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Abstract. We present a general setting to investigate Ufin-cocycle superrigidity for Gaussian
actions in terms of closable derivations on von Neumann algebras. In this setting we give
new proofs to some Ufin-cocycle superrigidity results of S. Popa and we produce new
examples of this phenomenon. We also use a result of K. R. Parthasarathy and K. Schmidt
to give a necessary cohomological condition on a group representation in order for the
resulting Gaussian action to be Ufin-cocycle superrigid.

1. Introduction
A central motivating problem in the theory of measure-preserving actions of countable
groups on probability spaces is to classify certain actions up to orbit equivalence, i.e.
isomorphism of the underlying probability spaces such that the orbits of one group are
carried onto the orbits of another. When the groups are amenable, this problem was
completely settled in the early 1980s (cf. [9, 13, 14, 23]): all free ergodic actions
of countable, discrete, amenable groups are orbit equivalent. The non-amenable case,
however, is much more complex and has recently seen a flourish of activity including
a number of striking results. We direct the reader to the survey articles [39, 49] for a
summary of these recent developments.

One breakthrough which we highlight here is Popa’s use of his deformation/rigidity
techniques in von Neumann algebras to produce rigidity results for orbit equivalence
(cf. [33, 35–38, 40, 41]). One of the seminal results using these techniques is Popa’s
cocycle superrigidity theorem [38, 40] (see also [15, 51] for more on this), which obtains
orbit equivalence superrigidity results by means of untwisting cocycles into a finite von
Neumann algebra. In order to state this result, we recall a few notions regarding groups.

A subgroup 00 ⊂ 0 is wq-normal if there exists no intermediate subgroup 00 ⊂ K ( 0

such that γ Kγ−1
∩ K is finite for all γ ∈ 0\K . If U is a class of Polish groups, then

a free, ergodic, measure-preserving action of a countable discrete group 0 on a standard
probability space (X, µ) is said to be U -cocycle superrigid if any cocycle for the action
0 y (X, µ) which is valued in a group contained in the class U must be cohomologous to
a homomorphism. Ufin is used to denote the class of Polish groups which arise as closed
subgroups of the unitary groups of II1 factors. In particular, the class of compact Polish
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groups and the class of countable discrete groups are both contained in Ufin. The notions
of wq-normality and the class Ufin are due to Popa (cf. [35, 38]).

POPA’S COCYCLE SUPERRIGIDITY THEOREM. ([38, 40] (for Bernoulli shift actions))
Let 0 be a group which contains an infinite wq-normal subgroup 00 such that the pair
(0, 00) has relative property (T), or such that 00 is the direct product of an infinite group
and a non-amenable group, and let (X0, µ0) be a standard probability space. Then the
Bernoulli shift action 0 y5g∈0(X0, µ0) is Ufin-cocycle superrigid.

The proof of this theorem uses a combination of deformation/rigidity and intertwining
techniques that were initiated in [34]. Roughly, if we are given a cocycle into a unitary
group of a II1 factor, we may consider the ‘twisted’ group algebra sitting inside the group-
measure space construction. The existence of rigidity can then be contrasted against natural
malleable deformations from the Bernoulli shift in order to locate the ‘twisted’ algebra
inside the group-measure space construction. Locating the ‘twisted’ algebra allows us to
‘untwist’ it and, in so doing, untwist the cocycle in the process.

The existence of such s-malleable deformations (introduced by Popa in [36, 37])
actually occurs in a broader setting than the (generalized) Bernoulli shifts with diffuse core,
but it was Furman [15] who first noticed that the even larger class of Gaussian actions are
also s-malleable. The class of Gaussian actions has a rich structure, owing to the fact the
every Gaussian action of a group 0 arises functorially from an orthogonal representation
of 0. The interplay between the representation theory and the ergodic theory of a group
via the Gaussian action has been fruitfully exploited in the literature (cf. the seminal works
of Connes and Weiss and of Schmidt [10, 47, 48] inter alios).

In this paper, we will explore Ufin-cocycle superrigidity within the class of Gaussian
actions. An advantage to our approach is that we develop a general framework for
investigating cocycle superrigidity of such actions by using derivations on von Neumann
algebras. The first theme we take up is the relation between the cohomology of group
representations and the cohomology of their respective Gaussian actions. Under general
assumptions, we show that cohomological information coming from the representation
can be faithfully transferred to the cohomology group of the action with coefficients in the
circle group T. As a consequence, we obtain our first result, that the cohomology of the
representation provides an obstruction to the Ufin-cocycle superrigidity of the associated
Gaussian action.

THEOREM 1.1. Let 0 be a countable discrete group and π : 0→O(K) a weakly mixing
orthogonal representation. A necessary condition for the corresponding Gaussian action
to be {T}-cocycle superrigid is that H1(0, π)= {0}.

The Bernoulli shift action of a group is precisely the Gaussian action corresponding to
the left regular representation, and the circle group T is contained in the class Ufin. When
combined with [31, Corollary 2.4], which states that for a non-amenable group vanishing of
the first `2-Betti number is equivalent to H1(0, λ)= {0}, we obtain the following corollary.

COROLLARY 1.2. Let 0 be a countable discrete group. If β(2)1 (0) 6= 0, then the Bernoulli
shift action is not Ufin-cocycle superrigid.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 16 May 2012 IP address: 129.59.223.225

On cocycle superrigidity for Gaussian actions 251

The second theme explored is the deformation/derivation duality developed by the first
author in [29]. The flexibility inherent at the infinitesimal level allows us to offer a unified
treatment of Popa’s theorem in the case of generalized Bernoulli actions and expand the
class of groups whose Bernoulli actions are known to be Ufin-cocycle superrigid. As
a partial converse to the above results, we have that an a priori stronger property than
having β(2)1 (0)= 0, L2-rigidity (see Definition 2.13) is sufficient to guarantee Ufin-cocycle
superrigidity of the Bernoulli shift. For this result, and throughout this paper, we denote
by L0 the group von Neumann algebra of 0, i.e. L0 is the smallest von Neumann algebra
in B(`20) which contains the image of the left regular representation λ : 0→ U(`20).

THEOREM 1.3. Let 0 be a countable discrete group. If L0 is L2-rigid, then the Bernoulli
shift action of 0 is Ufin-cocycle superrigid.

Examples of groups for which this holds are groups which contain an infinite normal
subgroup which has relative property (T) or is the direct product of an infinite group
and a non-amenable group, recovering Popa’s cocycle superrigidity theorem for Bernoulli
actions of these groups.

We also obtain new groups for which Popa’s theorem holds. For example, we show that
the theorem holds for any generalized wreath product A0 oX 00, where A0 is a non-trivial
abelian group and 00 does not have the Haagerup property. Also, if L3 is non-amenable
and has property Gamma of Murray and von Neumann [22], then the theorem also holds
for 3.

We remark that it is still an open question whether vanishing of the first `2-Betti number
characterizes groups whose Bernoulli actions are Ufin-cocycle superrigid. For instance, it
is still unknown for the group Z o F2, which contains an infinite normal abelian subgroup
and hence has vanishing first `2-Betti number by [5].

2. Preliminaries
We begin by reviewing the basic notions of Gaussian actions, cohomology of
representations and actions, and closable derivations. Though our treatment of the last
two topics is standard, our approach to Gaussian actions is somewhat non-standard, where
we take a more operator-algebraic approach by viewing the algebra of bounded functions
on the probability space as a von Neumann algebra acting on a symmetric Fock space. In
the non-commutative setting of free probability, this is the same as Voiculescu’s approach
in [52]. But, first, let us recall a few basic definitions and concepts which constitute the
basic language in which this paper is written. Throughout, all Hilbert spaces are assumed
to be separable.

Definition 2.1. Let π : 0→ U(H) be a unitary representation and denote by πop the
associated contragredient representation on the contragredient Hilbert space Hop of H.
We say that π :
(1) is ergodic if π has no non-zero invariant vectors;
(2) is weakly mixing if π ⊗ πop is ergodic (equivalently, π ⊗ ρop is ergodic for any

unitary 0-representation ρ);
(3) is mixing if 〈πγ (ξ), η〉 → 0 as γ →∞ for all ξ, η ∈H;
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(4) has a spectral gap if there exists K ⊂ 0, finite, and C > 0 such that

‖ξ − P(ξ)‖ ≤ C
∑
k∈K

‖πk(ξ)− ξ‖ for all ξ ∈H,

where P is the projection onto the invariant vectors;
(5) has a stable spectral gap if π ⊗ πop has a spectral gap (equivalently, π ⊗ ρop has a

spectral gap for any unitary 0-representation ρ);
(6) is amenable if π is either not weakly mixing or does not have a stable spectral gap.

Note that for an orthogonal representation π of 0 into a real Hilbert space K,
the associated unitary representation into K⊗ C is canonically isomorphic to its
contragredient. Hence, in this situation we may replace in the above definition ‘π ⊗ πop’
and ‘π ⊗ ρop’ with ‘π ⊗ π ’ and ‘π ⊗ ρ’, respectively.

Let 0 yσ (X, µ) be an action of the countable discrete group 0 by µ-preserving
automorphisms of a standard probability space (X, µ). This yields a unitary representation
πσ : 0→ U(L2

0(X, µ)) called the Koopman representation associated to σ . (Here
L2

0(X, µ) denotes the orthogonal complement in L2(X, µ) to the subspace of the constant
functions on X .) Note that the Koopman representation is the unitary representation
associated to the orthogonal representation of 0 acting on the real-valued L2-functions.
We say that the action σ is ergodic (or weakly mixing, mixing, etc.) if the Koopman
representation πσ is in the sense of the above definition. An action 0 yσ (X, µ) is
(essentially) free if, for all γ ∈ 0, γ 6= e, µ{x ∈ X : σγ (x)= x} = 0.

