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Local similarities and the Haagerup property

Bruce Hughes�

With an appendix by Daniel S. Farley

Abstract. A new class of groups, the locally finitely determined groups of local similarities on
compact ultrametric spaces, is introduced and it is proved that these groups have the Haagerup
property (that is, they are a-T-menable in the sense of Gromov). The class includes Thompson’s
groups, which have already been shown to have the Haagerup property by D. S. Farley, as well
as many other groups acting on boundaries of trees. A sufficient condition, used in this article,
for the Haagerup property is shown in the appendix by D. S. Farley to be equivalent to the
well-known property of having a proper action on a space with walls.
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1. Introduction

This article is motivated by D. Farley’s theorem [9] that R. Thompson’s famous
infinite, finitely presented, simple group V has the Haagerup property. Farley’s result
and method are extended here to a new class of countable, discrete groups, which
includes many Thompson-like groups and groups of local similarities on locally rigid,
compact ultrametric spaces.

A countable discrete group � has the Haagerup property if there exists an isometric
action � Õ H on some affine Hilbert space H such that the action is metrically proper,
which means for every bounded subset B of H , the set fg 2 � j gB \ B ¤ ;g is
finite. The Haagerup property is also called Gromov’s a-T-menability property. We
refer to Cherix, Cowling, Jolissaint, Julg, and Valette [6] for a detailed discussion of
the Haagerup property.

One reason for interest in the Haagerup property is that Higson and Kasparov [12]
proved that the Baum–Connes conjecture with coefficients is true for groups with the
Haagerup property.

�Supported in part by NSF Grant DMS-0504176.
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The groups for which we verify the Haagerup property come with actions on com-
pact ultrametric spaces. Examples of such spaces are the end spaces, or boundaries,
of rooted, locally finite simplicial trees. See Section 2, especially Remark 2.3, for
more details.

The actions of the groups on compact ultrametric spaces are by local similarities.
There is a finiteness condition on the local restrictions of these local similarities. See
Section 3 for the precise definitions.

The following is the main result of this article.

Theorem 1.1. If � is a locally finitely determined group of local similarities on a
compact ultrametric space X , then � has the Haagerup property.

Examples of groups satisfying the hypothesis of Theorem 1.1 are given in Sec-
tion 4. These include Thompson’s groups (F , T , and V ) as well as other Thompson-
like groups. Moreover, if X is a locally rigid, compact ultrametric space, then the full
group LS.X/ of all local similarities on X is shown to satisfy the hypothesis. Such
spaces include the end spaces of rigid trees in the sense of Bass and Lubotzky [2]
with many interesting examples constructed by Bass and Kulkarni [1] and Bass and
Tits [3]. See Hughes [14] for more on locally rigid ultrametric spaces.

Theorem 1.1 is proved in Section 6 by showing that the given action of � on X

induces a zipper action of � on some set. Zipper actions are defined in Section 5.
This concept is implicit in Farley [9] and is a special case of Valette’s characterization
of the Haagerup property for countable, discrete groups [6], Proposition 7.5.1.

In the appendix, Farley provides a proof that zipper actions are equivalent to proper
actions on spaces with walls, a well-known sufficient condition for the Haagerup
property (see Cherix et al. [6], Section 1.2.7). In addition to [9], Farley has a separate
proof [8], [10], using this condition, that Thompson’s groups have the Haagerup
property. See Cherix, Martin, and Valette [7] for a characterization of the Haagerup
property for countable, discrete groups in terms of spaces of measured walls. One
should also note the similarity of zipper actions with the criterion of Sageev [20] for
a group pair to be multi-ended. Example 6.6 shows that zipper actions do not naively
lead to spaces with walls.

Acknowledgments. I have benefited from conversations with Dan Farley, Slava
Grigorchuk, Mark Sapir, Shmuel Weinberger, and Guoliang Yu.

2. Ultrametric spaces and local similarities

This section contains some background on ultrametric spaces and local similarities.

Definition 2.1. An ultrametric space is a metric space .X; d/ such that d.x; y/ �
maxfd.x; z/; d.z; y/g for all x; y; z 2 X .
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Classical examples of ultrametrics arise from p-adic norms, where p is a prime.
For example, by jxjp ´ p� maxfn2N[f0gjpn divides xg the p-adic norm j � jp on the
integers Z is defined. The corresponding metric on Z is an ultrametric. For more on
the relationship between ultrametrics and p-adics, see Robert [18].

For the purposes of this article, the most important examples of ultrametrics arise
as end spaces of trees, which are recalled in the following example.

