorem 2.8.9. Let A ⊂ B(H) be a separable abelian von Neumann alge-
bra, then there is a countable (possibly empty) set K such that either A is
∗-isomorphic to `∞K, or else A is ∗-isomorphic to L∞([0, 1], λ) ⊕ `∞K where
λ is Lebesgue measure.

Proof. Since A is separable we have from Lemma 2.8.8 that as a von Neumann
algebra A is generated by a single self-adjoint element x ∈ A.

We define K = {a ∈ σ(x) | 1{a}(x) 6= 0}. Since the projections correspond-
ing to elements in K are pairwise orthogonal it follows that K is countable.
Further, if we denote by pK =

∑
a∈K 1{a} then we have that ApK ∼= `∞K.

Thus, all that remains is to show that if (1 − pK) 6= 0 then (1 − pK)A =
{(1− pK)x}′′ ∼= L∞([0, 1], λ).

Set x0 = (1 − pK)x 6= 0. By our definition of K above we have that
σ(x0) has no isolated points. Thus, we can inductively define a sequence of
partitions {Ank}2

n

k=1 of σ(x0) such that Ank = An+1
2k−1 ∪ A

n+1
2k , and Ank has non-

empty interior, for all n > 0, 1 ≤ k ≤ 2n. If we then consider the elements
yn =

∑∞
k=1

k
2n 1Ak

(x0) then we have that yn → y where 0 ≤ y ≤ 1, {x0}′′ = {y}′′
and every dyadic rational is contained in the spectrum of y (since the space of
invertible operators is open in the norm topology), hence σ(y) = [0, 1].

By Theorem 2.8.6 it then follows that {x0}′′ = {y}′′ ∼= L∞([0, 1], µ) for some
Radon measure µ on [0, 1] which has full support and no atoms. If we define the
function θ : [0, 1] → [0, 1] by θ(t) = µ([0, t]) then θ gives a continuous bijection
of [0, 1], and we have θ∗µ = λ, since both are Radon probability measures such
that for intervals [a, b] we have θ∗µ([a, b]) = µ([θ−1(a), θ−1(b)]) = λ([a, b]). The
map θ∗ : L∞([0, 1], λ) → L∞([0, 1], µ) given by θ∗(f) = f ◦ θ−1 is then easily
seen to be a ∗-isomorphism. �
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Chapter 3

Unbounded operators

3.1 Definitions and examples

Let H, and K Hilbert spaces. An linear operator T : H → K consists of a
linear subspace D(T ) ⊂ H together with a linear map from D(T ) to K (which
will also be denoted by T ). A linear operator T : H → K is bounded if there
exists K ≥ 0 such that ‖Tξ‖ ≤ K‖ξ‖ for all ξ ∈ D(T ).

The graph of T is the subspace

G(T ) = {ξ ⊕ Tξ | ξ ∈ H} ⊂ H⊕K,

T is said to be closed if its graph G(T ) is a closed subspace of H ⊕ K, and T
is said to be closable if there exists an unbounded closed operator S : H → K
such that G(T ) = G(S). If T is closable we denote the operator S by T and
call it the closure of T . A linear operator T is densely defined if D(T ) is a
dense subspace. We denote by C(H,K) the set of closed, densely defined linear
operators from H to K, and we also write C(H) for C(H,H). Note that we may
consider B(H,K) ⊂ C(H,K).

If T, S : H → K are two linear operators, then we say that S is an extension
of T and write S v T if D(S) ⊂ D(T ) and T|D(S) = S. Also, if T : H → K, and
S : K → L are linear operators, then the composition ST : H → L is the linear
operator with domain

D(ST ) = {ξ ∈ D(T ) | Tξ ∈ D(S)},

defined by (ST )(ξ) = S(T (ξ)), for all ξ ∈ D(ST ). We may similarly define
addition of linear operators as

D(S + T ) = D(S) ∩D(T ),

and (S + T )ξ = Sξ + Tξ, for all ξ ∈ D(S + T ). Even if S and T are both
densely defined this need not be the case for ST or S + T . Both composition
and addition are associative operations, and we still have the right distributive

41
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property (R+ S)T = (RT ) + (ST ), although note that in general we only have
T (R+ S) w (TR) + (TS).

If S ∈ C(H), and T ∈ B(H) then ST is still closed, although it may not be
densely defined. Similarly, TS will be densely defined, although it may not be
closed. If T also has a bounded inverse, then both ST and TS will be closed
and densely defined.

If T : H → K is a densely defined linear operator, and η ∈ K such that the
linear functional ξ 7→ 〈Tξ, η〉 is bounded on D(T ), then by the Riesz represen-
tation theorem there exists a unique vector T ∗η ∈ H such that for all ξ ∈ D(T )
we have

〈Tξ, η〉 = 〈ξ, T ∗η〉.

We denote by D(T ∗) the linear subspace of all vectors η such that ξ 7→ 〈Tξ, η〉
is bounded, and we define the linear operator η 7→ T ∗η to be the adjoint of T .
Note that T ∗ is only defined for operators T which are densely defined.

A densely defined operator T : H → H is symmetric if T v T ∗, and is
self-adjoint if T = T ∗.

Example 3.1.1. Let A = (ai,j) ∈ MN(C) be a matrix, for each n ∈ N we
consider the finite rank operator Tn =

∑
i,j≤n ai,jδi ⊗ δj , so that we may think

of Tn as changing the entries of A to 0 whenever i > n, or j > n.
We set D = {ξ ∈ `2N | limn→∞ Tnξ exists.}, and we define TA : D → `2N

by TAξ = limn→∞ Tnξ.
Suppose now that for each j ∈ N we have {ai,j}i ∈ `2N. Then we have

CN ⊂ D and so TA is densely defined. If η ∈ D(T ∗A) then it is easy to see
that if we denote by Pn the projection onto the span of {δi}i≤n, then we have
Pn = T ∗nη, hence η ∈ D(TA∗) where A∗ is the Hermitian transpose of the matrix
A. Conversely, it is also easy to see that D(TA∗) ⊂ D(T ∗A), and so T ∗A = TA∗ .