Given unitary representations π : 0→ U(H) and ρ : 0→ U(K), we say that π is
contained in ρ if there is a linear isometry V :H→K such that πγ = V ∗ργ V for all
γ ∈ 0. We say that π is weakly contained in ρ if for any ξ ∈H, F ⊂ 0 finite, and ε > 0,
there are ξ ′1, . . . , ξ

′
n ∈K such that∣∣∣∣〈πγ (ξ), ξ 〉 − n∑

k=1

〈ργ (ξ
′

k), ξ
′

k〉

∣∣∣∣< ε for all γ ∈ F.

Note that amenability of a representation π is equivalent to π ⊗ πop weakly containing the
trivial representation, which is equivalent with Bekka’s definition by [1, Theorem 5.1].

A finite von Neumann algebra is a von Neumann algebra, possessing a normal faithful
state τ , which is also a trace, i.e. τ(xy)= τ(yx) for all x, y ∈ M . Throughout this paper,
we will assume that a finite von Neumann algebra comes with a fixed trace, and by an inclu-
sion of finite von Neumann algebras (M, τ )⊂ (M̃, τ̃ ) we mean an inclusion M ⊂ M̃ such
that τ̃ is a trace on M̃ which agrees with τ when restricted to M . A finite von Neumann
algebra is a factor if the center consists of scalar multiples of the identity, or equivalently
if the trace is unique. A II1 factor is a finite factor which is not finite dimensional.

For a finite von Neumann algebra (M, τ ), the trace τ induces a positive-definite
sesquilinear form on M given by 〈x, y〉 = τ(y∗x). We denote by L2(M, τ ) the Hilbert
space completion of M with respect to this form. The multiplication structure on M
induces a normal M–M bimodule structure on L2(M, τ ). We denote by U(M) the group
of unitaries of M , and by (M)1 the unit ball of M with respect to the operator norm.

Associated to a measure-preserving action 0 yσ (X, µ) of a countable discrete group
0 on a probability space (X, µ) is a finite von Neumann algebra known as the group-
measure space construction [21]. Note that 0 acts on L∞(X, µ) (we will also denote this
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action by σ ) by the formula σγ ( f )= f ◦ σγ−1 and, since the action of 0 on X preserves
the measure, this action on L∞(X, µ) preserves the integral.

Consider the Hilbert space

H= `2(0, L2(X, µ))= {6γ∈0aγ uγ | aγ ∈ L2(X, µ), 6γ∈0‖aγ ‖
2
2 <∞},

where uγ denotes the function on 0 which is 1 at γ and 0 elsewhere.
On this Hilbert space, we define a convolution operation by

(6γ∈0aγ uγ ) · (6λ∈0bλuλ)=6γ,λ∈0aγ σγ (bλ)uγ λ ∈ `
1(0, L1(X, µ)).

If x ∈H is such that x · η ∈H for all η ∈H, then, by the closed graph theorem,
convolution by x describes a bounded operator on H, e.g. if γ ∈ 0, then this condition
is easily checked for uγ , and convolution by uγ gives a unitary operator. We may then
consider

L∞(X, µ)o 0 = {x ∈H | x · η ∈H ∀η ∈H} ⊂ B(H).

L∞(X, µ)o 0 is a finite von Neumann algebra which contains L∞(X, µ) as a von
Neumann subalgebra and has a faithful normal tracial state given by

τ(6γ∈0aγ uγ )=
∫

ae dµ.

If (X, µ) is a one-point probability space, then the above construction gives rise to the
group von Neumann algebra, which we will denote by L0. Note that, in general, we always
have L0 ⊂ L∞(X, µ)o 0 by considering the sums above for which aγ is constant for all
γ ∈ 0.

The connection between the group-measure space construction and orbit equivalence is
due to Singer, who showed in [50] that two free measure-preserving actions 0 y (X, µ)
and3y (Y, ν) are orbit equivalent if and only if there is an isomorphism θ : L∞(X, µ)o
0→ L∞(Y, ν)o3 such that θ(L∞(X, µ))= L∞(Y, ν).

The ‘representation theory’ of a finite von Neumann algebra is captured in the structure
of its bimodules, also called correspondences (cf. [32]). The theory of correspondences
was first developed by Connes [8].

Definition 2.2. Let (M, τ ) be a finite von Neumann algebra. An M–M Hilbert bimodule
is a Hilbert space H equipped with a representation π : M ⊗alg Mop

→ B(H) which is
normal when restricted to M and Mop. We write π(x ⊗ yop)ξ as xξ y.

An M–M Hilbert bimodule H is contained in an M–M Hilbert bimodule K if there is
a linear isometry V :H→K such that V (xξ y)= xV (ξ)y for all ξ ∈H, x, y ∈ M ; H is
weakly contained in K if for any ξ ∈H, F ⊂ M finite, and ε > 0, there exist ξ ′1, . . . , ξ

′
n ∈

K such that |〈xξ y, ξ 〉 −6n
k=1〈xξ

′

k y, ξ ′k〉|< ε for all x, y ∈ F . The trivial bimodule is the
space L2(M, τ ) with the bimodule structure induced by left and right multiplication; the
coarse bimodule is the space L2(M, τ )⊗ L2(M, τ ) with the bimodule structure induced
by left multiplication on the first factor and right multiplication on the second. The trivial
and coarse bimodules play analogous roles in the theory of M–M Hilbert bimodules to
the roles played, respectively, by the trivial and left regular representations in the theory
of unitary representations of locally compact groups. Note that an M–M correspondence
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H contains the trivial correspondence if and only if H has non-zero M-central vectors (a
vector ξ is M-central if xξ = ξ x for all x ∈ M).

Given ξ, η ∈H, note that the maps M 3 x 7→ 〈xξ, η〉, 〈ξ x, η〉 are normal linear
functionals on M . A vector ξ ∈H is called left (respectively, right) bounded if there exists
C > 0 such that for every x ∈ M , ‖xξ‖ ≤ C‖x‖2 (respectively, ‖ξ x‖ ≤ C‖x‖2). The set of
vectors which are both left- and right-bounded forms a dense subspace of H. By [32], to ξ ,
a left-bounded vector, we can associate a completely positive map φξ : M→ M such that
for all x, y ∈ M , ‖xξ y‖ = τ(x∗xφξ (yy∗))1/2. If ξ is also right bounded, then this map is
seen to naturally extend to a bounded operator φ̂ξ : L2(M, τ )→ L2(M, τ ).

Given two M–M Hilbert bimodules H and K, there is a well-defined tensor product
H⊗M K in the category of M–M Hilbert bimodules: see [32] for details.

Definition 2.3. (Compare with Definition 2.1) An M–M Hilbert bimodule is said to:
(1) be weakly mixing if H⊗M Hop does not contain the trivial M–M Hilbert bimodule;
(2) be mixing if for every sequence ui ∈ U(M) such that ui → 0, weakly, we have

lim
i→∞

sup
‖x‖≤1
〈uiξ x, η〉 = lim

i→∞
sup
‖x‖≤1
〈xξui , η〉 = 0

for all ξ, η ∈H (equivalently, φ̂ξ is a compact operator from M with the uniform
topology to L2(M, τ ), for every left-bounded vector ξ ∈H);

(3) have a spectral gap if there exist x1, . . . , xn ∈ M such that

‖ξ − P(ξ)‖ ≤
n∑

i=1

‖xiξ − ξ xi‖ for all ξ ∈H,

where P is the projection onto the central vectors;
(4) have a stable spectral gap if H⊗M Hop has a spectral gap;
(5) be amenable if it is either not weakly mixing or does not have a stable spectral gap.

If H is a mixing M-correspondence and K an arbitrary M-correspondence, then
H⊗M K (and also K⊗M H) is mixing, since φ̂ξ⊗Mη = φ̂η ◦ φ̂ξ if ξ and η are both left
and right bounded.

Let H and K be M–M correspondences, and denote by H0 and K0 the sets of
right-bounded vectors in H and K, respectively. For ξ, η ∈H0, denote by (ξ |η) the
element of M such that 〈ξ x, ηy〉 = τ(y∗(ξ |η)x) for all x, y ∈ M (by normality of the
map z 7→ 〈ξ z, η〉, there exists such a (ξ |η) ∈ L1(M, τ ); right boundedness of ξ and η
implies that (ξ |η) ∈ M). It is clear that (·|·) is a bilinear map H0 ×H0→ M such that
(ξ |ξ)≥ 0 and (ξ |ξ)= 0 if and only if ξ = 0 for all ξ ∈H0. For ξ ∈H0 and η ∈K0,
define the linear map Tξ,η :H0→Kop

0 by Tξ,η(·)= (·|ξ)ηop. It is not hard to check
that Tξ,η is bounded with ‖Tξ,η‖ ≤ ‖(ξ |ξ)‖‖(η|η)‖; hence, Tξ,η extends to a bounded
operator H→Kop. Let L2

M (H, K) be the subspace of B(H, Kop) which is the closed
span of all operators of the form Tξ,η under the Hilbert norm ‖Tξ,η‖L2

M
= τ((ξ |ξ)(η|η))1/2.

Moreover, L2
M (H, K) is equipped with a natural M–M Hilbert bimodule structure given

by (x ⊗ yop)(Tξ,η)= Txξ,yη identifying it with H⊗M Kop. Note that if T ∈ L2
M (H, K),

then (T ∗T )1/2 ∈ L2
M (H, H).
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PROPOSITION 2.4. An M–M correspondence H is weakly mixing if and only if for any
M–M correspondence K, H⊗M Kop does not contain the trivial correspondence.

Proof. The reverse implication is trivial. Conversely, suppose that there exists K such
that H⊗Kop contains an M-central vector. Identifying H⊗M Kop with L2

M (H, K), let
T ∈ L2

M (H, K) be an M-central vector. Then (T ∗T )1/2 ∈ L2
M (H, H) is an M-central

vector; hence, H is not weakly mixing. 2

2.1. Gaussian actions. Let π : 0→O(H) be an orthogonal representation of a
countable discrete group 0. The aim of this section is to describe the construction of
a measure-preserving action of 0 on a non-atomic standard probability space (X, µ)
such that H is realized as a subspace of L2

R(X, µ) and π is contained in the Koopman
representation 0 y L2

0(X, µ). The action 0 y (X, µ) is referred to as the Gaussian action
associated to π . We give an operator-algebraic alternative construction of the Gaussian
action similar to Voiculescu’s construction of free semicircular random variables.

