MATH 247 HW5

4.28. A sample of 3 items is selected at random from a box containing 20 items of which 4 are defective.
Find the expected number of defective items in the sample.

’ju/ﬁ,. Solution: Defining the random variable X as the number of defective items in the sample, X can hold
" e four values: 0, 1, 2, and 3. Thus the expected value of X is

E[X] = 0P{X = 0} + 1P{X = 1} + 2P{X = 2} + 3P{X = 3}

There are (230) possible equally-likely outcomes of selecting a group of 3 items randomly from 20. There are

(j) ways of selecting a group of 7 items from the 4 that are defective, and 3 — i items must be selected from
the remaining 16 nondefective items to fill the rest of the sample. Thus,
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Substituting the above probabilities into the first equation,

(¥) 1140
o ) _@a20) 480
PlX=1= 1(-’30) T 1140 T 1140
_o . &) _®)06) _ 96
== 2(230)1 T 1140 1140
px—g -G _ @O _ 4 y,

560 480 96 4
] = (i) * 1(1140) +2( 1140) +3(ag)

480 " 192 12
1140 T 1140 " 1140

684

E[X]=0+

The expected number of defective items in a sample of 3 items is 2
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4.30. A person tosses a fair coin until a tail appears for the first time. If the tail appears on the nth flip,

the person wins 2™ dollars. Let X denote the player’s winnings. Show that E[X] = +oco. This problem is
known as the St. Petersburg paradox.



(a) Would you be willing to pay $1 million to play this game once?
(b) Would you be willing to pay $1 million for each game if you could play for as long as you liked and
only had to settle up when you stopped playing?

Solution: As the probability of flipping n — 1 heads followed by a tail or the first appearance of tails
being on the nth flip is P{X = 2"} = ($)""1(1) = (3)™, the expected value of X
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(a) Though the expected winnings are oo, the probability of winning over $1 million is very low and the
bet risky. If X =27 > 1,000,000, then n > 20. Thus, the probability that the winnings exceed the bet of
51 million is the probability that tails first occurs on the 20th or later flip.
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Because of the (assumed)risk-averse behavior of the person offered the bet, the dollar values of possible

winnings do not accurately reflect the real value of the winnings. Each additional dollar exhibits lower utility
as compared to the previous one, so the real winnings may be better represented by a random variable such
as U = In[X).
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Then the utility of the necessary bet of $1 million dollars, that is In(1000000) is shown to be greater than
the expected value of the winnings, so the bet will not be taken.

(b) As the expected winnings of playing for m games is E[mX| = mE[X] and E[X] = +inf, E[mX] = + inf.
As the winnings increase exponentially, a single event of tails not appearing until after the 19th roll, though
unlikely, can cancel out many instances of the winnings being less than the $1 million bet, making the real
winnings positive over very long sequences of games.

4.38. If E[X] =1 and Var(X) = 5, find
(a) E[(2+ X)*;
(b) Var(4+3X).



Solution: (a)
[O E[2+ X)%) = B[X? + 4X +4]

. E[(2 + X)%] = E[X?] + E[4X] + E[4]
] € AsVar(X) = E[X? - E[X]?,
E[(2+ X)*] = Var(X) + (B[X])? 4+ 4E[X] + 4
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/ E[2+X)?] =5+ (1) +4(1) + 4
E2+X)})=5+1+4+4
E[(2+X)* =14

v

(b) As Var(X) = E[(X — E[X)),
Var(4+3X) = B[(4+3X) — E[4 +3X])?
Var(4+3X) = E[(4 + 3X) — E[4] - E[3X])?]
Var(4+3X) = E[(4+3X — 4 - 3E[X))?]
Var(4+3X) = E[(3X - 3E[X])}]
Var(4 +3X) = E[(3(X — E[X]))2]
Var(4 + 3X) = 32E[(X — E[X])*]
Var(4 +3X) = 9War(X)
Var(4+43X) =9(5)
Var(44+3X) =45

4.41. A man claims to have extrasensory perception. As a test, a fair coin is flipped 10 times and the man
is asked to predict the outcome in advance. He gets 7 out of 10 correct. What is the probability that he
would have done at least this well if he had no ESP?
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e Solution: Setting the random variable X to be equal to the number of coins correctly called by luck, the
[0 probability p of calling a single coin correctly is % as there are two ways for the coin to be called incorrectly

and two ways for it to be called correctly (one way of each for whatever the coin lands on). As guessing each
flip is a Bernoulli trial, the binomial distribution function for X with n = 10, the total number of coin flips,

and p = % is
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Tor the probability of correctly guessing 7 or more flips, :
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P{X>T7}=P{X =7} +P{X =8} + P{X =9} + P{X =10}
Pix27)= (7))@ + (§) @+ () @+ (1) 3"
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PLX 27} = (120)(3557) + (45)(557) + (10)(5557) + (1) (1p57)
Px27= 11022(21 i 1§;4 * 1(1)84 ¥ 10124
P{X>7}= 1107%

P{X>T}= 61

The probability of correctly guessing 7 or more of 10 coin flips without ESP is éj

4.TE6. Let X be such that
Pl =1}=p=1=P{X =1}
Find ¢ # 1 such that E[e*] = 1.

Solution: As the expected value of a function of a discrete random variable X equals Y f(z;)P{X = 2;},
i
¥ has as an expected value of

EM]=cP{X =1} +c*P{X =-1}

Setting this equal to 1,
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Solving this quadratic equation and disregarding the solution ¢ = 1,
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4. TE10. Let X be a binomial random variable with parameters n and p. Show that

1 B 1 — (1*P)??'+1

@5—3 E[X + 1] (n+1)p

Solution: As the expected value of a function of discrete random variable X is 3" f(z;)P{X = z;} and

the probability of the binomial random variable holding a certain value is PX =i = (?)pi(l —p)"i the

expected value of g is
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Substituting j =14+ 1,
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This can be written as the sum from 0 to n minus the j = 0 term.
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By the binomial theorem,
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4. TE15. Suppose that n independent tosses of a coin having probability p of coming up heads are made.
Show that the probability that an even number of heads results is %[1 + (¢ —p)"], where ¢ =1 — p. Do this
by proving and then utilizing the identity

n/2)
T 21 n—24 l n o n
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=0

where [12/2] is the largest integer less than or equal to n/2. Compare this exercise with Theoretical Exercise
3.5 of Chapter 3.
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Solution: Applying binomial theorem to each of the terms of the right side of the given equation,

%[(p +a)" + (g-p)" = %{TZ (Z’)p%’"“k - i: (2) ¢ (~p)™¥|
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Substitution j =n — k in the right sum,
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Thus, if j is even,
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If 7 is odd,
1
Sle+a"+(@—p)"]=0

/Ta only consider even values of j, we substitute 2¢ = j.
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As g =1—p is given, it can substituted in to obtain
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The expression on the right is the probability of fAipping 2i heads in a group of 1 tosses where 7 is an integer
between 0 and [n/2], meaning that an even number of heads appear in the n tosses. As the expression on
the right is the probability that an even number of heads occur in 7 tosses of a coin, %[1 + (g — p)™] is shown
to equal this probability