In particular, if {ai,j}i ∈ `2N, for every j ∈ N, and if {ai,j}j ∈ `2N, for every
i ∈ N, then TA ∈ C(`2N).

Example 3.1.2. Let (X,µ) be a σ-finite measure space and f ∈ M(X,µ) a
measurable function. We define the linear operator Mf : L2(X,µ) → L2(X,µ)
by setting D(Mf ) = {g ∈ L2(X,µ) | fg ∈ L2(X,µ)}, and Mf (g) = fg for
g ∈ D(Mf ). It’s easy to see that each Mf is a closed operator, and that
f 7→Mf preserves the ∗-algebraic structure of M(X,µ).

Example 3.1.3. Let D ⊂ L2[0, 1] denote the space of absolutely continuous
functions f : [0, 1] → C, such that f(0) = f(1) = 0, and f ′ ∈ L2(0, 1). It’s
not hard to check that D is dense in L2[0, 1], and we may consider the densely
defined operator T : L2(0, 1)→ L2(0, 1) with domain D, given by T (f) = if ′.

If g ∈ D(T ∗), and h = T ∗g, then set H(x) =
∫ x

0
h(t) dt, and note that

H(1) =
∫ 1

0
h(t) dt = 〈1, T ∗g〉 = 〈T (1), g〉 = 0 = H(0). For every f ∈ D,

integration by parts gives

i

∫ 1

0

f ′g = 〈Tf, g〉 = 〈f, h〉 =

∫ 1

0

fH ′ = −
∫ 1

0

f ′H.
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Thus, 〈f ′, H − ig〉 = 0 for all f ∈ D, so that H − ig ∈ {f ′ | f ∈ D}⊥ = {1}⊥⊥,
and so H − ig is a constant function. In particular, we see that g is absolutely
continuous, and g′ = ih ∈ L2[0, 1]. Conversely, if g : [0, 1] → C is absolutely
continuous and g′ ∈ L2[0, 1] then it is equally easy to see that g ∈ D(T ∗), and
T ∗g = ig′.

In particular, this shows that T is symmetric, but not self-adjoint, and the
same argument shows that T ∗∗ = T (We’ll see in Proposition 3.1.6 below that
this implies that T is closed). If we consider instead the space D̃ consisting of
all absolutely continuous functions f : [0, 1]→ C, such that f(0) = f(1), and if
we define S : D̃ → L2[0, 1] by S(f) = if ′, then a similar argument shows that
S is self-adjoint. Thus, we have the following sequence of extensions:

T ∗∗ = T v S = S∗ v T ∗.

Lemma 3.1.4. Let T : H → K be a densely defined operator, and denote by
J : H⊕K → K ⊕H the isometry defined by J(ξ ⊕ η) = −η ⊕ ξ. Then we have
G(T ∗) = J(G(T ))⊥.

Proof. If η, ζ ∈ K, the η⊕ ζ ∈ J(G(T ))⊥ if and only if for all ξ ∈ D(T ) we have

0 = 〈−Tξ ⊕ ξ, η ⊕ ζ〉 = 〈ξ, ζ〉 − 〈Tξ, η〉.

Which, since H = D(T ), is also if and only if η ∈ D(T ∗) and ζ = T ∗η. �

Corollary 3.1.5. For any densely defined operator T : H → K, the operator
T ∗ is closed. In particular, self-adjoint operators are closed, and symmetric
operators are closable.

Proposition 3.1.6. A densely defined operator T : H → K is closable if and
only if T ∗ is densely defined, and if this is the case then we have T = (T ∗)∗.

Proof. Suppose first that T ∗ is densely defined. Then by Lemma 3.1.4 we have

G((T ∗)∗) = −J∗(J(G(T ))⊥)⊥ = (G(T )⊥)⊥ = G(T ),

hence T is closable and (T ∗)∗ = T .
Conversely, if T is closable then take ζ ∈ D(T ∗)⊥.
For all η ∈ D(T ∗) we have

0 = 〈ζ, η〉 = 〈0⊕ ζ,−T ∗η ⊕ η〉,

and hence 0 ⊕ ζ ∈ (−J∗G(T ∗))⊥ = G(T ). Since T is closable we then have
ζ = 0. �

We leave the proof of the following lemma to the reader.

Lemma 3.1.7. Suppose T : H → K, and R,S : K → L are densely defined
operators such that ST (resp. R+S) is also densely defined, then T ∗S∗ v (ST )∗

(resp. R∗ + S∗ v (R+ S)∗).
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3.1.1 The spectrum of a linear operator

Let T : H → K be an injective linear operator. The inverse of T is the linear
operator T−1 : K → H with domain D(T−1) = R(T ), such that T−1(Tξ) = ξ,
for all ξ ∈ D(T−1).

The resolvent set of an operator T : H → H is

ρ(T ) = {λ ∈ C | T − λ is injective and (T − λ)−1 ∈ B(H)}.

The spectrum of T is σ(T ) = C \ ρ(T ).

If σ ∈ U(H⊕K) is given by σ(ξ ⊕ η) = η ⊕ ξ, and if T : H → K is injective
then we have that G(T−1) = σ(G(T )). Hence, if T : H → H is not closed then
σ(T ) = C. Also, note that if T ∈ C(H) then by the closed graph theorem shows
that λ ∈ ρ(T ) if and only if T − λ gives a bijection between D(T ) and H.

Lemma 3.1.8. Let T ∈ C(H,K) be injective with dense range, then (T ∗)−1 =
(T−1)∗. In particular, for T ∈ C(H) we have σ(T ∗) = σ(T ).