Given a real Hilbert space H, the n-symmetric tensor H�n is the subspace of H⊗n fixed
by the action of the symmetric group Sn by permuting the indices. For ξ1, . . . , ξn ∈H, we
define their symmetric tensor product ξ1 � · · · � ξn ∈H�n to be (1/n!)

∑
σ∈Sn

ξσ(1) ⊗

· · · ⊗ ξσ(n). Denote

S(H)= C�⊕
∞⊕

n=1

(H⊗ C)�n,

with � the vacuum vector and having renormalized inner product such that ‖ξ‖2S(H)
=

n!‖ξ‖2 for ξ ∈H�n .
For ξ ∈H, let xξ be the symmetric creation operator,

xξ (�)= ξ, xξ (η1 � · · · � ηk)= ξ � η1 � · · · � ηk,

and its adjoint, ∂/∂ξ = (xξ )∗

∂

∂ξ
(�)= 0,

∂

∂ξ
(η1 � · · · � ηk)=

k∑
i=1

〈ξ, ηi 〉η1 � · · · � η̂i � · · · � ηk .

Let

s(ξ)=
1
2

(
xξ +

∂

∂ξ

)
,

and note that it is an unbounded, self-adjoint operator on S(H).
The moment generating function M(t) for the Gaussian distribution is defined to be

M(t)=
1
√

2π

∫
∞

−∞

exp(t x) exp(−x2/2) dx = exp(t2/2).

It is easy to check that if ‖ξ‖ = 1, then

〈s(ξ)n�, �〉 = M (n)(0)=
(2k)!

2kk!
if n = 2k and 0 if n is odd. Hence, s(ξ) may be regarded as a Gaussian random variable.
Note that if ξ, η ∈H, then s(ξ) and s(η) commute; moreover, if ξ ⊥ η, then

〈s(ξ)ms(η)n�, �〉 = 〈s(ξ)m�, �〉〈s(η)n�, �〉 for all m, n ∈ N;

thus, s(ξ) and s(η) are independent random variables.
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From now on, we will use the convention ξ1ξ2 · · · ξk to denote the symmetric tensor
ξ1 � ξ2 � · · · � ξk . Let 4 be a basis for H and

S(4)= {�} ∪ {s(ξ1)s(ξ2) · · · s(ξk)� : ξ1, ξ2, . . . , ξk ∈4}.

LEMMA 2.5. The set S(4) is a (non-orthonormal) basis of S(H).

Proof. We will show that ξ1 · · · ξk ∈ span(S(4)) for all ξ1, . . . , ξk ∈H. We have � ∈
span(S(4)). Also, since s(ξ)�= ξ , H⊂ span(S(4)). Now, as s(ξ1) · · · s(ξk)�=

P(ξ1, . . . , ξk) is a polynomial in ξ1, . . . , ξk of degree k with top term ξ1 · · · ξk , the result
follows by induction on k. 2

Let

u(ξ1, . . . , ξk)= exp(π is(ξ1) · · · s(ξk)) and u(ξ1, . . . , ξk)
t
= exp(π i ts(ξ1) · · · s(ξk)).

Denote by A the von Neumann algebra generated by all such u(ξ1, . . . , ξk), which is the
same as the von Neumann algebra generated by the spectral projections of the unbounded
operators s(ξ1) · · · s(ξk).

THEOREM 2.6. We have L2(A, τ )∼=S(H), and A is a maximal abelian ∗-subalgebra
of B(S(H)) with faithful trace τ = 〈·�, �〉. In particular, A is a diffuse abelian von
Neumann algebra.

Proof. By Lemma 2.5, A 7→ A� is an embedding of A into S(H). By Stone’s theorem,

lim
t→0

u(ξ1, . . . , ξk)
t
− 1

π i t
�= s(ξ1) · · · s(ξk)�;

hence, A� is dense in S(H). This implies that A is maximal abelian in B(S(H)). 2

There is a natural strongly continuous embedding O(H) ↪→ U(S(H)) given by

T 7→ T S
= 1⊕

∞⊕
n=1

T�n .

It follows that there is an embedding O(H)→ Aut(A, τ ), T 7→ σT , which can be identified
on the unitaries u(ξ1, . . . , ξk) by

σT (u(ξ1, . . . , ξk))= Ad(T S)(u(ξ1, . . . , ξk))= u(T (ξ1), . . . , T (ξk)).

Thus, for an orthogonal representation π : 0→O(H), there is a natural action σπ : 0→
Aut(A, τ ) given by

σπγ (u(ξ1, . . . , ξk))= u(πγ (ξ1), . . . , πγ (ξk))= Ad(πS
γ )(u(ξ1, . . . , ξk)).

The action σπ is the Gaussian action associated to π .
We have that ergodic properties which remain stable with respect to tensor products

transfer from π to σπ .

PROPOSITION 2.7. In particular, for a subgroup H ≤ 0, σπ |H possesses any of the
following properties if and only if π |H does:
(1) weakly mixing;
(2) mixing;
(3) stable spectral gap;
(4) being contained in a direct sum of copies of the left regular representation;
(5) being weakly contained in the left regular representation.
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For Gaussian actions, stable properties are equivalent to their ‘non-stable’ counterparts.
The following proposition serves as a prototype of such a result, showing that ergodicity
implies stable ergodicity, i.e. weakly mixing.

THEOREM 2.8. 0 yσπ (A, τ ) is ergodic if and only if π is weakly mixing.

Proof. The reverse implication follows from Proposition 2.7. Conversely, suppose that
there exists ξ ∈H⊗2 such that for all γ ∈ 0, π2

γ (ξ)= ξ . Viewing ξ as a Hilbert–Schmidt
operator on H, let |ξ | = (ξξ∗)1/2. Since the map ξ ⊗ η 7→ η ⊗ ξ is the same as taking the
adjoint of the corresponding Hilbert–Schmidt operator, we have |ξ | ∈H�2 and πγ (|ξ |)=
|ξ |. By functional calculus, there exists λ > 0 such that η = Eλ(|ξ |) 6= 0 is a finite rank
operator. Hence, η = η11 � η12 + · · · + ηn1 � ηn2 ∈H�2 with ηi1 � ηi2 ⊥ η j1 � η j2 for
i 6= j . But then u =

∏n
i=1 u(ηi1, ηi2) ∈ A, a non-trivial unitary and σπγ (u)= u. Hence,

σπ is not ergodic. 2

2.2. Cocycles from representations and from actions. Let K be a real Hilbert space and
π : 0→O(K) an orthogonal representation of a countable discrete group 0.

Definition 2.9. A 1-cocycle is a map b : 0→K satisfying the cocycle identity b(γ1γ2)=

πγ1b(γ2)+ b(γ1) for all γ1, γ2 ∈ 0. A 1-cocycle is a coboundary is there exists η ∈K such
that b(γ )= πγ η − η for all γ ∈ 0.

It is a well-known fact (cf. [2]) that a 1-cocycle b is a coboundary if and only if
supγ∈0 ‖b(γ )‖<∞. Let Z1(0, π) and B1(0, π) denote, respectively, the vector space
of all 1-cocycles and the subspace of coboundaries. The first cohomology space H1(0, π)

of the representation π is then defined to be Z1(0, π)/B1(0, π).
Let 0 yσ (X, µ) be an ergodic, measure-preserving action on a standard probability

space (X, µ) and let A be a Polish topological group.

Definition 2.10. A 1-cocycle is a measurable map c : 0 × X→ A satisfying the cocycle
identity c(γ1γ2, x)= c(γ1, σγ2(x))c(γ2, x) for all γ1, γ2 ∈ 0 and almost every x ∈ X .
A pair of 1-cocycles c1, c2 are cohomologous (written c1 ∼ c2) if there exists a measurable
map ξ : X→ A such that ξ(σγ (x))c1(γ, x)ξ(x)−1

= c2(γ, x) for all γ ∈ 0 and almost
every x ∈ X . A 1-cocycle is a coboundary if it is cohomologous to the cocycle which is
identically 1.

Let Z1(0, σ, A) and B1(0, σ, A) denote, respectively, the space of all 1-cocycles and
the subspace of coboundaries. The first cohomology space H1(0, σ, A) of the action σ
is defined to be Z1(0, σ, A)/∼. Note that if A is abelian, Z1(0, σ, A) is endowed with
a natural abelian group structure and H1(0, σ, A)= Z1(0, σ, A)/B1(0, σ, A). To any
homomorphism ρ : 0→ A we can associate a cocycle ρ̃ by ρ̃(γ, x)= ρ(γ ). Using termi-
nology developed by Popa (cf. [38]), a 1-cocycle c is said to untwist if there exists a homo-
morphism ρ : 0→ A such that c is cohomologous to ρ̃. To any 1-cocycle c ∈ Z1(0, σ, A),
we can associate two 1-cocycles c`, cr ∈ Z1(0, σ × σ, A) given by c`(γ, (x, y))=
c(γ, x) and cr (γ, (x, y))= c(γ, y). It is easy to check that c untwists only if c` is
cohomologous to cr ; if σ is weakly mixing, [38, Theorem 3.1] establishes the converse.
Note that, for brevity, we will drop the ‘1’ when discussing 1-cocycles of representations
or actions.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 16 May 2012 IP address: 129.59.223.225

258 J. Peterson and T. Sinclair

The pertinence of the 1-cohomology of group actions to ergodic theory is that it provides
a natural, and rather powerful, technical framework for the orbit equivalence theory of free
ergodic actions of countable discrete groups. We give a brief account of this connection:
details may found in, for instance, [16, 55].

Consider two free, ergodic, measure-preserving actions 0 yσ (X, µ) and3yρ (Y, ν)
of countable discrete groups 0 and3 on respective standard probability spaces (X, µ) and
(Y, ν).

