MATH 6100 - HOMEWORK ASSIGNMENT 6

DUE WEDNESDAY, NOVEMBER 9TH BY 6:00PM

Exercise 0.1. Consider [0, 1] with the Borel σ -algebra. Let ν be counting measure and μ be Lebesgue measure on [0, 1], then there do not exist Borel measures ν_0, ν_1 on [0, 1] so that $\nu = \nu_0 + \nu_1, \nu_0 \perp \mu$, and $\nu_1 \ll \mu$.

If μ is a measure on (X, \mathcal{M}) and $f \in L^1(X, \mu)$ then we obtain a complex valued measure $f\mu$ by $(f\mu)(E) = \int_E f d\mu$.

Exercise 0.2. If $f \in L^1(X, \mu)$ then $|f\mu| = |f|\mu$, and $||f\mu|| = ||f||_1$.

We let $M_b(X)$ denote the space of all complex valued measures on (X, \mathcal{M}) .

Exercise 0.3. The map $\nu \mapsto ||\nu||$ gives a norm on $M_b(X)$, and with this norm $M_b(X)$ is a Banach space.

Exercise 0.4. In a first countable T_1 -space, singletons $\{x\}$ are G_{δ} .

Exercise 0.5. Every metric space is normal and first countable.

Exercise 0.6. A metric space is separable if and only if it is second countable.

Exercise 0.7. Let $X = \mathbb{R}$ and let \mathcal{T} be the family of all sets of the form $U \cup (V \cap \mathbb{Q})$ where U and V are open sets in the usual sense. Then \mathcal{T} gives a topology on \mathbb{R} which is Hausdorff but not regular.

Exercise 0.8. Closed subsets of a metric space are G_{δ} .

Exercise 0.9. Let (X, d) be a metric space and consider the bounded metric $d'(x, y) = \frac{d(x, y)}{1+d(x, y)}$. Then (X, d') describes the same topology on X.

A topological space is **disconnected** if there exists nonempty disjoint open sets U, V which cover X; otherwise X is connected. A subset $E \subset X$ is connected or disconnected if this is the case in the relative topology.

Exercise 0.10. (a) If $\{A_i\}_{i \in I}$ is a family of connected subsets such that $\bigcap_{i \in I} A_i \neq \emptyset$ then $\bigcup_{i \in I} A_i$ is connected.

- (b) If $A \subset X$ is connected then \overline{A} is also connected.
- (c) Every point $x \in X$ is contained in a unique maximal connected subset of X, and this subset is closed. (This is the **connected component** of x).

Exercise 0.11. The continuous image of a connected set is connected.

Date: November 8, 2016.