Proof. If we consider the unitary operators J , and σ from above then we have

G((T ∗)−1) = σ(G(T ∗)) = σJ(G(T ))⊥

= J∗(σG(T ))⊥ = J∗(G(T−1))⊥ = G((T−1)∗). �

Lemma 3.1.9. If T ∈ C(H), then σ(T ) is a closed subset of C.

Proof. We will show that ρ(T ) is open by showing that whenever λ ∈ ρ(T ) with
|α − λ| < ‖(T − λ)−1‖−1, then α ∈ ρ(T ). Thus, suppose λ ∈ ρ(T ) and α ∈ C
such that |λ− α| < ‖(T − λ)−1‖−1. Then for all ξ ∈ D(T ) we have

‖ξ − (T − λ)−1(T − α)ξ‖ = ‖(T − λ)−1(α− λ)ξ‖ < ‖ξ‖.

Hence, by Lemma 1.1.3, S0 = (T − λ)−1(T − α), is bounded and its closure
S ∈ B(H) has a bounded inverse. We then have S−1(T − λ)−1(T − α)ξ = ξ,
for all ξ ∈ D(T ), so that (T − α) is injective and S−1(T − λ)−1 w (T − α)−1.
Note that S0(D(T )) = D(T ) and hence we also have S(D(T )) = D(T ). Thus,
R(S−1(T − λ)−1) = D(T ) = R((T − α)−1(H)), since both maps are injective
we then have (T − α)−1 = S−1(T − λ)−1 ∈ B(H). �

Note that an unbounded operator may have empty spectrum. Indeed, if
S ∈ B(H) has a densely defined inverse, then for each λ ∈ σ(S−1) \ {0} we have
(S−λ−1)λ(λ−S)−1S−1 = S(λ−S−1)(λ−S)−1S−1 = id. Hence σ(S−1)\{0} ⊂
(σ(S) \ {0})−1. Thus, it is enough to find a bounded operator S ∈ B(H) such
that S is injective but not surjective, and has dense range σ(S) = {0}. For
example, the compact operator S ∈ B(`2Z) given by (Sδn) = 1

|n|+1δn+1 is

injective with dense range, but is not surjective, and ‖S2n‖ ≤ 1/n!, so that
r(S) = 0 and hence σ(S) = {0}.
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3.1.2 Quadratic forms

A quadratic form q : H → C on a Hilbert space H consists of a linear subspace
D(q) ⊂ H, together with a sesquilinear form q : D(q) × D(q) → C. We say
that q is densely defined if D(q) is dense. If ξ ∈ D(q) then we write q(ξ) for

q(ξ, ξ); note that we have the polarization identity q(ξ, η) = 1
4

∑3
k=0 i

kq(ξ+ikη),
and in general, a function q : D → H defines a sesquilinear from through
the polarization identity if and only if it satisfies the parallelogram identity
q(ξ + η) + q(ξ − η) = 2q(ξ) + 2q(η) for all ξ, η ∈ D(q). A quadratic form q is
non-negative definite if q(ξ) ≥ 0 for all ξ ∈ H.

If q is a non-negative definite quadratic form and we denote by Hq the
separation and completion of D(q) with respect to q, then we may consider the
identity map I : D(q) → Hq, and note that for ξ, η ∈ D(q) we have 〈ξ, η〉q :=
〈ξ, η〉+q(ξ, η) coincides with the inner-product coming from the graph of I. The
quadratic form q is closed if I is closed, i.e., (D(q), 〈·, ·〉q) is complete. We’ll
say that q is closable if I is closable, and in this case we denote by q the closed
quadratic form given by D(q) = D(I), and q(ξ, η) = 〈Iξ, Iη〉.

Theorem 3.1.10. Let q : H → [0,∞) be a non-negative definite quadratic form,
then the following conditions are equivalent:

(i) q is closed.

(ii) There exists a Hilbert space K, and a closed linear operator T : H → K
with D(T ) = D(q) such that q(ξ, η) = 〈Tξ, Tη〉 for all ξ, η ∈ D(T ).

(iii) q is lower semi-continuous, i.e., for any sequence ξn ∈ D(q), such that
ξn → ξ, and lim infn→∞ q(ξn) < ∞, we have ξ ∈ D(q) and q(ξ) ≤
lim infn→∞ q(ξn).

Proof. The implication (i) =⇒ (ii) follows from the discussion preceding the
theorem. For (ii) =⇒ (iii) suppose that T : H → K is a closed linear operator
such that D(T ) = D(q), and q(ξ, η) = 〈Tξ, Tη〉 for all ξ, η ∈ D(T ). If ξn ∈ D(T )
is a sequence such that ξn → ξ ∈ H, and K = lim infn→∞ ‖Tξn‖2 < ∞,
then by taking a subsequence we may assume that K = limn→∞ ‖Tξn‖2, and
Tξn → η weakly for some η ∈ H. Taking convex combinations we may then
find a sequence ξ′n such that ξ′n → ξ ∈ H, Tξ′n → η strongly, and ‖η‖ =
limn→∞ ‖Tξ′n‖2 ≤ K. Since T is closed we then have ξ ∈ D(T ), and Tξ = η, so
that ‖Tξ‖2 ≤ K.

We show (iii) =⇒ (i) by contraposition, so suppose thatHq is the separation
and completion of D(q) with respect to q, and that I : D(q)→ Hq is not closed.
If I were closable, then there would exist a sequence ξn ∈ D(q) such that
ξn → η ∈ H, and I(ξn) is Cauchy, but η 6∈ D(q). However, if I(ξn) is Cauchy
then in particular we have that q(ξn) is bounded, hence this sequence would
show that (iii) does not hold.