Definition 2.11. The actions 0 yσ (X, µ) and 3yρ (Y, ν) are orbit equivalent if there
exists a probability space isomorphism 8 : X→ Y such that 8(0x)=38(x) for almost
every x ∈ X . The actions are conjugate if there exists an isomorphism of groups φ : 0→3

and a probability space isomorphism 8 : X→ Y such that 8(γ x)= φ(γ )8(x) for all
γ ∈ 0 and almost every x ∈ X .

It is clear that orbit equivalence is weaker than conjugacy. Given an orbit equivalence
8 from 0 y (X, µ) to 3y (Y, ν), we would like to describe how far 8 departs from
implementing a conjugacy. Since the actions are free, for almost every x ∈ X , for every
γ ∈ 0, there exists a unique λ ∈3 such that 8(γ x)= λ8(x). One can easily verify that
the map c : 0 × X→3 which selects the λ corresponding to the pair (γ, x) is almost
everywhere well defined and measurable. From the fact that 8 preserves orbits, it follows
that c is a cocycle, the Zimmer cocycle, associated to 8. It is a classical result that,
accounting for finite normal subgroups H < 0 and K <3, the Zimmer cocycle c will
untwist if and only if8 is implemented by a conjugacy; precisely, there are an isomorphism
of groups ψ : 0/H →3/K and a probability space isomorphism 9 : X→ Y such that
8(γ x) ∈ ψ(γ H)K9(x) for all γ ∈ G and for almost every x ∈ X , cf. [55].

This strategy of conceptualizing orbit equivalence theory in the broader context of
cohomology is particularly useful when one wants to show that some type of orbit
equivalence rigidity holds for an action 0 yσ (X, µ); that is, given some ‘nice’ class
of group actions L, of which, say, 3y (Y, ν) is a representative, any orbit equivalence
between 0 y (X, µ) and3y (Y, ν) is implemented by a conjugacy (of course, excepting
finite normal subgroups). To do so, it is sufficient to demonstrate that the action is
superrigid, meaning that rigidity is dependent only on the target group3 and not the action
3y (Y, ν). In practice, this amounts to showing that every cocycle c ∈ Z1(0, σ, 3)

untwists.

2.3. Closable derivations. We review here briefly some general properties of closable
derivations on a finite von Neumann algebra and set up some notation to be used in the
following. For a more detailed discussion, see [12, 28, 29] or [26].

Definition 2.12. Let (N , τ ) be a finite von Neumann algebra and H an N–N
correspondence. A derivation δ is an unbounded operator δ : L2(N , τ )→H such that
D(δ) is a ‖ · ‖2-dense ∗-subalgebra of N , and δ(xy)= xδ(y)+ δ(x)y, for each x, y ∈
D(δ). A derivation is closable if it is closable as an operator and real if H has an antilinear
involution J such that J (xξ y)= y∗J (ξ)x∗, and J (δ(z))= δ(z∗), for each x, y ∈ N ,
ξ ∈H, z ∈ D(δ).
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If δ is a closable derivation, then, by [12], D(δ) ∩ N is again a ∗-subalgebra and
δ
|D(δ∩N ) is again a derivation. We will thus use the slight abuse of notation by saying

that δ is a closed derivation.
To every closed real derivation δ : N →H, we can associate a semigroup deformation

8t
= exp(−tδ∗δ), t > 0, and a resolvent deformation ζα = (α/(α + δ∗δ))1/2, α > 0. Both

of these deformations are of unital, symmetric, completely positive maps; moreover, the
derivation δ can be recovered from these deformations [45, 46].

We also have that the deformation8t converges uniformly on (N )1 as t→ 0 if and only
if the deformation ζα converges uniformly on (N )1 as α→∞.

Definition 2.13. [29, Definition 4.1] Let (N , τ ) be a finite von Neumann algebra. N is L2-
rigid if given any inclusion (N , τ )⊂ (M, τ̃ ), and any closable real derivation δ : M→H
such that H when viewed as an N–N correspondence embeds in (L2 N ⊗ L2 N )⊕∞, we
then have that the associated deformation ζα converges uniformly to the identity in ‖ · ‖2
on the unit ball of N .

We point out here that our definition above is formally stronger than the one given
in [29]. Specifically, there it was assumed that H embedded into the coarse bimodule as an
M–M bimodule rather than an N–N bimodule. However, this extra condition was not used
in [29], and since the above definition has better stability properties (see Theorem 6.3) we
have chosen to use the same terminology.

Examples of non-amenable groups which do not give rise to L2-rigid group von
Neumann algebras are groups such that the first `2-Betti number is positive. These are,
in fact, the only known examples, and L2-rigidity should be viewed as a von Neumann
analog of vanishing first `2-Betti number.

Showing that a group von Neumann algebra is L2-rigid can be quite difficult in general,
since one has to consider derivations which may not be defined on the group algebra.
Nonetheless, there are certain situations where this can be verified.

THEOREM 2.14. [29, Corollary 4.6] Let 0 be a non-amenable countable discrete group.
If L0 is weakly rigid, non-prime, or has property (0) of Murray and von Neumann, then
L0 is L2-rigid.

We give another class of examples below (see also [25, 26] or [30]). The gap between
group von Neumann algebras which are known to be L2-rigid and groups with vanishing
first `2-Betti number is, however, quite large. For example, as we mentioned in the
introduction, the wreath product Z o F2 is a group which has vanishing first `2-Betti number
but for which it is not known whether the group von Neumann algebra is L2-rigid.

3. Deformations
In this section and §5, we will discuss the interplay between one-parameter groups of
automorphisms or, more generally, semigroups of completely positive maps of finite
factors (deformations) and their infinitesimal generators (derivations). The motivation for
studying deformations at the infinitesimal level is that it allows for the creation of other
related deformations of the algebra. And, while Popa’s deformation/rigidity machinery
requires uniform convergence of the original deformation on some target subalgebra, it is
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often more feasible to demonstrate uniform convergence of a related deformation and then
transfer those estimates back to the original.

We begin by recalling Popa’s notion of an s-malleable deformation, and give some
examples of such deformations that have appeared in the literature.

Definition 3.1. [38, Definition 4.3] Let (M, τ ) be a finite von Neumann algebra such that
(M, τ )⊂ (M̃, τ̃ ), where (M̃, τ̃ ) is another finite von Neumann algebra. A pair (α, β),
consisting of a point-wise strongly continuous one-parameter family α : R→ Aut(M̃, τ̃ )
and an involution β ∈ Aut(M̃, τ̃ ), is called an s-malleable deformation of M if:
(1) M ⊂ M̃β ;
(2) αt ◦ β = β ◦ α−t ; and
(3) α1(M)⊥ M .

3.1. Popa’s deformation. The following deformation was used by Popa in [38] to obtain
cocycle superrigidity for generalized Bernoulli actions of property (T) groups.

Let (A, τ ) be a finite diffuse abelian von Neumann algebra and u, v ∈ A ⊗ A be
generating Haar unitaries for A ⊗ 1, 1⊗ A ⊂ A ⊗ A, respectively. Set w = u∗v. Choose
h ∈ A ⊗ A self-adjoint such that exp(π ih)= w, and let wt

= exp(π i th). Since {w}′′ ⊥
A ⊗ 1, 1⊗ A, we have that for any t , wt u and wtv are again Haar unitaries. Moreover,
sincew ∈ {wt u, wtv}′′, {wt u, wtv} is a pair of generating Haar unitaries in A ⊗ A. Hence,
there is a well-defined one-parameter family α : R→ Aut(A ⊗ A, τ ⊗ τ) given by

αt (u)= w
t u, αt (v)= w

tv.

The family α, together with the automorphism β given by

β(u)= u, β(v)= u2v∗,

is seen to be an s-malleable deformation of A ⊗ 1⊂ A ⊗ A.

Definition 3.2. Let (P, τ ) be a finite von Neumann algebra and σ : 0→ Aut(P, τ ) a 0-
action. 0 yσ (P, τ ) is an s-malleable action if there exists an s-malleable deformation
(α, β) of (P, τ ) such that β and αt commute with σγ ⊗ σγ for all t ∈ R, γ ∈ 0.

For any countable discrete group there is a canonical example of an s-malleable
action, the Bernoulli shift. Let (A, τ )= (L∞(T, λ),

∫
· dλ), (X, µ)=

∏
g∈0(T, λ), and

(B, τ ′)=
⊗

γ∈0(A, τ ). The Bernoulli shift is the natural action 0 yσ (X, µ) defined by
shifting indices: σγ0((xγ )γ )= (xγ )γ0γ = (xγ−1

0 γ
)γ . Defining

α̃t ((x̃γ )γ )= (αt (x̃γ ))γ

and

β̃((x̃γ )γ )= (β(x̃γ ))γ

for (x̃γ )γ ∈ B̃ =
⊗

γ∈0(A ⊗ A)∼= B ⊗ B, we see that (α̃, β̃) is an s-malleable
deformation of B which commutes with the Bernoulli 0-action.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 16 May 2012 IP address: 129.59.223.225

On cocycle superrigidity for Gaussian actions 261

3.2. Ioana’s deformation. The deformation described below was first used by
Ioana [19] in the case when the base space is non-amenable, and later used by Chifan
and Ioana [6] in part to obtain solidity of L∞(X, µ)oσ 0, whenever L0 is solid and
0 yσ (X, µ) is the Bernoulli shift. (A finite von Neumann algebra M is solid if B ′ ∩ M
is amenable whenever B ⊂ M does not have minimal projections.) Their deformation was
inspired by the free product deformation used in [20]. A similar deformation has also been
previously used by Voiculescu in [54].

Given a finite von Neumann algebra (B, τ ), let B̃ = B ∗ LZ, the free product of the
von Neumann algebras B and LZ. If u ∈ U(LZ) is a generating Haar unitary, choose
an h ∈ LZ such that exp(π ih)= u and let ut

= exp(π i th). Define the deformation
α : R→ Aut(B̃, τ̃ ) by

αt = Ad(ut ).