Example 2.2. Let T be a locally finite simplicial tree; that is, T is the geometric
realization of a locally finite, one-dimensional, simply connected, simplicial complex.
There is a natural unique metric d on T such that .T; d/ is an R-tree,1 every edge is
isometric to the closed unit interval Œ0; 1�, and the distance between distinct vertices
v1, v2 is the minimum number of edges in a sequence of edges e0; e1; : : : ; en with
v1 2 e0, v2 2 en and ei \ eiC1 6D ; for 0 � i � n � 1. Whenever we refer to a
locally finite simplicial tree T , the metric d on T will be understood to be the natural
one just described. Choose a root (i.e., a base vertex) v 2 T and define the end space
of .T; v/ by

end.T; v/ D fx W Œ0; 1/ ! T j x.0/ D v and x is an isometric embeddingg:
For x; y 2 end.T; v/, define

de.x; y/ D
´

0 if x D y;

1=et0 if x 6D y and t0 D sup¹t � 0 j x.t/ D y.t/º:
It follows that .end.T; v/; de/ is a compact ultrametric space of diameter � 1.

Remark 2.3. There is a well-known relationship between trees and ultrametrics. For
example, if .X; d/ is a compact ultrametric space, then there exists a rooted, locally
finite simplicial tree .T; v/ and a homeomorphism h W Œ0; 1/ ! Œ0; 1/ such that
.X; hd/ is isometric to end.T; v/. Moreover, every compact ultrametric space .X; d/

of diameter � 1 is isometric to the endspace of a rooted, proper R-tree .T; v/, but not
necessarily one whose edges have length less than 1. See Hughes [13] and [14] for
more details and further references.

Let .X; d/ be a metric space, x 2 X , and " > 0. Then we denote by B.x; "/ D
fy 2 X j d.x; y/ < "g the open ball about x of radius ", and by xB.x; "/ D fy 2 X j
d.x; y/ � "g the closed ball about x of radius ".

In an ultrametric space, if two balls intersect, then one must contain the other.
Moreover, closed balls are open sets and open balls are closed sets. In the compact
case, there is the following result, the proof of which is elementary and is left to the
reader.

1An R-tree is a metric space .T; d/ that is uniquely arcwise connected, and for any two points x; y 2 T

the unique arc from x to y is isometric to the subinterval Œ0; d.x; y/� of R.



302 B. Hughes

Lemma 2.4. If X is a compact ultrametric space and Y � X , then the following are
equivalent:

(1) Y is open and closed.

(2) Y is a finite union of open balls in X .

(3) Y is a finite union of closed balls in X .

We conclude this section with the basic definitions concerning local similarities.

Definition 2.5. If � > 0, then a map g W X ! Y between metric spaces .X; dX / and
.Y; dY / is a �-similarity provided that dY .gx; gy/ D �dX .x; y/ for all x; y 2 X .

Definition 2.6. A homeomorphism g W X ! X between metric spaces is a local
similarity if for every x 2 X there exist r; � > 0 such that g restricts to a surjective
�-similarity gj W B.x; r/ ! B.gx; �r/.

Definition 2.7. For a metric space X , we denote by LS.X/ the group of all local
similarities from X onto X .

We will be concerned with the group LS.X/ only when X is a compact ultrametric
space. It has a natural topology (the compact-open topology), but in this article we
always endow subgroups of LS.X/ with the discrete topology.

3. Locally finitely determined groups of local similarities

In this section we introduce the groups that are the object of study in this article and
establish some of their elementary properties. Throughout this section, let X be a
compact ultrametric space with ultrametric d . The groups are defined in terms of an
extra structure on X , which we now define.

Definition 3.1. A finite similarity structure for X is a function, denoted by Sim, that
assigns to each ordered pair B1, B2 of closed balls in X a (possibly empty) finite set
Sim.B1; B2/ of surjective similarities B1 ! B2 such that whenever B1, B2, B3 are
closed balls in X , the following properties hold:

(1) (Identities) idB1
2 Sim.B1; B1/.

(2) (Inverses) If h 2 Sim.B1; B2/, then h�1 2 Sim.B2; B1/.
(3) (Compositions) If h1 2 Sim.B1; B2/ and h2 2 Sim.B2; B3/, then h2h1 2

Sim.B1; B3/.
(4) (Restrictions) If h 2 Sim.B1; B2/ and B3 � B1, then hjB3 2 Sim.B3; h.B3//.
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When it is necessary to indicate the dependence of Sim on X , the notation SimX

is used.
The word finite is used here to describe the similarity structure, not to imply that

there only finitely many similarities involved (in general, there are infinitely many),
rather to emphasize that given any two closed balls only finitely many similarities
between them are chosen by Sim.