Thus, we may assume that I is not closable, so that there exists a sequence
ξn ∈ D(q) such that ‖ξn‖ → 0, and I(ξn) → η 6= 0. Since, D(q) is dense in Hq
there exists η0 ∈ D(q) such that q(η0−η) < q(η0). We then have that η0−ξn →
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η0 ∈ H, and by the triangle inequality, limn→∞ q(η0 − ξn) = q(η0 − η) ≤ q(η0).
Thus, the sequence η0 − ξn shows that (iii) does not hold in this case also. �

Corollary 3.1.11. Let qn : H → [0,∞) be a sequence of closed non-negative
definite quadratic forms, and assume that this sequence is increasing, i.e., qn(ξ)
is an increasing sequence for all ξ ∈ ∩n∈ND(qn). Then there exists a closed
quadratic form q : H → [0,∞) with domain

D(q) = {ξ ∈ ∩n∈ND(qn) | lim
n→∞

qn(ξ) <∞}

such that q(ξ) = limn→∞ qn(ξ), for all ξ ∈ D(q).

Proof. If we define q as above then note that since each qn satisfies the parallelo-
gram identity then so does q, and hence q has a unique sesquilinear extension on
D(q). That q is closed follows easily from condition (iii) of Theorem 3.1.10. �

3.2 Symmetric operators and extensions

Lemma 3.2.1. Let T : H → H be a densely defined operator, then T is sym-
metric if and only if 〈Tξ, ξ〉 ∈ R, for all ξ ∈ D(T ).

Proof. If T is symmetric then for all ξ ∈ D(T ) we have 〈Tξ, ξ〉 = 〈ξ, T ξ〉 =
〈Tξ, ξ〉. Conversely, if 〈Tξ, ξ〉 = 〈ξ, T ξ〉 for all ξ ∈ D(T ), then the polarization
identity shows that D(T ) ⊂ D(T ∗) and T ∗ξ = Tξ for all ξ ∈ D(T ). �

Proposition 3.2.2. Let T ∈ C(H) be a symmetric operator, then for all λ ∈ C
with =λ 6= 0, we have ker(T − λ) = {0}, and R(T − λ) is closed.

Proof. Fix α, β ∈ R with β 6= 0, and set λ = α+ iβ. For ξ ∈ D(T ) we have

‖(T − λ)ξ‖2 = ‖(T − α)ξ‖2 + ‖βξ‖2 − 2Re(〈(T − α)ξ, iβξ〉)
= ‖(T − α)ξ‖2 + ‖βξ‖2 ≥ β2‖ξ‖2. (3.1)

Thus, ker(T − λ) = {0}, and if ξn ∈ D(T ) such that (T − λ)ξn is Cauchy, then
so is ξn, and hence ξn → η for some η ∈ H. Since T is closed we have η ∈ D(T )
and (T − λ)η = limn→∞(T − λ)ξn. Hence, R(T − λ) is closed. �

Lemma 3.2.3. Let K1,K2 ⊂ H be two closed subspaces such that K1 ∩ K⊥2 =
{0}, then dimK1 ≤ dimK2.

Proof. Let Pi be the orthogonal projection onto Ki. Then by hypothesis we
have that P2 is injective when viewed as an operator from K1 to K2, hence if
we let v be the partial isometry in the polar decomposition of P2|K1

then v is
an isometry and so dimK1 ≤ dimK2. �

Theorem 3.2.4. If T ∈ C(H) is symmetric, then dim ker(T ∗−λ) is a constant
function for =λ > 0, and for =λ < 0.
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Proof. Note that the result will follow easily if we show that for all λ, α ∈ C such
that |α−λ| < |=λ|/2, then we have dim ker(T ∗−λ) = dim ker(T ∗−α). And this
in turn follows easily if we show that for all λ, α ∈ C such that |α − λ| < |=λ|,
then we have dim ker(T ∗ − α) ≤ dim ker(T ∗ − α).

Towards this end, suppose we have such α, λ ∈ C. If ξ ∈ ker(T ∗ − α) ∩
(ker(T ∗ − λ))⊥ such that ‖ξ‖ = 1, then since R(T − λ) is closed we have ξ ∈
(ker(T ∗ − λ))⊥ = R(T − λ) and so ξ = (T − λ)η for some η ∈ D(T ). Since,
ξ ∈ ker(T ∗ − α) we then have

0 = 〈(T ∗ − α)ξ, η〉 = 〈ξ, (T − λ)η〉+ 〈ξ, λ− αη〉 = ‖ξ‖2 + (λ− α)〈ξ, η〉.

Hence, 1 = ‖ξ‖2 = |λ − α||〈ξ, η〉| < |=λ|‖η‖. However, by (3.1) we have
|=λ|2‖η‖2 ≤ ‖(T − λ)η‖2 = 1, which gives a contradiction.

Thus, we conclude that ker(T ∗ − α) ∩ (ker(T ∗ − λ))⊥ = {0}, and hence
dim ker(T ∗ − α) ≤ dim ker(T ∗ − λ) by Lemma 3.2.3. �

Corollary 3.2.5. If T ∈ C(H) is symmetric, then one of the following occurs:

(i) σ(T ) = C.

(ii) σ(T ) = {λ ∈ C | =λ ≥ 0}.

(iii) σ(T ) = {λ ∈ C | =λ ≤ 0}.

(iv) σ(T ) ⊂ R.

Proof. For λ ∈ C with =λ 6= 0 then by (3.1) we have that T −λ is injective with
closed range. Thus, λ ∈ ρ(T ) if and only if T − λ is surjective, or equivalently,
if T ∗ − λ is injective. By the previous theorem if T ∗ − λ is injective for some
λ with =λ > 0, then T ∗ − λ is injective for all λ with =λ > 0. Hence, either
σ(T ) ⊂ {λ ∈ C | =λ ≤ 0} or {λ ∈ C | =λ > 0} ⊂ σ(T ).

Since σ(T ) is closed, it is then easy to see that only one of the four possibil-
ities can occur. �

Theorem 3.2.6. If T ∈ C(H) is symmetric, then the following are equivalent:

(i) T is self-adjoint.

(ii) ker(T ∗ − i) = ker(T ∗ + i) = {0}.

(iii) σ(T ) ⊂ R.