Let β ∈ Aut(B̃, τ̃ ) be defined by

β|B = id and β(u)= u∗.

It is easy to check that (α, β) is an s-malleable deformation of B.
If a countable discrete group 0 acts on a countable set S, then we may consider

the generalized Bernoulli shift action of 0 on
⊗

s∈S B given by σγ (
⊗

s∈S bs)=⊗
s∈S bγ−1s . We then have

⊗
s∈S B ⊂

⊗
s∈S B̃ and (

⊗
s∈S α,

⊗
s∈S β) gives an s-

malleable deformation of
⊗

s∈S B.

3.3. Malleable deformations of Gaussian actions. We will now construct the canonical
s-malleable deformation of a Gaussian action which is given in [15, §4.3] and give
an explicit description of its associated derivation. To begin, let π : 0→O(H) be an
orthogonal representation, H̃=H⊕H, and π̃ = π ⊕ π . If σπ : 0→ Aut(A, τ ) is the
Gaussian action associated with π , then the Gaussian action associated to π̃ is naturally
identified with the action σπ ⊗ σπ on A ⊗ A. Let σ̃π = σπ ⊗ σπ .

Let J =
( 0 1
−1 0

)
, the operator which gives H̃ the structure of a complex Hilbert space, and

consider the one-parameter unitary group θt = exp((π t/2)J ). Since θt commutes with π̃ ,
there is a well-defined one-parameter group α : R→ Aut(A ⊗ A, τ ⊗ τ) which commutes
with σ̃π , namely

αt = σθt = Ad
(

exp
(
π t

2
J

)S)
.

Let ρ =
(1 0

0 −1

)
, and observe that ρ ◦ θ−t = θt ◦ ρ. Hence,

β = σρ = Ad(ρS)

conjugates αt and α−t . Finally, notice that θ1(H⊕ 0)= 0⊕H, which gives α1(A ⊗ 1)=
1⊗ A. The pair (α, β) is, thus, an s-malleable deformation of the action σπ .

Let T ∈ B(H̃) be skew adjoint. Associate to T the unbounded skew-adjoint operator
∂(T ) on S(H) defined by

∂(T )(�)= 0, ∂(T )(ξ1 · · · ξn)=

n∑
i=1

ξ1 · · · T (ξi ) · · · ξn .
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We have that if U (t)= exp(tT ) ∈O(H), then

lim
t→0

U (t)S − I

t
= ∂(T ).

Let δ : A ⊗ A→ L2(A ⊗ A) be the derivation defined by

δ(x)= [x, ∂(T )] = lim
t→0

σU (t)(x)− x

t
.

Taking T to be the operator J defined above gives us the derivation which is the
infinitesimal generator of the s-malleable deformation of the Gaussian action described
in this section. From the relation δ(·)= [ ·, ∂(J )], we see that the ∗-algebra generated by
the operators s(ξ) forms a core for δ.

Letting δ0 = δ|A⊗1, we have

8t
= exp(−tδ∗0δ0)= exp(−t E A⊗1 ◦ δ

∗δ)= exp(t E A⊗1 ◦ δ
2).

We compute

E A⊗1 ◦ δ
2(s(ξ1) · · · s(ξk))=−ks(ξ1) · · · s(ξk).

Hence,

8t (s(ξ1) · · · s(ξk))= (1− e−kt )s(�)+ e−kt s(ξ1) · · · s(ξk).

4. Cohomology of Gaussian actions
In this section, we obtain Theorem 1.1 and its corollary. We do so by using a construction
(cf. [18, 27, 48]), which, given an orthogonal representation and a cocycle, produces a
T-valued cocycle for the associated Gaussian action. We then show that these cocycles do
not untwist by applying the above deformation.

Let b : 0→H be a cocycle for an orthogonal representation π : 0→O(H) and
0 yσ (A, τ )= (L∞(X, µ),

∫
· dµ) be the Gaussian action associated to π , as described

in §2.1. Viewing H as a subset of L2
R(X, µ), Parthasarathy and Schmidt [27] constructed

the cocycle c : 0 × X→ T by the rule

c(γ, x)= exp(ib(γ−1))(x).

We write ωγ for the element of U(L∞(X, µ)) given by ωγ (x)= c(γ, γ−1x). The cocycle
identity for c then transforms to the formula ωγ1γ2 = ωγ1σγ1(ωγ2) for all γ1, γ2 ∈ 0.
Moreover, c is cohomologous to a homomorphism if and only if there is a unitary element
u ∈ U(L∞(X, µ)) such that γ 7→ uωγ σγ (u∗) is a homomorphism, i.e. each uωγ σγ (u∗) is
fixed by the action of the group.

A routine calculation shows that τ(ωγ )=
∫

c(γ, x) dµ(x)= exp(−‖b(γ )‖2/2). In
particular, this shows that the representation associated to the positive-definite function
ϕ(γ )= exp(−‖b(γ )‖2/2) is naturally isomorphic to the twisted Gaussian action ωγ σγ .

THEOREM 4.1. Using the notation above, if π : 0→O(H) is weakly mixing (so that σ is
ergodic) and if b is an unbounded cocycle, then c does not untwist.
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Proof. Since σ is ergodic, if c were to untwist then there would exist some u ∈ U(A)
such that uωγ σγ (u) ∈ T for all γ ∈ 0. It would then follow that any deformation of A
which commutes with the action of 0 must converge uniformly on the set {ωγ | γ ∈ 0}.
Indeed, this is just a consequence of the fact that completely positive deformations become
asymptotically A-bimodular.

However, if we apply the deformation αt from §3.3, then we can compute

〈α2t/π (ωγ ⊗ 1), ωγ ⊗ 1〉

= 〈exp(i(cos t)b(γ−1))⊗ exp(−i(sin t)b(γ−1)), exp(ib(γ−1))⊗ 1〉

= exp((1− cos t)2‖b(γ )‖2/2+ (sin2 t)‖b(γ )‖2/2)

= exp(−(1− cos t)‖b(γ )‖2).

This will converge uniformly for γ ∈ 0 if and only if the cocycle b is bounded and
hence the result follows. 2

COROLLARY 4.2. The exponentiation map described above induces an injective
homomorphism H1(0, π)→ H1(0, σ, T)/χ(0), where χ(0) is the character group of 0.

Proof. It is easy to see that if two cocycles in Z1(0, π) are cohomologous, then the
resulting cocycles for the Gaussian action will also be cohomologous. This shows that
the map described above is well defined.

The above theorem, together with the fact that this map is a homomorphism, shows that
this map is injective. 2

Since a non-amenable group has vanishing first `2-Betti number if and only if it has
vanishing first cohomology into its left regular representation [3, 31], we derive the
following corollary.

COROLLARY 4.3. Let 0 be a non-amenable countable discrete group and let 0 yσ

(X, µ) be the Bernoulli shift action. If β(2)1 (0) 6= 0, then H1(0, σ, T) 6= χ(0), where χ(0)
is the group of characters. In particular, 0 yσ (X, µ) is not Ufin-cocycle superrigid.

5. Derivations
In this section, we continue our investigation of deformations, but this time on the
infinitesimal level.

5.1. Derivations from s-malleable deformations. Let (M, τ ) be a finite von Neumann
algebra and let α : R→ Aut(M, τ ) be a point-wise strongly continuous one-parameter
group of automorphisms. Let δ be the infinitesimal generator of α, i.e. exp(tδ)= αt .
For f ∈ L1(R), define the bounded operator α f : M→ M by

α f (x)=
∫
∞

−∞

f (s)αs(x) ds.

It can be checked that if f ∈ C1(R) ∩ L1(R) and f ′ ∈ L1(R), then

δ ◦ α f (x)=−α f ′(x).
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Also, if x ∈ M ∩ D(δ), then we have

αt (x)− x =
∫ t

0
δ◦, αs(x) ds =

∫ t

0
αs(δ(x)) ds.

THEOREM 5.1. Suppose that for every ε > 0, there exists f ∈ C1(R) ∩ L1(R) such that
f ′ ∈ L1(R) and supx∈(M)1 ‖α f (x)− x‖2 ≤ ε/4. Then αt converges ‖ · ‖2-uniformly to the
identity on (M)1 as t→ 0.

Proof. We need only show for every ε > 0 that there exists some η > 0 such that for all
t < η, supx∈(M)1 ‖αt (x)− x‖2 ≤ ε. Let x̃ = α f (x). We have ‖αt (x)− x‖2 ≤ ‖αt (x̃)−
x̃‖2 + ε/2. Since δ ◦ α f is defined everywhere, δ ◦ α f : M→ L2(M, τ ) is bounded.
In fact, ‖δ ◦ α f ‖ ≤ ‖ f ′‖L1 . Now, since x̃ ∈ D(δ), we have αt (x̃)− x̃ =

∫ t
0 αs(δ(x̃)) ds.

Hence, ‖αt (x̃)− x̃‖2 ≤ t‖ f ′‖L1 . Choosing η = ε(2‖ f ′‖L1)−1 does the job. 2

COROLLARY 5.2. If ϕt = exp(−tδ∗δ) converges uniformly to the identity as t→ 0, then
so does αt .

Proof. Let ft (s)= (1/
√

4π t) exp(−s2/4t); then ϕt (x)=
∫
∞

−∞
ft (s)αs(x) ds follows by

completing the square. 2

5.2. Tensor products of derivations. We describe here the notion of a tensor product of
derivations; see also [29, §6].

Consider Ni , i ∈ I , a family of finite von Neumann algebras with normal faithful traces
τi . If δi : Ni →Hi is a family of closable real derivations into Hilbert bimodules Hi with
domains D(δi ), then we may consider the dense ∗-subalgebra D(δ)=

⊗alg
i∈I D(δi )⊂ N =⊗

i∈I Ni .
We denote by N̂ j the tensor product of the Ni ’s obtained by omitting the j th index,

so that we have a natural identification N = N̂ j ⊗ N j for each j ∈ I . Let H=⊕
j∈I H j ⊗ L2(N̂ j ), which is naturally a Hilbert bimodule because of the identification

N = N̂ j ⊗ N j .
The tensor product of the derivations δi , i ∈ I , is defined to be the derivation δ =⊗
i∈I δi : D(δ)→H which satisfies

δ

(⊗
i∈I

xi

)
=

⊕
j∈I

(
δ j (x j )

⊗
i∈I,i 6= j

xi

)
.