Example 3.2. The trivial finite similarity structure on X is given by

Sim.B1; B2/ D
´

¹idB1
º if B1 D B2;

; otherwise;

for each pair of closed balls B1; B2 in X .

More examples are given in the next section.

Definition 3.3. Let B be a closed ball in X . A function g W B ! X is a local
similarity embedding if for each x 2 B there exist r; � > 0 such that xB.x; r/ � B

and gj W xB.x; r/ ! xB.gx; �r/ is a surjective �-similarity. If the choices can be made
so that gj 2 Sim. xB.x; r/; xB.gx; �r//, then g is locally determined by Sim.

Definition 3.4. A subgroup � of LS.X/ is locally determined by the finite similarity
structure Sim for X if every g 2 � is locally determined by Sim. In this case, the
group � is said to be a locally finitely determined group of local similarities on X .

Proposition 3.5. If SimX is a finite similarity structure for X , then

� ´ fg 2 LS.X/ j g is locally determined by SimXg
is the unique largest subgroup of LS.X/ that is locally determined by SimX .

Proof. The Compositions and Restrictions Properties of SimX show that � is closed
under multiplication. Likewise, the Inverses Property shows that � is closed under
inverses. Hence, � is a subgroup of LS.X/ locally determined by SimX . Clearly, any
other locally determined group of local similarities on X is a subgroup of � .

Throughout the remainder of this section, let � � LS.X/ be a group locally
determined by the finite similarity structure Sim. Recall that � is given the discrete
topology.

Definition 3.6. A region for g 2 � is a closed ball B in X such that g.B/ is a ball
and gjB 2 Sim.B; g.B//. A region B for g 2 � is a maximum region for g if it is
not properly contained in any region for g.
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Lemma 3.7. For each g 2 � and for each x 2 X there exists a unique maximum
region B for g such that x 2 B .

Proof. By definition, x is contained in some region R for g. Compactness of X

implies R is contained in only finitely many closed balls of X . Thus, there is a largest
(with respect to set inclusion) such ball B that is a region for g, and it must be a
maximum region. It is the unique maximum region for g containing x because any
two intersecting balls of X have the property that one contains the other.

It follows that for each g 2 � , the maximum regions of g form a partition of X

(that is, the maximum regions of g cover X and are mutually disjoint), and any closed
ball in X contains, or is contained in, a maximum region of g.

Definition 3.8. If g 2 � , then the maximum partition for g is the partition of X into
the maximum regions of g.

Thus, any partition of X into regions for an element g 2 � refines the maximum
partition for g.

The following lemma follows immediately from the definitions and the Inverses
Property.

Lemma 3.9. If g 2 � and R is a region for g, then g.R/ is a region for g�1. In
addition, if R is a maximum region for g, then g.R/ is a maximum region for g�1.

Lemma 3.10. Let PC and P� be two partitions of X into closed balls. The set

�.P˙/ D fg 2 � j PC is the maximum partition for g and

P� is the maximum partition for g�1g
is finite.

Proof. Say PC D fB1; : : : ; Bng where n D jPCj is the cardinality of PC. Let
Bi.PC; P�/ denote the finite set of bijections from PC to P�. For h 2 Bi.PC; P�/,
let Sh ´ Qn

iD1 Sim.Bi ; h.Bi // and note that Sh is finite. Define the finite set
F to be the disjoint union F ´ `

h2Bi.PC;P�/ Sh, which we prefer to write as
F D S

h2Bi.PC;P�/.h; Sh/. If g 2 �.P˙/, then g� 2 Bi.PC; P�/ is defined by
g�.B/ D g.B/ for all B 2 PC. Clearly, there is an injection �.P˙/ ! F given by
g 7! .g�; .gjB1; : : : ; gjBn//.

Recall that if P and Q are two collections, then P refines Q means for every
P 2 P there exists Q 2 Q such that P � Q.



Local similarities and the Haagerup property 305

Lemma 3.11. Let PC and P� be two partitions of X into closed balls. The set

�ref.P˙/ D fg 2 � j PC refines the maximum partition for g and

P� refines the maximum partition for g�1g
is finite.