Proof. (i) =⇒ (ii) follows from Proposition 3.2.2, while (ii) ⇔ (iii) follows
from the previous corollary. To see that (ii) =⇒ (i) suppose that ker(T ∗ −
i) = ker(T ∗ + i) = {0}. Then by Proposition 3.2.2 we have that R(T + i) =
ker(T ∗ − i)⊥ = H. Thus, T + i is the only injective extension of T + i. Since
T ∗ + i is an injective extension of T + i we conclude that T ∗ + i = T + i and
hence T ∗ = T . �

The subspaces L+ = ker(T ∗ − i) = R(T + i)⊥ and L− = ker(T ∗ + i) =
R(T − i)⊥ are the deficiency subspaces of the symmetric operator T ∈ C(H),
and n± = dimL± is the deficiency indices.
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3.2.1 The Cayley transform

Recall from Section 2.6 that the Cayley transform t 7→ (t − i)(t + i)−1 and
its inverse t 7→ i(1 + t)(1 − t)−1 give a bijection between self-adjoint operators
x = x∗ ∈ B(H) and unitary operators u ∈ U(H) such that 1 6∈ σ(u). Here, we
extend this correspondence to the setting of unbounded operators.

If T ∈ C(H) is symmetric with deficiency subspaces L±, then the Cayley
transform of T is the operator U : H → H given by U|L+

= 0, and

Uξ = (T − i)(T + i)−1ξ

for all ξ ∈ L⊥+ = R(T + i). If η ∈ D(T ) then by (3.1) we have that ‖(T + i)η‖2 =
‖Tη‖2 + ‖η‖2 = ‖(T − i)η‖2, hence it follows that U is a partial isometry with
initial space L⊥+ and final space L⊥−. Moreover, if ξ ∈ D(T ) then (1−U)(T+i)ξ =
(T+i)ξ−(T−i)ξ = 2iξ. Since R(T+i) = L⊥+ it follows that (1−U)(L⊥+) = D(T )
is dense.

Conversely, if U ∈ B(H) is a partial isometry with (1 − U)(U∗UH) dense,
then we also have that (1 − U) is injective. Indeed, if ξ ∈ ker(1 − U) then
‖ξ‖ = ‖Uξ‖ so that ξ ∈ UU∗H. Hence, ξ = U∗Uξ = U∗ξ and so ξ ∈ ker(1 −
U∗) = R(1− U)⊥ = {0}.

We define the inverse Cayley transform of U to be the densely defined
operator with domain D(T ) = (1− U)(U∗UH) given by

T = i(1 + U)(1− U)−1.

Note that T is densely defined, and

G(T ) = {(1− U)ξ ⊕ i(1 + U)ξ | ξ ∈ U∗UH}.

If ξn ∈ U∗UH such that (1−U)ξn⊕ i(1 +U)ξn is Cauchy, then both (1−U)ξn
and (1 +U)ξn is Cauchy and hence so is ξn. Thus, ξn → ξ for some ξ ∈ U∗UH,
and we have (1− U)ξn ⊕ i(1 + U)ξn → (1− U)ξ ⊕ i(1 + U)ξ ∈ G(T ). Hence, T
is a closed operator.

Note also that for all ξ, ζ ∈ U∗UH we have

〈(1− U)ξ ⊕ i(1 + U)ξ,−i(1 + U)ζ ⊕ (1− U)ζ〉
= i〈(1− U)ξ, (1 + U)ζ〉+ i〈(1 + U)ξ, (1− U)ζ〉
= 2i〈ξ, ζ〉 − 2i〈Uξ, Uζ〉 = 0

Thus, by Lemma 3.1.4 we have G(T ) ⊂ J(G(T ))⊥ = G(T ∗), and hence T is
symmetric.

Theorem 3.2.7. The Cayley transform and its inverse give a bijective corre-
spondence between densely defined closed symmetric operators T ∈ C(H), and
partial isometries U ∈ B(H) such that (1 − U)(U∗UH) is dense. Moreover,
self-adjoint operators correspond to unitary operators.

Also, if S, T ∈ C(H) are symmetric, and U, V ∈ B(H) their respective Cayley
transforms then we have S v T if and only if U∗UH ⊂ V ∗VH and V ξ = Uξ
for all ξ ∈ U∗UH.
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Proof. We’ve already seen above that the Cayley transform of a densely defined
closed symmetric operator T is a partial isometry U with (1−U)(U∗UH) dense.
And conversely, the inverse Cayley transform of a partial isometry U with (1−
U)(U∗UH) dense, is a densely defined closed symmetric operator. Moreover, it
is easy to see from construction that these are inverse operations.

We also see from construction that the deficiency subspaces of T are L+ =
ker(U) and L− = ker(U∗) respectively. By Theorem 3.2.6 T is self-adjoint if
and only if L+ = L− = {0}, which is if and only if U is a unitary.

Suppose now that S, T ∈ C(H) are symmetric and U, V ∈ B(H) are the
corresponding Cayley transforms. If S v T then for all ξ ∈ D(S) ⊂ D(T ) we
have (S + i)ξ = (T + i)ξ and hence

U(S + i)ξ = (S − i)ξ = (T − i)ξ = V (S + i)ξ.

Therefore, U∗UH = R(S + i) ⊂ R(T + i) = V ∗VH and V ξ = Uξ for all
ξ ∈ U∗UH. Conversely, if U∗UH ⊂ V ∗VH and V ξ = Uξ for all ξ ∈ U∗UH,
then

D(S) = R((1− U)(U∗U)) = R((1− V )(U∗U)) ⊂ R((1− V )(V ∗V )) = D(T ),

and for all ξ ∈ U∗UH we have

S(1− U)ξ = i(1 + U)ξ = i(1 + V )ξ = T (1− V )ξ = T (1− U)ξ,

hence S v T . �

The previous theorem in particular shows us that if T ∈ C(H) is a symmetric
operator, and U its Cayley transform, then symmetric extensions of T are in
bijective correspondence with partial isometries which extend U . Since the
latter are in bijective correspondence with partial isometries from (UU∗H)⊥ to
(U∗UH)⊥, simply translating this via the inverse Cayley transform gives the
following, whose details we leave to the reader.

