This homework assignment covers Sections 17.1-17.4 in the book.

1. Sketch the vector field \(F(x, y) = \frac{1}{2}i + yj \).

2. Find the gradient vector field for \(f(x, y) = x^2 - y \) and sketch it.
 The gradient vector field is just \(\nabla f(x, y) = 2xi - j \).

3. Evaluate the line integral \(\int_C x \sin y \, ds \) where \(C \) is the line segment from \((0, 3)\) to \((4, 6)\).
 The curve \(C \) can be parametrized by \(r(t) = (0, 3) + t(4, 3) \) where \(0 \leq t \leq 1 \), and then we have \(||r'(t)|| = \sqrt{4^2 + 3^2} = 5 \). Hence
 \[
 \int_C x \sin y \, ds = \int_0^1 20t \sin(3 + 3t) \, dt,
 \]
 integration by parts \((u = t \text{ and } dv = \sin(3 + 3t)dt)\) then gives
 \[
 \int_0^1 20t \sin(3 + 3t) \, dt = 20\left[-\frac{1}{3}t \cos(3 + 3t) + \frac{1}{9} \sin(3 + 3t) \right]_0^1 = \frac{20}{9}(\sin 6 - 3 \cos 6 - \sin 3).
 \]

4. Evaluate the line integral \(\int_C \sin x \, dx + \cos y \, dy \), where \(C \) consists of the top half of the circle \(x^2 + y^2 = 1 \) from \((1, 0)\) to \((-1, 0)\) and the line segment from \((-1, 0)\) to \((-2, 3)\).
 If we split the curve into two parts we can find a parameterization for each part and then continue as in 3. Let’s instead use the Fundamental Theorem of Line Integrals.
 Note that \(F(x, y) = \sin xi + \cos yj \) is a conservative vector field. Indeed if \(f_x = \sin x \) then \(f = -\cos x + g(y) \) where \(g \) is a function of \(y \). Then we have \(\cos y = f_y = g'(y) \) so that \(g(y) = \sin y + K \) where \(K \) is some constant.
 In particular we have \(F = \nabla(-\cos x + \sin y) \) and hence we have
 \[
 \int_C \sin x \, dx + \cos y \, dy = \int_C \nabla f \cdot dr
 = f(-2, 3) - f(1, 0) = -\cos 2 + \sin 3 + \cos 1.
 \]

5. Evaluate the line integral \(\int_C F \cdot dr \) where \(F(x, y, z) = (x + y)i + (y - z)j + z^2k \) and \(C \) is given by the vector function \(r(t) = t^2i + t^3j + t^2k \), \(0 \leq t \leq 1 \).
 \(F \) is not a conservative vector field and so we cannot use the Fundamental Theorem of Line Integrals. We will have to compute this directly. Since \(r(t) = t^2i + t^3j + t^2k \) we have \(r'(t) = 2ti + 3t^2j + 2tk \). Therefore
 \[
 \int_C F \cdot dr = \int_0^1 F(r(t)) \cdot r'(t) \, dt
 = \int_0^1 (2t^3 + 2t^4 + 3t^5 - 3t^4 + 2t^5) \, dt
 = \int_0^1 (5t^5 - t^4 + 2t^3) \, dt
 = \frac{5}{6} - \frac{1}{5} + \frac{1}{2} = \frac{17}{15}.
 \]
6. Evaluate the line integral \(\int_C \mathbf{F} \cdot d\mathbf{r} \) where \(\mathbf{F}(x,y,z) = (2xz + y^2)i + 2xyj + (x^2 + 3z^2)k \) and \(C \) is given by \(x = t^2, y = t + 1, z = 2t - 1, 0 \leq t \leq 1 \).

If this is a conservative vector field then we have
\[
f_x = 2xz + y^2,
\]
hence \(f = x^2z + xy^2 + g(y,z) \) where \(g \) is some function. Therefore we have
\[
2xy = f_y = 2xy + \partial g/\partial y,
\]
and so \(g(y,z) = h(z) \) for some function \(h \). We then have \(f = x^2z + xy^2 + h(z) \) and so
\[
x^2 + 3z^2 = f_z = x^2 + h'(z),
\]
hence \(h(z) = z^3 + K \) for some constant \(K \).

In particular we have shown that \(\nabla(x^2z + xy^2 + z^3) \) and so by the Fundamental Theorem of Line Integrals we have
\[
\int_C \mathbf{F} \cdot d\mathbf{r} = f(1,2,1) - f(0,1,-1) = (1 + 4 + 1) - (0 + 0 - 1) = 7.
\]

7. Evaluate the line integral \(\int_C \mathbf{F} \cdot d\mathbf{r} \) where \(\mathbf{F}(x,y,z) = e^yi + xe^yj + (z + 1)e^z k \), and \(C \) is given by \(\mathbf{r}(t) = ti + t^2j + t^3k, 0 \leq t \leq 1 \).

Just as above, if \(\mathbf{F} \) is a conservative vector field then we have
\[
f_x = e^y,
\]
hence \(f = xe^y + g(y,z) \). Therefore
\[
xe^y = f_y = xe^y + \partial g/\partial y,
\]
and so \(g(y,z) = h(z) \). We then have \(f = xe^y + h(z) \) and so
\[
(z + 1)e^z = f_z = h'(z),
\]
therefore \(h(z) = ze^z + K \) and in particular we have \(\nabla(xe^y + ze^z) \) and so by the Fundamental Theorem of Line Integrals we have
\[
\int_C \mathbf{F} \cdot d\mathbf{r} = f(1,1,1) - f(0,0,0) = 2e.
\]

8. Evaluate the line integral \(\int_C \cos y \; dx + x^2 \sin y \; dy \), where \(C \) is the rectangle with vertices \((0,0) \), \((5,0) \), \((5,2) \), and \((0,2) \) oriented positively.

Let \(D \) be the region enclosed by the curve \(C \). Using Green’s Theorem we have that
\[
\int_C \cos y \; dx + x^2 \sin y \; dy = \iint_{D} (2x \sin y + \sin y) \; dA
\]
\[
= \int_{0}^{5} \int_{0}^{2} (2x + 1) \sin y \; dy \; dx = [x^2 + x]_{0}^{5}[- \cos y]_{0}^{2} = 30(1 - \cos 2).
\]

9. Evaluate the line integral \(\int_C \sin y \; dx + x \cos y \; dy \), where \(C \) is given by the ellipse \(x^2 + xy + y^2 = 1 \), oriented positively.

Let \(D \) be the region enclosed by the curve \(C \). Using Green’s Theorem we have that
\[
\int_C \sin y \; dx + x \cos y \; dy = \iint_{D} (\cos y - \cos y) \; dA = 0.
\]