Proof. Given any closed ball B in X , there exist only finitely many distinct closed balls
of X containing B . Hence, any partition of X into closed balls refines only finitely
many other partitions of X into closed balls. Thus, there exist only finitely many pairs,
say .P iC; P i�/ for i D 1; : : : ; n, of partitions of X into closed balls such that PC refines
P iC and P� refines P i� for all i D 1; : : : ; n. Clearly, �ref.P˙/ D Sn

iD1 �.P i˙/ and
the result follows from Lemma 3.10.

Lemma 3.12. � is countable.

Proof. The space X has only countably many closed balls; hence, X has only count-
ably many partitions into closed balls and only countably many pairs, say .P iC; P i�/

for i D 1; 2; 3; : : : , of partitions of X into closed balls. Clearly, � D S1
iD1 �.P i˙/

and the result follows from Lemma 3.10.

4. Examples

In this section we give examples of locally finitely determined groups of local simi-
larities on compact ultrametric spaces. The examples include Thompson’s groups so
that Farley’s result [9] is recovered from Theorem 1.1. The examples also include
many other Thompson-like groups, as well as the full local similarity groups of end
spaces of certain trees constructed by Bass and Kulkarni [1] and Bass and Tits [3].

We begin by recalling standard alphabet language and notation. An excellent
reference is Nekrashevych [16]. An alphabet is a non-empty finite set A and finite
(perhaps empty), ordered subsets of A are words. The set of all words is denoted A�
and the set of infinite words is denoted A! ; that is,

A� D
1̀

nD0

An and A! D
1Q
1

A:

Let TA be the tree associated to A. The vertices of TA are words in A; two words v,
w are connected by an edge if and only if there exists x 2 A such that v D wx or
vx D w. The root of TA is ;. Thus, A! D end.TA; ;/ and so comes with a natural
ultrametric as described in Example 2.2 making A! compact. We may assume that A

is totally ordered. There is then an induced total order on A! , namely the lexicographic
order.
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Example 4.1 (The Higman–Thompson groups Gd;1). Let � D LSlop.A!/ be the
subgroup of LS.A!/ consisting of locally order preserving local similarities on A! ,
where a map h W A! ! A! is locally order preserving if for each x 2 A! there exists
" > 0 such that hj W B.x; "/ ! A! is order preserving. We denote idA! D e; it is
the unique order preserving isometry A! ! A! . Any closed ball in A! has a unique
order preserving similarity onto A! ; hence, if B1 and B2 are two closed balls in A! ,
then there is a unique order preserving similarity of B1 onto B2. Let Sim.B1; B2/

consist solely of that unique order preserving similarity. This can be described using
alphabet language quite easily as follows. A closed ball in A! is given by vA! , where
v 2 A�. For v; w 2 A�, Sim.vA! ; wA!/ consists of the unique order preserving
similarity vA! ! wA! ; vx 7! wx. Clearly, this defines a finite similarity structure
SimA! and � is locally determined by SimA! .

When the alphabet is A D f0; 1g, we get Thompson’s group V D LSlop.A!/.
The subgroups F � T � V are also locally determined by the same finite similarity
structure SimA! (elements of T are further required to be cyclicly order preserving;
those of F , to be order preserving). In general, LSlop.A!/ is the Higman–Thompson
group Gd;1, where d D jAj. For background on these groups, see Cannon, Floyd,
and Parry [4] and for other references, see Hughes [14], Section 12.3.

Example 4.2 (Generalized Higman–Thompson groups LSlop.X/). The previous ex-
ample can easily be extended to end spaces of rooted, ordered, proper R-trees .T; v/

so that the groups LSlop.X/, where X D end.T; v/, defined in Hughes [14], Sec-
tion 12.3, become locally finitely determined groups of local similarities on X . In
particular, it is easy to see that the Higman–Thompson groups Gd;n, n � 1, fit into
this framework.

Example 4.3 (Subgroups). A subgroup H of a group � of local similarities locally
determined by the finite similarity structure Sim is also locally determined by Sim.
This is clear because Definition 3.4 is a condition on elements of � , which therefore
holds for each element of H .

Example 4.4 (Nekrashevych–Röver groups Vd .H/, H finite). Suppose that H is a
finite, self-similar group over the alphabet A, with d D jAj (see Nekrashevych [16]).
Nekrashevych [15] defines a group Vd .H/ � LS.A!/ generalizing a construction
of Röver [19]. To describe these groups note that there is a natural similarity from
A! onto any closed ball of A! ; thus, any surjective similarity h W B1 ! B2 between
closed balls gives rise to an isometry h� of A! :

h� W A! ! B1
h�! B2 ! A! :

Then an element g 2 LS.A!/ is in Vd .H/ if and only if for each x 2 A! there exists
"; � > 0 such that gj W B.x; "/ ! B.gx; �"/ is a �-similarity and .gj/� 2 H . For his
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general construction, Nekrashevych does not require H to be finite, but we require it
in order to define the following finite similarity structure on A! : if B1, B2 are closed
balls of A! , then Sim.B1; B2/ consists of all surjective similarities h W B1 ! B2 such
that h� 2 H . The Restrictions Property follows from the self-similarity property of
H . Clearly, Vd .H/ is finitely determined by SimA! .