This is well defined, as only finitely many of the xi ’s are not equal to 1 and hence the
right-hand side is a finite sum.

If 8t
i = exp(−tδ∗i δi ) is the semigroup deformation associated to δi , then one easily

checks that the semigroup deformation associated to δ is 8t
=
⊗

i∈I 8
t
i : N → N . A

similar formula holds for the resolvent deformation. Note that by viewing the Hilbert
bimodule associated to8t and using the usual ‘averaging trick’ (e.g. [32, Theorem 4.2]), it
follows that8t will converge uniformly in ‖ · ‖2 to the identity on (N )1 if and only if each
8i

t converges uniformly in ‖ · ‖2 to the identity on (Ni )1 and moreover this convergence is
uniform in i ∈ I .
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5.3. Derivations from generalized Bernoulli shifts. We use here the notation in §2.1
above. Given a real Hilbert space H, we consider the new Hilbert space H′ = R�0 ⊕H.
If ξ ∈H is a non-zero element, we denote by Pξ the rank-one projection onto the subspace
Rξ . We denote by H̃ the tensor product (complex) Hilbert space H⊗S(H′).

Let N ∈ N ∪ {∞} be the dimension of H and consider an orthonormal basis β = {ξn}
N
i=1

for H. We then define a left action of A, the von Neumann algebra generated by the
spectral projections of s(ξ), ξ ∈H, on H̃ such that for each ξ ∈H, s(ξ) acts on the left (as
an unbounded operator) by

`β(s(ξ))= id⊗ s(ξ).

We also define a right action of A on H̃ such that for each ξ ∈H, s(ξ) acts on the right by
extending linearly the formula

rβ(s(ξ))(ξn ⊗ η)= Pξn (ξ)⊗ S(�0)η + ξn ⊗ s(ξ − Pξn (ξ))η (1)

for each 1≤ n ≤ N , η ∈S(H′).
These formulas define unbounded self-adjoint operators on H̃ in general; however, by

functional calculus they extend to give commuting normal actions of A on H̃.
Moreover, if T ∈O(H)⊂O(H′), then we have for any ξ ∈H

`Tβ(s(T ξ))= `Tβ(σT (s(ξ)))= Ad(T ⊗ T S)`β(s(ξ)).

Also,
rTβ(s(T ξ))= rTβ(σT (s(ξ)))= Ad(T ⊗ T S)(rβ(s(ξ))).

From here on, we will denote the left action of A on H̃ by `β(a)x = a ·β x and the right
action by rβ(a)x = x ·β a. By extending the formulas above to A, we have the following
lemma.

LEMMA 5.3. Using the notation above, consider the inclusion O(H)⊂ U(H̃) given
by T 7→ T̃ = T ⊗ T S. Then, for each T ∈O(H), x, y ∈ A, and ξ̃ ∈ H̃, we have
T̃ (x ·β ξ̃ ·β y)= σT (x) ·Tβ (T̃ ξ̃ ) ·Tβ σT (y).

Remark 5.4. While we will not use this in the following, an alternate way to view the A–A
Hilbert bimodule structure on H̃ is as follows. Given our basis β = {ξn}

N
n=1 ⊂H, consider

the probability space (X, µ)=5n(R, g), where g is the Gaussian measure on R. We can
identify A = L∞(X, µ), and we denote by πn ∈ L2(X, µ) the projection onto the nth copy
of (R, g), so that the πn’s are I.I.D. Gaussian random variables.

We embed H into L2(X, µ) linearly by the map η such that η(ξn)= πn . Given an
orthogonal transformation T ∈O(H), we associate to T the unique measure-preserving
automorphism σT ∈ Aut(A) such that σT (η(ξ))= η(T ξ) for all ξ ∈H.

For each k, we denote

Ak =

(⊗
n<k

L∞(R, g)

)
⊗ (L∞(R, g)⊗ L∞(R, g))⊗

(⊗
n>k

L∞(R, g)

)
,

and we view L2(Ak) as an A–A bimodule so that

(⊗nan) · x =

(⊗
n<k

an ⊗ (ak ⊗ 1)⊗
⊗
n>k

an

)
x
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and

x · (⊗nan)= x

(⊗
n<k

an ⊗ (1⊗ ak)⊗
⊗
n>k

an

)
for x ∈ L2(Ak).

Consider the A–A Hilbert bimodule
⊕

k L2(Ak), and note that it is canonically
identified with the Hilbert space H⊗ L2(A1)∼=H⊗ L2(R, g)⊗ L2(A)∼= H̃ in a way
which preserves the A–A bimodule structure. Under this identification, the inclusion
O(H)⊂ U(H⊗ L2(R, g)⊗ L2(A)) becomes T 7→ T ⊗ id⊗ σT .

We now consider the algebra A0 ⊂ L2(A) of square summable operators generated by
s(ξ), ξ ∈H, and define a derivation δβ (compare with [53]) on A0 by setting

δβ(s(ξ))= ξ ⊗� ∈ H̃

for each ξ ∈H. Note that the formula for δβ(s(ξ)) does not depend on the basis β, but
the bimodule structure that we are imposing on H does depend on β. If ξ0, ξ1, . . . , ξk ∈ β

such that ξ0 is orthogonal to the vectors ξ1, . . . , ξk , then it follows that δβ(s(ξ1) · · · s(ξk))

is an s(ξ0)-central vector and hence by induction on k it follows that δβ is well defined.
Also, since δβ extends to a bounded operator on sp{s(ξ1) · · · s(ξk) | ξ1, . . . , ξk ∈H} for
each k, it follows that δβ is a closable operator and if we still denote by δβ the closure
of this operator we have that x 7→ ‖δβ(x)‖2 is a quantum Dirichlet form on L2(A)
(see [12, 45, 46]).

In particular, it follows from [12] that D(δβ) ∩ A is a weakly dense ∗-subalgebra and
δβ |D(δβ )∩A is a derivation.

Note that if we identify H̃ with
⊕

k L2(Ak) as above, then δβ can also be viewed as the
tensor product derivation δβ =

⊗
k δk , where δk : L2(R, g)→ L2(R, g)⊗ L2(R, g) is the

difference quotient derivation for each k, i.e. δk( f )(x, y)= ( f (x)− f (y))/(x − y).

LEMMA 5.5. Using the above notation, δβ is a densely defined closed real derivation,
s(H)⊂ D(δβ), δβ ◦ s :H→ H̃ is an isometry, and, for all T ∈O(H), σT (D(δβ))=
D(δTβ) and δTβ(σT (a))= T̃ (δβ(a)) for all a ∈ D(δβ).

Proof. The facts that s(H)⊂ D(δβ) and that δβ ◦ s is an isometry follow from the formula
δβ(s(ξ))= ξ ⊗� above.

Moreover, for ξ ∈H, we have

δTβ(σT (s(ξ)))= T ξ ⊗�= (T ⊗ T S)(ξ ⊗�)= T̃ δβ(s(ξ)).

By Lemma 5.3, this formula then extends to A0 and, since T̃ acts on H̃ unitarily and A0 is a
core for δβ , we have σT (D(δβ))= D(δTβ) and this formula remains valid for a ∈ D(δβ). 2

Given an action of a countable discrete group 0 on a countable set S, we may
consider the generalized Bernoulli shift action of 0 on (X, µ)=5s∈S(R, g) given by
γ (rs)s∈S = (rγ−1s)s∈S . If we set H= `2S and consider the corresponding representation
π : 0→ U(H), then the generalized Bernoulli shift can be viewed as the Gaussian action
corresponding to π . Moreover, we have that the canonical basis β = {δs}s∈S is invariant to
the representation, i.e. πγ β = β for all γ ∈ 0.
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In this case, by Lemma 5.5, we have that D(δβ) is σγ invariant for all γ ∈ 0 and
δβ(σγ (a))= π̃γ (δβ(a)) for all γ ∈ 0, a ∈ D(δβ), where π̃ : 0→ U(H̃) is the unitary
representation given by π̃ = π ⊗ πS. If we denote by N = A o 0 the corresponding
group-measure space construction, then, using Lemma 5.3, we may define an N–N Hilbert
bimodule structure on K = H̃⊗ `20 which satisfies

(auγ1)(ξ ⊗ δγ0)(buγ2)= (a ·β (π̃γ1ξ) ·β σγ1γ0(b))⊗ δγ1γ0γ2

for all a, b ∈ A, γ0, γ1, γ2 ∈ 0, and ξ ∈ H̃. We may then extend δβ to a closable derivation
δ : ∗-Alg(D(δβ) ∩ A, 0)→K such that δ(auγ )= δβ(a)⊗ uγ for all a ∈ D(δβ), γ ∈ 0.

As above, we denote by ζα : N → N the unital, symmetric, completely positive
resolvent maps given by ζα = (α/(α + δ∗δ))1/2 for α > 0.

Note that if M is a finite von Neumann algebra, then we let 0 act on M trivially and we
may extend the derivation δ to (A ⊗ M)o 0 ∼= (A o 0) ⊗ M by considering the tensor
product derivation of δ with the trivial derivation (identically 0) on M . In this case, the
corresponding deformation of resolvent maps is just ζα ⊗ id.

LEMMA 5.6. Consider Ioana’s deformation αt on A corresponding to a generalized
Bernoulli shift as described above in §3.2. If M is a finite von Neumann algebra and
B ⊂ (A ⊗ M)o 0 is a subalgebra such that ζα converges uniformly to the identity on
(B)1 as α→ 0, then αt converges uniformly to the identity on (B)1 as t→ 0.