Theorem 3.2.8. Let T ∈ C(H) be a symmetric operator, and L± its deficiency
spaces. For each partial isometry W : L+ → L−, denote the operator TW by

D(TW ) = {ξ + η +Wη | ξ ∈ D(T ), η ∈W ∗W (L+)},

and
TW (ξ + η +Wη) = Tξ + iη − iWη.

Then TW is a symmetric extension of T with

G(T ∗W ) = G(TW ) + (L+ 	W ∗W (L+)) + (L− 	WW ∗(L−)).

Moreover, every symmetric extension arises in this way, and TW is self-adjoint
if and only if W is unitary.

Corollary 3.2.9. If T ∈ C(H) is symmetric, then T has a self-adjoint extension
if and only if n+ = n−.

Exercise 3.2.10. show that for any pair (n+, n−) ∈ (N ∪ {0} ∪ {∞})2 there
exists a densely defined closed symmetric operator T ∈ C(`2N) such that n+

and n− are the deficiency indices for T .
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3.3 Functional calculus for normal operators

3.3.1 Positive operators

Theorem 3.3.1. Suppose T ∈ C(H,K), then

(i) T ∗T is densely defined and σ(T ∗T ) ⊂ [0,∞).

(ii) T ∗T is self-adjoint.

(iii) D(T ∗T ) is a core for T .

Proof. We first show that 1+T ∗T is onto and injective. Since K⊕H ∼= JG(T )⊕
G(T ∗), if ξ ∈ H then there exists η ∈ H, ζ ∈ K such that

0⊕ ξ = −Tη ⊕ η + ζ ⊕ T ∗ζ.

Hence, ζ = Tη and ξ = η + T ∗ζ = (1 + T ∗T )η, showing that (1 + T ∗T ) is onto.

If ξ ∈ D(T ∗T ) then

‖ξ + T ∗Tξ‖2 = ‖ξ‖2 + 2‖Tξ‖2 + ‖T ∗Tξ‖2.

Hence, we see that 1 + T ∗T is injective.

To see that T ∗T is densely defined suppose that ξ ∈ (D(T ∗T ))⊥. Since
(1+T ∗T ) is onto we can write ξ = η+T ∗Tη for some η ∈ H. For all ζ ∈ D(T ∗T )
we then have

0 = 〈(1 + T ∗T )η, ζ〉 = 〈η, (1 + T ∗T )ζ〉.

Since (1 + T ∗T ) is onto we then have η = 0 and hence ξ = 0.

Thus, T ∗T is densely defined and by multiplying by scalars we see that
(−∞, 0) ⊂ ρ(T ). If ξ = (1 + T ∗T )η for η ∈ D(T ∗T ) then we have

〈(1 + T ∗T )−1ξ, ξ〉 = 〈η, (1 + T ∗T )η〉 = ‖η‖2 + ‖Tη‖2 ≥ 0.

Thus (1 +T ∗T )−1 ≥ 0 and hence it follows from Lemma 3.1.8 that 1 +T ∗T and
hence also T ∗T is self-adjoint. By Theorem 3.2.6 this shows that σ(T ∗T ) ⊂ R,
and hence σ(T ∗T ) ⊂ [0,∞).

Finally, to see that D(T ∗T ) is a core for T consider ξ⊕Tξ ∈ G(T ) such that
ξ ⊕ Tξ ⊥ {η ⊕ Tη | η ∈ D(T ∗T )}. Then for all η ∈ D(T ∗T ) we have

0 = 〈ξ ⊕ Tξ, η ⊕ Tη〉 = 〈ξ, η〉+ 〈Tξ, Tη〉 = 〈ξ, (1 + T ∗T )η〉.

Since (1 + T ∗T ) is onto, this shows that ξ = 0. �

An operator T ∈ C(H) is positive if T = S∗S for some densely defined
closed operator S : H → H.
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3.3.2 Borel functional calculus

Suppose K is a locally compact Hausdorff space, and E is a spectral measure
on K relative to H. We let B(K) denote the space of Borel functions on K.
For each f ∈ B(K) we define a linear operator T =

∫
f dE by setting

D(T ) = {ξ ∈ H | η 7→
∫
f dEξ,η is bounded.},

and letting Tξ be the unique vector such that
∫
f dEξ,η = 〈Tξ, η〉, for all η ∈ H.

If B ⊂ K is any Borel set such that f|B is bounded, then we have for all ξ, η ∈
H we have that 1BEξ,η = EE(B)ξ,η and hence |

∫
f dEE(B)ξ,η| = |

∫
f|B dEξ,η| ≤

‖f|B‖∞‖ξ‖‖η‖, and so E(B)H ⊂ D(T ). Taking Bn = {x ∈ K | |f(x)| ≤ n} we
then have that ∪n∈NE(Bn)H ⊂ D(T ) and this is dense since E(Bn) converges
strongly to 1. Thus T is densely defined.

If S =
∫
f dE, then for all ξ ∈ D(T ) and η ∈ D(S) we have

〈Tξ, η〉 =

∫
f dEξ,η =

∫
f dEη,ξ = 〈Sη, ξ〉 = 〈ξ, Sη〉.

A similar argument shows that D(T ∗) ⊂ D(S), so that in fact we have S = T ∗

and T ∗ = S. In particular, T is a closed operator, and is self-adjoint if f is real
valued. It is equally easy to see that T ∗T = TT ∗ =

∫
|f |2 dE.

If T : H → K is a closed operator, then a subspace D ⊂ D(T ) is a core for
T if G(T ) = G(T|D).