For example, note that in the special case H D f1g, Vd .H/ D Gd;1.
For a nontrivial example, let †d be the symmetric group on A. The action of †d

on A� given by �.a1 : : : an/ D �.a1/ : : : �.an/ induces an action of †d on the tree
TA and we let H Š †d be the corresponding self-similar subgroup of Aut.TA/. Note
that Gd;1 � Vd .†d / and that � ´ Vd .†d / \ Aut.TA/ is a contracting self-similar
group with nucleus †d (see Nekrashevych [16], Section 2.11, for the definitions).

Generalizing this last observation, let � be any contracting self-similar subgroup
of Aut.TA/ whose nucleus N is a finite group (in general, contracting self-similar
groups have nuclei that are finite sets – the condition that the nucleus be a group is
quite restrictive). It follows that N is a finite self-similar group and we can form the
locally finitely determined group Vd .N /. For each pair B1; B2 of closed balls in A! ,
Sim.B1; B2/ is naturally identified with N . Note that � � Vd .N / \ Aut.TA/.

Example 4.5 (Groups acting on trees with finite vertex stabilizers). Let .T; v/ be
a geodesically complete, rooted, locally finite simplicial tree, where geodesically
complete means no vertex, except possibly the root, has valency 1. Let � be a
subgroup of the isometry group Isom.T / such that � has finite vertex stabilizers
(that is, for each vertex w 2 T , the isotropy group �w is finite). There is a well-
known homomorphism � W Isom.T / ! LS.X/, where X D end.T; v/, explicitly
described in Hughes [14], Section 12.1. We will show that �.�/ is locally finitely
determined. If B is a closed ball in X , then there exists a vertex wB 2 T such that
B D fx 2 X j x.d.v; wB// D wBg and TB D fx.t/ j x 2 B and t � d.v; wB/g is a
subtree of T with B similar to end.TB ; wB/. Define a finite similarity structure Sim
as follows. If B1; B2 are closed balls in X , let

Sim.B1; B2/ D f�.g/j W B1 ! B2 j g 2 �; g.wB1
/ D wB2

; and g.TB1
/ D TB2

g:
The finite vertex stabilizers assumption implies that Sim.B1; B2/ is finite. The other
properties of a similarity structure are easy to verify. Moreover, �.�/ is locally
determined by Sim. Note that � is an injection except when T is isometric to R. In
particular, finitely generated free groups are locally finitely determined. Of course, it
is well known that discrete groups acting on trees with finite vertex stabilizers have
the Haagerup property (see Cherix et al. [6], Section 1.2.3).

Example 4.6 (Local similarity groups of locally rigid, compact ultrametric spaces).
Let X be a locally rigid, compact ultrametric space as defined in Hughes [14]. It
is proved there that a compact ultrametric space X is locally rigid if and only if the



308 B. Hughes

isometry group Isom.X/ is finite. In particular, the isometry group of any closed ball
in X is also finite. From this it follows easily that for any two closed balls B1, B2 in
X , the set of all surjective similarities from B1 to B2 is finite. We can therefore define
a finite similarity structure Sim by letting Sim.B1; B2/ be the set of all similarities
from B1 onto B2. Then the group � D LS.X/ of all local similarities of X onto itself
is locally determined by Sim.

Example 4.7 (Local similarity groups of end spaces of rigid trees). Let T be a locally
finite simplicial tree that is rigid; that is, the group of automorphisms Aut.T / is
discrete; see Bass and Lubotzky [2]. Let X D end.T; v/, where v is a chosen vertex
of T . Assuming that .T; v/ is geodesically complete, the rigidity of T is equivalent
to local rigidity of X ; see Hughes [14], Section 12.2. Hence, � ´ LS.X/ is locally
finitely determined as described in the preceding example. An interesting source of
examples of rigid trees come from �-rigid graphs of Bass and Kulkarni [1] and Bass
and Tits [3]. These are finite, connected, simplicial graphs G with the property that
if zG is the universal covering tree of G, then Aut. zG/ D �1.G/. In particular, zG is
rigid and LS.end. zG; v// is finitely determined.