Proof. The infinitesimal generator of Ioana’s deformation cannot be identified with δ,
as the αt ’s will converge uniformly on the algebra generated by s(ξ) for each ξ ∈ β,
and ζα will not have this property. However, it is not hard to check using the fact
that both derivations arise as tensor product derivations that if ζ 0

α are the resolvent
maps corresponding to the infinitesimal generator of αt , then we have the inequality
τ(ζα(a)a∗)≤ 2τ(ζ 0

α (a)a
∗) for all a ∈ A. Hence, the lemma follows from [29, Lemma 2.1]

and Corollary 5.2 above. 2

Remark 5.7. It can be shown in fact that the deformation coming from the derivation
above, Ioana’s deformation, and the s-malleable deformation from the Gaussian action are
successively weaker deformations. That is to say, one deformation converging uniformly
on a subset of the unit ball implies that the next deformation must also converge uniformly.

When we restrict the bimodule structure on K to the subalgebra L0, we see that this
is exactly the bimodule structure coming from the representation π̃ = π ⊗ πS; this gives
rise to the following lemma.

LEMMA 5.8. Using the notation above, given H < 0 we have the following:
(1) L H KL H embeds into a direct sum of coarse bimodules if and only if π|H embeds into

a direct sum of left regular representations;
(2) L H KL H weakly embeds into a direct sum of coarse bimodules if and only if π|H

weakly embeds into a direct sum of left regular representations;
(3) L H KL H has a stable spectral gap if and only if π|H has a stable spectral gap;
(4) L H KL H is a mixing correspondence if and only if π|H is a mixing representation;
(5) L H KL H is weakly mixing if and only if π|H is weakly mixing.
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6. L2-rigidity and Ufin-cocycle superrigidity
In this section, we use the tools developed above to prove Ufin-cocycle superrigidity for
the Bernoulli shift action, which we view as the Gaussian action corresponding to the left
regular representation.

To prove that a cocycle untwists, we use the same general setup as Popa in [38]. In
particular, we use the fact that for a weakly mixing action, in order to show that a cocycle
untwists it is enough to show that the corresponding s-malleable deformation converges
uniformly on the ‘twisted’ subalgebra of the crossed product algebra. The main difference
in our approach is that to show that the s-malleable deformation converges uniformly it
is enough by Lemma 5.6 to show that the deformation coming from the Bernoulli shift
derivation converges uniformly. This allows us to use the techniques developed in [26, 28–
30] to analyze the cocycle on the level of the base space itself rather than the exponential
of the space, where the properties can be somewhat hidden.

THEOREM 6.1. Let 0 be a countable discrete group. If L0 is L2-rigid, then the Bernoulli
shift action with diffuse core of 0 is Ufin-cocycle superrigid.

Proof. Let G ∈ Ufin; then G ⊂ U(M) as a closed subgroup, where M is a finite separable
von Neumann algebra. Let c : 0 × X→ G be a cocycle, where X is the probability
space of the Gaussian action. Consider A = L∞(X), and ω : 0→ U(A ⊗ M) given by
ωγ (x)= c(γ, γ−1x) the corresponding unitary cocycle for the action σ̃γ = σγ ⊗ id. Note
that ωγ1γ2 = ωγ1 σ̃γ1(ωγ2) for all γ1, γ2 ∈ 0. Here we view a unitary element in A ⊗ M as
a map from X to U(M) (see [38] for a detailed explanation).

As noted above, the Bernoulli shift action with diffuse core is precisely the Gaussian
action corresponding to the left regular representation; hence, by Lemma 5.8, we
have that as an L0–L0 Hilbert bimodule K embeds into a direct sum of coarse
correspondences. If we denote by L̃0 the von Neumann algebra generated by {ũγ } =
{ωγ uγ }, then the bimodule structure of L̃0 (∼=L0) on K is the same as the bimodule
structure of L0 on the correspondence coming from the representation γ 7→ Ad(ωγ ) ◦ π̃γ
on H̃⊗ L2 M . The A ⊗ M bimodule structure on H̃⊗ L2 M =H⊗S(H′)⊗ L2 M
decomposes as a direct sum of bimodules H⊗S(H′)⊗ L2 M =

⊕
ξ∈β S(H′)⊗ L2 M ,

where the bimodule structure on each copy of S(H′)⊗ L2 M is given by equation (1),
and under this decomposition we have Ad(ωγ ) ◦ π̃γ = πγ ⊗ (Ad(ωγ ) ◦ πS

γ ). Therefore,
by Fell’s absorption principle, this representation is an infinite direct sum of left regular
representations; hence, we have that K also embeds into a direct sum of coarse
correspondences when K is viewed as an L̃0–L̃0 Hilbert bimodule.

Since L0 is L2-rigid, we have that the corresponding deformation ζα converges
uniformly to the identity map on (L̃0)1; by Lemma 5.6, we have that a corresponding
s-malleable deformation also converges uniformly to the identity on (L̃0)1. Thus, by [38,
Theorem 3.2], the cocycle ω is cohomologous to a homomorphism. 2

We end this paper with some examples of groups for which the hypothesis of
Theorem 6.1 is satisfied.

It follows from [29] that if N is a non-amenable II1 factor which is non-prime, has
property Gamma, or is w-rigid, then N is L2-rigid. We include here another class of
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L2-rigid finite von Neumann algebras; this class includes the group von Neumann algebras
of all generalized wreath product groups A0 oX 00, where A0 is an infinite abelian group
and 00 does not have the Haagerup property, or 00 is a non-amenable direct product of
infinite groups. This is a special case of a more general result which can be found in [30].

THEOREM 6.2. Let 0 be a countable discrete group which contains an infinite normal
abelian subgroup and either does not have the Haagerup property or contains an infinite
subgroup 00 such that L00 is L2-rigid; then L0 is L2-rigid.

Proof. We will use the same notation as in [29]. Suppose that (M, τ ) is a finite von
Neumann algebra with L0 ⊂ M , and δ : M→ L2 M ⊗ L2 M is a densely defined closable
real derivation.

Since the maps ηα converge point-wise to the identity, we may take an appropriate
sequence αn such that the map φ : 0→ R given by φ(γ )=6n1− τ(ηαn (uγ )u

∗
γ ) is well

defined. If the deformation ηα does not converge uniformly on any infinite subset of 0, then
the map φ is not bounded on any infinite subset and hence defines a proper, conditionally
negative-definite function on 0, showing that 0 has the Haagerup property.

Therefore, if 0 does not have the Haagerup property, then there must exist an infinite
set X ⊂ 0 on which the deformation ηα converges uniformly. Similarly, if 00 ⊂ 0 is an
infinite subgroup such that L00 is L2-rigid, then we have that the deformation ηα converges
uniformly on the infinite set X = 00.

Let A ⊂ 0 be an infinite normal abelian subgroup. If there exists an a ∈ A such
that aX

= {xax−1
| x ∈ X} is infinite, then we have that the deformation ηα converges

uniformly on this set and, by applying the results in [29], it follows that ηα converges
uniformly on A ⊂ L A. Since A is a subgroup in U(L A) which generates L A, it then
follows that ηα converges uniformly on (L A)1 and hence also on (L0)1, since A is normal
in 0.

If a ∈ A and aX is finite, then there exists an infinite sequence γn ∈ X−1 X such that
[γn, x] = e for each n. Thus, if aX is finite for each a ∈ A, then, by taking a diagonal
subsequence, we construct a new sequence γn ∈ X−1 X such that limn→∞[γn, a] = e.
Since ηα also converges uniformly on X−1 X , we may again apply the results in [29] to
conclude that ηα converges uniformly on A and hence on (L0)1 as above. 2

It has been pointed out to us by Ioana that in light of [7, Corollary 1.3] the above
argument is sufficient to show that for a lattice 0 in a connected Lie group which does not
have the Haagerup property, we must have that L0 is L2-rigid.

We also show that L2-rigidity is stable under orbit equivalence. The proof of this uses
the diagonal embedding argument of Popa and Vaes [43].

THEOREM 6.3. Let 0i y (X i , µi ) be free ergodic measure-preserving actions for i =
1, 2. If the two actions are orbit equivalent and L01 is L2-rigid, then L02 is also L2-
rigid.

Proof. Suppose that L02 ⊂ M and δ : M→H is a closable real derivation such that H as
an L02 bimodule embeds into a direct sum of coarse bimodules. Let N = L∞(X1, µ1)o
L01 = L∞(X2, µ2)o L02 and consider the N ⊗ M bimodule H̃= L2 N ⊗ H. If we
embed N into N ⊗ M by the linear map α which satisfies α(auγ )= auγ ⊗ uγ for all
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a ∈ L∞(X2, µ2), and γ ∈ 02, then when we consider the α(N )–α(N ) bimodule H̃ we see
that this bimodule is contained in a direct sum of the bimodule L2

〈α(N ), α(L∞(X1, µ1))〉

coming from the basic construction of (α(L∞(X, µ))⊂ α(N )). Indeed, this follows
because the completely positive maps corresponding to left- and right-bounded vectors
of the form 1⊗ ξ ∈ L2 N ⊗H are easily seen to live in L2

〈α(N ), α(L∞(X1, µ1))〉.
The α(N )–α(N ) bimodule L2

〈α(N ), α(L∞(X1, µ1))〉 is an orbit equivalence invariant
and is canonically isomorphic to the bimodule coming from the left regular representation
of 01 (see for example [34, §1.1.4]). It therefore follows that H̃ when viewed as an α(L01)

bimodule embeds into a direct sum of coarse bimodules.
We consider the closable derivation 0⊗ δ : N ⊗ M→ H̃ as defined in §5.2 and use the

fact that L01 is L2-rigid to conclude that the corresponding deformation id⊗ ηα converges
uniformly on the unit ball of α(N ) (note that id⊗ ηα is the identity on α(L∞(X1, µ1))=

α(L∞(X2, µ2))). In particular, id⊗ ηα converges uniformly on {α(uγ ) | γ ∈ 02}, which
shows that ηα converges uniformly on {uγ | γ ∈ 02}. As this is a group which generates
L02, we may then use a standard averaging argument to conclude that ηα converges
uniformly on the unit ball of L02 (see for example [32, Theorem 4.1.7]). 2

Remark 6.4. The above argument will also work to show that the ‘L2-Haagerup property’
(see [29]) is preserved by orbit equivalence. In particular, this gives a new way to show
that the von Neumann algebra of a group 0 which is orbit equivalent to free groups is solid
in the sense of Ozawa [24], i.e. B ′ ∩ L0 is amenable whenever B ⊂ L0 does not have
minimal projections. Solidity of group von Neumann algebras for groups which are orbit
equivalent to free groups was first shown by Sako [44].