It is easy to see that if f, g ∈ B(K) then
∫
f dE +

∫
g dE v

∫
(f + g) dE,

and (
∫
f dE)(

∫
g dE) v

∫
fg dE, and in both cases the domains on the left are

cores for the operators on the right. A similar result holds when considering
more than two functions. In particular, on the set of all operators of the form∫
f dE we may consider the operations +̂, and ◦̂ given by S+̂T = S + T , and

S◦̂T = S ◦ T , and under these operations we have that f 7→
∫
f dE is a unital

∗-homomorphism from B(K) into C(H).
We also note that σ(

∫
f dE) is contained in the range of f , for each f ∈

B(K).
An operator T ∈ C(H) is normal if T ∗T = TT ∗. Note that equality here

implies also D(T ∗T ) = D(TT ∗). We would like to associate a spectral measure
for each normal operator as we did for bounded normal operators. However,
our approach for bounded operators, Theorem 2.7.5, does not immediately apply
since we used there that a bounded normal operator generated an abelian C∗-
algebra. Our approach therefore will be to reduce the problem to the case of
bounded operators.

Lemma 3.3.2. Suppose T ∈ C(H), then R = T (1 + T ∗T )−1 and S = (1 +
T ∗T )−1 are bounded contractions. If T is normal then we have SR = RS.

Proof. If ξ ∈ H, fix η ∈ D(T ∗T ) such that (1 + T ∗T )η = ξ. Then

‖ξ‖2 = ‖(1 + T ∗T )η‖2 = ‖η‖2 + 2‖Tη‖2 + ‖T ∗Tη‖2 ≥ ‖η‖2 = ‖(1 + T ∗T )−1ξ‖2.
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Hence ‖S‖ ≤ 1. Similarly, ‖ξ‖2 ≥ ‖Tη‖2 = ‖Rξ‖2, hence also ‖R‖ ≤ 1.

Suppose now that T is normal and ξ ∈ D(T ). Since η ∈ D(T ∗T ) and
ξ = (1 + T ∗T )η ∈ D(T ) we have that Tη ∈ D(TT ∗) = D(T ∗T ). Hence,
Tξ = T (1 + T ∗T )η = (1 + TT ∗)Tη = (1 + T ∗T )Tη. Thus, STξ = TSξ for all
ξ ∈ D(T ).

Suppose now that ξ ∈ H is arbitrary. Since η ∈ D(T ∗T ) ⊂ D(T ), we have
SRξ = STη = TSη = RSξ. �

Theorem 3.3.3. Let T ∈ C(H) be a normal operator, then σ(T ) 6= ∅ and there
exists a unique spectral measure E for σ(T ) relative to H such that

T =

∫
tdE(t).

Proof. Let T ∈ C(H) be a normal operator. For each n ∈ N we denote by
Pn = 1( 1

n+1 ,
1
n ](S), where S = (1 + T ∗T )−1. Notice that since S is a positive

contraction which is injective, we have that Pn are pairwise orthogonal pro-
jections and

∑
n∈N Pn = 1, where the convergence of the sum is in the strong

operator topology. Note, also that if Hn = R(Pn) then we have BHn = Hn
and restricting B to Hn we have that 1

n+1 ≤ B|Hn
≤ 1

n . In particular, we have
that Hn ⊂ R(B) = D(T ∗T ), (1 +T ∗T ) maps Hn onto itself for each n ∈ N, and
σ((1 + T ∗T )|Hn

) ⊂ {λ ∈ C | n ≤ |λ| ≤ n+ 1}.
By Lemma 3.3.2 C = T (1 + T ∗T )−1 commutes with B and since B is self-

adjoint we then have that C commutes with any of the spectral projections
Pn. Since we’ve already established that (1 + T ∗T ) give a bijection on Hn it
then follows that THn ⊂ Hn for all n ∈ N. Note that since T is normal, by
symmetry we also have that T ∗Hn ⊂ Hn for all n ∈ N. Hence (TPn)∗(TPn) =
Pn(T ∗T )Pn = Pn(TT ∗)Pn = (TPn)(TPn)∗ for all n ∈ N.

Let I = {n ∈ N | Pn 6= 0}, and note that I 6= ∅ since
∑
n∈I Pn = 1. For

n ∈ I, restricting to Hn, we have that TPn is a bounded normal operator with
spectrum σ(TPn) ⊂ {λ ∈ C | n − 1 ≤ |λ| ≤ n}. Let En denote the unique
spectral measure on σ(TPn) so that T|Hn

=
∫
tdEn(t).

We let E be the spectral measure on ∪n∈Iσ(TPn) = ∪n∈Iσ(TPn) which is
given by E(F ) =

∑
n∈I En(F ) for each Borel subset F ⊂ ∪n∈Iσ(TPn). Since

the En(F ) are pairwise orthogonal it is easy to see that E is indeed a spectral
measure. We set T̃ to be the operator T̃ =

∫
tdE(t).

We claim that T̃ = T . To see this, first note that if ξ ∈ Hn then T̃ ξ =
TPnξ = Tξ. Hence, T̃ and T agree on K0 = ∪n∈IHn. Since both operators are
closed, and since K0 is clearly a core for T̃ , to see that they are equal it is then
enough to show that K0 is also core for T . If we suppose that ξ ∈ D(T ∗T ),
and write ξn = Pnξ for n ∈ I, then limN→∞

∑
n≤N ξn = ξ, and setting η =
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(1 + T ∗T )ξ we have∑
n∈I
‖Tξn‖2 =

∑
n∈I
〈T ∗Tξn, ξn〉

= −‖ξ‖2 +
∑
n∈I
〈(1 + T ∗T )ξn, ξn〉

≤ ‖ξ‖‖η‖ <∞.

Since T is closed we therefore have limN→∞ T (
∑
n≤N ξn) = Tξ. Thus, G(T|K0

) =

G(T|D(T∗T )) = G(T ).