5. Zipper actions

In this section we discuss a sufficient condition, called a zipper action, for a discrete
group to have the Haagerup property. This condition is implicit in Farley [9] and is
a special case of the necessary and sufficient condition due to Valette [6], Proposi-
tion 7.5.1. Moreover, in the appendix to this article, Farley shows that zipper actions
are equivalent to proper actions on spaces of walls. Apart from the terminology, there
is nothing original in this section.

Definition 5.1. A discrete group � has a zipper action if there is a left action � Õ E

of � on a set E and a subset Z � E such that

(1) for every g 2 � , the symmetric difference gZ 4 Z is finite, and
(2) for every r > 0, fg 2 � j jgZ 4 Zj � rg is finite.

Note that if � is an infinite group then condition (2) implies Z must also be infinite.
Also, the action � Õ E is not assumed to be effective; however, condition (2) implies
that the kernel of the action is finite.

The terminology arises as follows. We think of Z as being an infinite zipper in
E that is unzipped by the action of � . Only a finite portion is unzipped by any finite
subset of � , but as one takes larger finite subsets of � , more of Z is unzipped.

Example 5.2. We show that the group Z has a zipper action. Let

E D Z and Z D fn 2 E j n � 0g:
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An action Z Õ E is defined by g � n D g C n. If g 2 Z and g � 0, then Z � gZ and
gZ 4Z D fn 2 E j 0 < n � gg. If g 2 Z and g � 0, then gZ � Z and gZ 4Z D
fn 2 E j g < n � 0g. One may say “Z is taken further off itself as g ! C1 in Z”
and “Z is taken deeper into itself as g ! �1 in Z”. Thus, jgZ 4 Zj D jgj for all
g 2 Z. If r � 0, then fg 2 Z j jgZ 4 Zj � rg D fg 2 Z j jgj � rg, which is finite.

The proof of the following theorem, which is a special case of Valette [6], Propo-
sition 7.5.1, is implicit in Farley [9], but is included for completeness.

Theorem 5.3. If the discrete group � has a zipper action, then � has the Haagerup
property.

Proof. Define � W � ! `1.E/ by �.g/ D �gZ � �Z (where �Y denotes the char-
acteristic function of Y � E). Note the following:

(1) The support of �.g/ is gZ 4 Z; hence, �.g/ is finitely supported and �.g/ is
in the Hilbert space `2.E/ for all g 2 � .

(2) The square of the `2-norm k�.g/k2
2 D jgZ 4 Zj for all g 2 � .

(3) For every r > 0, fg 2 � j k�.g/k2 � rg is finite.

The action of � on E induces a unitary left action of � on `2.E/, 	 W � !
B.`2.E//, where B.`2.E// is the space of bounded linear operators on `2.E/.
Namely, 	.g/.f /.e/ D f .g�1e/ for g 2 � , f W E ! C in `2.E/, and e 2 E .

One checks that � is a 1-cocycle for 	; that is, �.g1g2/ D 	.g1/�.g2/ C �.g1/

for all g1; g2 2 � . For this, it is useful to observe firstly that the action 	 extends to an
action O	 W � ! B.`1.E// defined by the same formula ( O	.g/.f /.e/ D f .g�1e/).
Then observe secondly that O	.g/�Y D �gY in `1.E/ for any Y � E .

It follows that A W � ! Isom.`2.E// defined by A.g/.f / D 	.g/.f / C �.g/ is
an affine isometric action of � on `2.E/. Moreover, property (3) above guarantees
that A is metrically proper.

Remark 5.4. The existence of a zipper action is preserved by direct sums of groups.
For let �i (i D 1; 2) be discrete groups having left actions �i Õ Ei and subsets
Zi � Ei as in Definition 5.1. Let � ´ �1 ˚ �2, E ´ E1 q E2, Z ´ Z1 q Z2, and
define a left action � Õ E in the obvious way: .g1; g2/ � ei D giei where ei 2 Ei

and i 2 f1; 2g. The conditions are readily checked.

6. The main construction

In this section we prove the following theorem.

Theorem 6.1. If � is a locally finitely determined group of local similarities on a
compact ultrametric space X , then � has a zipper action.
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Clearly, Theorem 1.1 follows from Theorems 5.3 and 6.1.
Throughout this section, X will denote a compact ultrametric space and � �

LS.X/ will be a group locally determined by a finite similarity structure Sim on X .
Before defining a set E with a zipper action � Õ E , note that it follows from

Lemma 2.4 that the image of a local similarity embedding f W B ! X , where B is a
closed ball in X , is a finite union of mutually disjoint closed balls in X .