We also note that by [11], any group which is orbit equivalent to a free group will
have the complete metric approximation property. It will no doubt follow by using the
techniques in [26] that the von Neumann algebra of a group 0 which is orbit equivalent to
a free group will be strongly solid, i.e. NL0(B)′′ is amenable whenever B ⊂ L0 does not
have minimal projections.

Examples of groups which are orbit equivalent to a free group can be found in [4, 17].

Acknowledgements. The first author’s research is partially supported by NSF Grant
0901510 and a grant from the Alfred P. Sloan Foundation. The authors would like to
thank Sorin Popa for useful discussions regarding this work.

REFERENCES

[1] B. Bekka. Amenable unitary representations of locally compact groups. Invent. Math. 100(2) (1990),
383–401.

[2] B. Bekka, P. de la Harpe and A. Valette. Kazhdan’s Property (T) (New Mathematical Monographs, 11).
Cambridge University Press, Cambridge, 2008.

[3] M. E. B. Bekka and A. Valette. Group cohomology, harmonic functions and the first L2-Betti number.
Potential Anal. 6(4) (1997), 313–326.

[4] M. R. Bridson, M. Tweedale and H. Wilton. Limit groups, positive-genus towers and measure-
equivalence. Ergod. Th. & Dynam. Sys. 27(3) (2007), 703–712.

[5] J. Cheeger and M. Gromov. L2-cohomology and group cohomology. Topology 25(2) (1986), 189–215.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 16 May 2012 IP address: 129.59.223.225

On cocycle superrigidity for Gaussian actions 271

[6] I. Chifan and A. Ioana. Ergodic subequivalence relations induced by a Bernoulli action. Geom. Funct.
Anal. 20(1) (2010), 53–57.

[7] I. Chifan and A. Ioana. On relative property (T) and Haagerup’s property. Trans. Amer. Math. Soc. to
appear. Preprint, 2009, arXiv:0906.5363.

[8] A. Connes. Noncommutative Geometry. Academic Press, New York, 1994.
[9] A. Connes, J. Feldman and B. Weiss. An amenable equivalence relation is generated by a single

transformation. Ergod. Th. & Dynam. Sys. 1(4) (1981), 431–450.
[10] A. Connes and B. Weiss. Property (T) and asymptotically invariant sequences. Israel J. Math. 37(3)

(1980), 209–210.
[11] M. Cowling and R. J. Zimmer. Actions of lattices in Sp(1, n). Ergod. Th. & Dynam. Sys. 9(2) (1989),

221–237.
[12] E. B. Davies and J. M. Lindsay. Non-commutative symmetric Markov semigroups. Math. Z. 210 (1992),

379–411.
[13] H. A. Dye. On groups of measure preserving transformations. I. Amer. J. Math. 81 (1959), 119–159.
[14] H. A. Dye. On groups of measure preserving transformations. II. Amer. J. Math. 85 (1963), 551–576.
[15] A. Furman. On Popa’s cocycle superrigidity theorem. Int. Math. Res. Not. IMRN 19 (2007), 46.
[16] A. Furman. Orbit equivalence rigidity. Ann. of Math. (2) 150(3) (1999), 1083–1108.
[17] D. Gaboriau. Examples of groups that are measure equivalent to the free group. Ergod. Th. & Dynam.

Sys. 25(6) (2005), 1809–1827.
[18] A. Guichardet. Symmetric Hilbert Spaces and Related Topics (Lecture Notes in Mathematics, 261).

Springer, Berlin, 1972.
[19] A. Ioana. Rigidity results for wreath product II1 factors. J. Funct. Anal. 252(2) (2007), 763–791.
[20] A. Ioana, J. Peterson and S. Popa. Amalgamated free products of weakly rigid factors and calculation of

their symmetry groups. Acta Math. 200(1) (2008), 85–153.
[21] F. J. Murray and J. von Neumann. On rings of operators. Ann. of Math. (2) 37(1) (1936), 116–229.
[22] F. J. Murray and J. von Neumann. On rings of operators. IV. Ann. of Math. (2) 44 (1943), 716–808.
[23] D. S. Ornstein and B. Weiss. Ergodic theory of amenable group actions. I. The Rohlin lemma. Bull. Amer.

Math. Soc. (N.S.) 2(1) (1980), 161–164.
[24] N. Ozawa. Solid von Neumann algebras. Acta Math. 192(1) (2004), 111–117.
[25] N. Ozawa and S. Popa. On a class of II1 factors with at most one Cartan subalgebra I. Ann. of Math. (2)

172(1) (2010), 713–749.
[26] N. Ozawa and S. Popa. On a class of II1 factors with at most one Cartan subalgebra II. Amer. J. Math.

132(3) (2010), 841–866.
[27] K. R. Parthasarathy and K. Schmidt. Infinitely divisible projective representations, cocycles and Levy–

Khinchine formula on locally compact groups. Preprint, 1970, unpublished.
[28] J. Peterson. A 1-cohomology characterization of property (T) in von Neumann algebras. Pacific J. Math.

243(1) (2009), 181–199.
[29] J. Peterson. L2-rigidity in von Neumann algebras. Invent. Math. 175 (2009), 417–433.
[30] J. Peterson. Examples of group actions which are virtually W∗E-superrigid. Preprint, 2009,

arXiv:1005.0810.
[31] J. Peterson and A. Thom. Group cocycles and the ring of affiliated operators. Preprint, 2007,

arXiv:0708.4327. Invent. Math. to appear.
[32] S. Popa. Correspondences. INCREST preprint, 1986, unpublished.
[33] S. Popa. Some rigidity results for non-commutative Bernoulli shifts. J. Funct. Anal. 230(2) (2006),

273–328.
[34] S. Popa. On a class of type II1 factors with Betti numbers invariants. Ann. of Math. (2) 163(3) (2006),

809–899.
[35] S. Popa. Some computations of 1-cohomology groups and construction of non-orbit-equivalent actions.

J. Inst. Math. Jussieu 5(2) (2006), 309–332.
[36] S. Popa. Strong rigidity of II1 factors arising from malleable actions of w-rigid groups. I. Invent. Math.

165(2) (2006), 369–408.
[37] S. Popa. Strong rigidity of II1 factors arising from malleable actions of w-rigid groups. II. Invent. Math.

165(2) (2006), 409–451.
[38] S. Popa. Cocycle and orbit equivalence superrigidity for malleable actions of w-rigid groups. Invent.

Math. 170(2) (2007), 243–295.
[39] S. Popa. Deformation and rigidity for group actions and von Neumann algebras. International Congress

of Mathematicians, Vol. I. European Mathematical Society, Zürich, 2007, pp. 445–477.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 16 May 2012 IP address: 129.59.223.225

272 J. Peterson and T. Sinclair

[40] S. Popa. On the superrigidity of malleable actions with spectral gap. J. Amer. Math. Soc. 21(4) (2008),
981–1000.

[41] S. Popa and R. Sasyk. On the cohomology of Bernoulli actions. Ergod. Th. & Dynam. Sys. 27(1) (2007),
241–251.

[42] S. Popa and S. Vaes. Cocycle and orbit superrigidity for lattices in SL (n, R) acting on homogeneous
spaces. Preprint, 2008, arXiv:0810.3630, to appear in Proc. Conf. In Honor of Bob Zimmer’s 60th
Birthday, Geometry, Rigidity and Group Actions, University of Chicago, 6–9 September 2007.

[43] S. Popa and S. Vaes. Group measure space decomposition of II1 factors and W∗-superrigidity. Invent.
Math. 182(2) (2010), 371–417.

[44] H. Sako. The class S as an ME invariant. Int. Math. Res. Not. IMRN 15 (2009), 2749–2759.
[45] J.-L. Sauvageot. Tangent bimodules and locality for dissipative operators on C∗-algebras. Quantum

Probability and Applications, IV (Lecture Notes in Mathematics, 1396). Springer, Berlin, 1989,
pp. 322–338.

[46] J.-L. Sauvageot. Quantum Dirichlet forms, differential calculus and semigroups. Quantum Probability
and Applications, V (Lecture Notes in Mathematics, 1442). Springer, Berlin, 1990, pp. 334–346.

[47] K. Schmidt. Amenability, Kazhdan’s property (T), strong ergodicity and invariant means for ergodic
groups actions. Ergod. Th. & Dynam. Sys. 1 (1981), 223–236.

[48] K. Schmidt. From infinitely divisible representations to cohomological rigidity. Analysis, Geometry and
Probability (Texts and Readings in Mathematics, 10). Hindustan Book Agency, Delhi, 1996, pp. 173–197.

[49] Y. Shalom. Measurable group theory. European Congress of Mathematics (Stockholm, 2004). Ed.
A. Laptev. European Mathematical Society, Zürich, 2005, pp. 391–423.

[50] I. M. Singer. Automorphisms of finite factors. Amer. J. Math. 77 (1955), 117–133.
[51] S. Vaes. Rigidity results for Bernoulli shifts and their von Neumann algebras (after Sorin Popa).

Astèrisque 311 (2007), 237–294 [Sém. Bourbaki, Exp. No. 961].
[52] D. Voiculescu. Symmetries of some reduced free product C∗-algebras. Operator Algebras and their

Connections with Topology and Ergodic Theory (Buşteni, 1983) (Lecture Notes in Mathematics, 1132).
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