Since σ(T ) = σ(T̃ ) = ∪n∈Iσ(TPn), this completes the existence part of
the proof. For the uniqueness part, if Ẽ is a spectral measure on σ(T ) such
that T =

∫
tdẼ(t) then by uniqueness of the spectral measure for bounded

normal operators it follows that for every F ⊂ σ(T ) Borel, and n ∈ I, we have
PnE(F ) = PnẼ(F ), and hence E = Ẽ. �

If T =
∫
tdE(t) as above, then for any f ∈ B(σ(T )) we define f(T ) to be

the operator f(T ) =
∫
f(t) dE(t).

Corollary 3.3.4. Let T ∈ C(H) be a normal operator. Then for any ∗-
polynomial p ∈ C[t, t∗] we have that p(T ) is densely defined and closable, and in
fact D(p(T )) is a core for T .

Proposition 3.3.5. Let T ∈ C(H) be a normal operator, and consider the
abelian von Neumann algebra W ∗(T ) = {f(T ) | f ∈ B∞(σ(T ))}′′ ⊂ B(H). If
u ∈ U(H), then u ∈ U(W ∗(T )′) if and only if uTu∗ = T .

Proof. Suppose that u ∈ U(H) and T ∈ C(H) is normal. We let E be the
spectral measure on σ(T ) such that T =

∫
tdE(t), and consider the spectral

measure Ẽ given by Ẽ(F ) = uE(F )u∗ for all F ⊂ σ(T ) Borel. We then clearly
have uTu∗ =

∫
tdẼ(t) from which the result follows easily. �

If M ⊂ B(H) is a von Neumann algebra and T : H → H is a linear operator,
then we say that T is affiliated with M and write T ηM if uTu∗ = T for all
u ∈ U(M ′), (note that this implies uD(T ) = D(T ) for all u ∈ U(M ′)). The
previous proposition shows that any normal linear operator is affiliated with an
abelian von Neumann algebra.

Corollary 3.3.6. If M ⊂ B(H) is a von Neumann algebra and T ∈ C(H) is
normal, then T ηM if and only if f(T ) ∈M for all f ∈ B∞(σ(T )).

Proposition 3.3.7. Suppose M is a von Neumann algebra and T, S : H → H
are linear operators such that T, SηM . Then TS, (T +S)ηM . Moreover, if T is
densely defined then T ∗ηM , and if S is closable then SηM .

Proof. Since T, SηM , for all u ∈ U(M ′) we have

uD(TS) = {ξ ∈ H | u∗ξ ∈ D(S), S(u∗ξ) ∈ D(T )}
= {ξ ∈ H | ξ ∈ D(S), u∗Sξ ∈ D(T )}
= {ξ ∈ H | ξ ∈ D(S), Sξ ∈ D(T )} = D(TS).
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Also, for ξ ∈ D(TS) we have u∗TSuξ = (u∗Tu)(u∗Su)ξ = TSξ, hence TSηM .
The proof that (T + S)ηM is similar.

If T is densely defined, then for all u ∈ U(M ′) we have

uD(T ∗) = {ξ ∈ H | η 7→ 〈Tη, u∗ξ〉 is bounded.}
= {ξ ∈ H | η 7→ 〈T (uη), ξ〉 is bounded.} = D(T ∗),

and for ξ ∈ D(T ∗), and η ∈ D(T ) we have 〈Tη, u∗ξ〉 = 〈Tu, ξ〉, from which it
follows that T ∗u∗η = u∗T ∗η, and hence T ∗ηM .

If S is closable, then in particular we have that uD(S) = D(S) for all
u ∈ U(M ′). Hence if p denotes the orthogonal projection onto D(S) then
p ∈ M ′′ = M , and SηpMp ⊂ B(pH). Hence, we may assume that S is densely
defined in which case we have SηM =⇒ S∗ηM =⇒ S = S∗∗ηM . �

3.3.3 Polar decomposition

For T ∈ C(H) the absolute value of T is the positive operator |T | =
√
T ∗T ∈

C(H).

Theorem 3.3.8 (Polar decomposition). Fix T ∈ C(H,K). Then D(|T |) =
D(T ), and there exists a unique partial isometry v ∈ B(H,K) such that ker(v) =
ker(T ) = ker(|T |), and T = v|T |.

Proof. By Theorem 3.3.1 we have that D(T ∗T ) is a core for both |T | and T .
We define the map V0 : G(|T ||D(T∗T )) → G(T ) by V0(ξ ⊕ |T |ξ) = ξ ⊕ Tξ.
Since, for ξ ∈ D(T ∗T ) we have ‖ξ‖2 + ‖|T |ξ‖2 = ‖ξ‖2 + ‖Tξ‖2 this shows that
V0 is isometric, and since D(T ∗T ) is a core for both |T | and T we then have
that V0 extends to an isometry from G(|T |) onto G(T ), and we have D(|T |) =
PH(G(|T |)) = PH(V G(|T |)) = PH(G(T )) = D(T ).

Moreover, this also shows that the map v0 : R(|T |) → R(T ) given by
v0(|T |ξ) = Tξ, is well defined and extends to a partial isometry v ∈ B(H,K)
such that ker(v) = R(T )⊥ = ker(T ). From the definition of v we clearly have
that T = v|T |. Uniqueness follows from the fact that any other partial isom-
etry w which satisfies T = w|T | must agree with v on R(|T |) = ker(|T |)⊥ =
ker(T )⊥. �

Proposition 3.3.9. If M ⊂ B(H) is a von Neumann algebra and T ∈ C(H)
has polar decomposition T = v|T |, then T ηM if and only if v ∈M and |T |ηM .

Proof. If T ηM , then T ∗T ηM by Proposition 3.3.7. By Corollary 3.3.6 we then
have that |T |ηM . Hence, for any u ∈ M ′ if ξ ∈ R(|T |) say ξ = |T |η for
η ∈ D(|T |) = D(T ), then uvξ = uv|T |η = uTη = Tuη = v|T |uη = vuξ, hence
v ∈M ′′ = M .

Conversely, if v ∈ M and |T |ηM , then T = (v|T |)ηM by Proposition 3.3.7.
�
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