Now let E be the set of equivalence classes of pairs .f; B/ where B is a closed
ball in X and f W B ! X is a local similarity embedding locally determined by Sim.
Two such .f1; B1/ and .f2; B2/ are equivalent provided there exists h 2 Sim.B1; B2/

such that f2h D f1 (in particular, f1.B1/ D f2.B2/). The verification that this is an
equivalence relation requires the Identities, Compositions, and Inverses Properties of
the similarity structure. Equivalence classes are denoted by Œf; B�.

Let Z D fŒf; B� 2 E j f .B/ is a closed ball in X and f 2 Sim.B; f .B//g.
Note that an element Œf; B� 2 Z is uniquely determined by the closed ball f .B/.

In fact, Œf; B� D Œinclf .B/; f .B/�, where inclY W Y ! X denotes the inclusion map.
Thus,

Z D fŒinclB ; B� 2 E j B is a closed ball in Xg:
In particular, Z can be identified with the collection of all closed balls in X .

There is a left action � Õ E defined by gŒf; B� D Œgf; B�. The fact that
Œgf; B� 2 E follows from the Compositions and Restrictions Properties of the simi-
larity structure.

It follows from the description of Z above that

gZ D fŒgjB ; B� 2 E j B is a closed ball of Xg
for all g 2 � .

The next part of this section is devoted to establishing, in Corollary 6.4 and
Lemma 6.5 below, the two properties required of a zipper action.

Lemma 6.2. Let B be a closed ball in X and g 2 � . Then ŒinclB ; B� 2 Z n gZ if
and only if B properly contains a maximum region of g�1.

Proof. Suppose first that ŒinclB ; B� 2 Z n gZ and, by way of contradiction, there
exists a maximum region R for g�1 containing B . Then g�1R is a ball and g�1jR 2
Sim.R; g�1R/. The Restrictions Property implies g�1jB 2 Sim.B; g�1B/ and
Œg�1jB; B� 2 Z. Clearly, ŒinclB ; B� D gŒg�1jB; B� 2 gZ, which is a contradiction.

Conversely, let R be a maximum region of g�1 properly contained in B . If
ŒinclB ; B� 2 gZ, then there is ŒinclB1

; B1� 2 Z with ŒgjB1; B1� D gŒinclB1
; B1� D

ŒinclB ; B�, which is to say g.B1/ D B . Moreover, ŒgjB1; B1� D ŒinclB ; B� implies
that gj W B1 ! B is in Sim.B1; B/. The Inverses Property implies g�1j W B ! B1

is in Sim.B; B1/. In particular, B is a region for g�1, contradicting the maximality
of R. Thus, ŒinclB ; B� … gZ.
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Lemma 6.3. For each g 2 � , the function ŒinclB ; B� 7! B is a bijection from
Z n gZ to the set of closed balls of X properly containing maximum regions of g�1.
Moreover, the function gŒinclB ; B� 7! B is a bijection from gZ n Z to the set of
closed balls of X properly containing maximum regions of g.

Proof. The first statement follows immediately from the preceding lemma. The sec-
ond follows from the first together with the observation that gŒinclB ; B� 7! ŒinclB ; B�

is a bijection from gZ n Z to Z n g�1Z.

Corollary 6.4. For each g 2 � , the symmetric difference gZ 4 Z is finite.

Proof. This follows immediately from the preceding lemma because there are only a
finite number of closed balls of X containing a maximum region of g or g�1.

Lemma 6.5. For each r > 0, fg 2 � j jgZ 4 Zj � rg is finite.

Proof. Let �r D fg 2 � j jgZ 4 Zj � rg. Since jgZ 4 Zj D jg�1Z 4 Zj, it
follows that g 2 �r if and only if g�1 2 �r . For each x 2 X , let

Mr;x D fR j R is a maximum region for some g 2 �r and x 2 Rg:

By Lemma 6.3 if g 2 �r , then the number of closed balls of X properly containing
a maximum region of g is less than or equal to r . In particular, if R 2 Mr;x , there
are at most r closed balls of X properly containing R. Since Mr;x is totally ordered
by inclusion, it follows that Mr;x is finite and there exists Rr;x 2 Mr;x such that
Rr;x � R for all R 2 Mr;x . The set Pr ´ fRr;x j x 2 Xg is a partition of X and
each Rr;x is a region for g and for g�1, for all g 2 �r . That is to say Pr refines the
maximum partitions of both g and g�1 for all g 2 �r . Setting PC D Pr D P�, this
means that �r � �ref.P˙/ and the result follows from Lemma 3.11.

The proof of Theorem 6.1 is now complete.
Even though it will be shown in the appendix that a zipper action gives rise to a

proper action on a space with walls, the next example is included to show that this does
not happen in the most naive way. See the appendix for definitions and references.

Example 6.6. Consider the alphabet A D f0; 1g and Thompson’s group V � LS.A!/

as in Example 4.1. The construction above gives sets Z � E and a zipper action
V Õ E . It might be expected that W ´ f.gZ; EngZ/ j g 2 V g is a set of walls for E .
However, this is not the case. Specifically, we show there exists Œf1; B1�; Œf2; B2� 2 E

and an infinite subset G � V such that Œf1; B1� 2 gZ and Œf2; B2� … gZ for every
g 2 G (that is, there are two elements of E separated by infinitely many walls). Let
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B1 D 0A! and B2 D 1A! . Let f1 W B1 ! A! be the inclusion and let f2 W B2 ! A!

be defined by ´
f2.10w/ D 10w;

f2.11w/ D 111w;

for all w 2 A! . Let G D fg 2 V j g is a local isometry and gjB1 D f1g. The
required conditions are readily checked. (Note also that Œf2; B2� 2 V Z so that a set
of walls will not result by reducing the size of E .)

Appendix by Daniel S. Farley: Zipper actions, spaces with walls,
and CAT.0/ cubical complexes

The purpose of this appendix is to show that the property of having a zipper action is
equivalent to having a proper action on a space with walls. Spaces with walls were
introduced by Haglund and Paulin [11], who wanted a common language for de-
scribing a range of combinatorial structures, among them CAT.0/ cubical complexes.
Sageev [20] had in effect shown that CAT.0/ cubical complexes are spaces with walls,
so a group acting properly on a CAT.0/ cubical complex also acts properly on a space
with walls (see Cherix et al. [6], Section 1.2.7, for a discussion about the relevance of
this to the Haagerup property and for more references). Chatterji and Niblo [5] and
Nica [17] proved the converse, namely, that a group that acts properly on a space with
walls also acts properly on a CAT.0/ cube complex. Thus, having a proper action of
a group � on a CAT(0) cube complex is equivalent to having a zipper action of � . In
fact, a zipper is closely related to Sageev’s notion of an almost invariant set in [20],
and the discussion in this appendix is implicit in [20]. At any rate, the experts will
find this result familiar.

Theorem A.1. A discrete group � has a zipper action if and only if � acts properly
on a space with walls.

Definition A.2. Let S be a set and let � be a group.

(1) A wall in S is a pair W D fH1; H2g such that W is a partition of S ; i.e.,
S D H1 [ H2, H1 \ H2 D ;, and H1 6D ; 6D H2.

(2) If W D fH1; H2g is a wall in S , then H1 and H2 are called half-spaces in S .
(3) Elements x; y 2 S are separated by the wall W if x 2 H1 and y 2 H2.
(4) The set S is a space with walls if there is given a set of walls in S such that for

every x; y 2 S there are at most finitely many walls separating x and y. In this
case, define d.x; y/ to be the number of walls separating x and y and note that
d is a pseudometric (that is, it is symmetric and satisfies the triangle inequality).
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(5) The group � acts on the space S with walls if there is an action of � on S such
that � permutes the walls. In this case the action of � is by isometries of the
pseudometric.

(6) The group � is said to act properly on the space S with walls if for all r 2 R
and for all p 2 S , fg 2 � j d.gp; p/ < rg is finite.

Note that a finite group � has a zipper action (let E D Z D �) and also acts
properly on a space with walls (let S be the set of all partitions of � into two nonempty,
disjoint subsets). Therefore, in the proof of Theorem A.1, it is assumed that � is
infinite.

Proof of Theorem A.1. Suppose first that there is a zipper action � Õ E with zipper
Z � E . Define

A D T
g2�

gZ and B D T
g2�

.gZ/c :

Note that E n .A [ B/ 6D ;, for otherwise Z4gZ D ; for all g 2 � , and so Z would
fail to be a zipper. Let S D fgZ � E j g 2 �g. If x 2 E , define H C

x D fgZ 2 S j
x 2 gZg and H �

x D fgZ 2 S j x … gZg. Then ffH C
x ; H �

x g j x 2 E n .A [ B/g is
a set of walls for S . The condition that x … A [ B ensures that H C

x 6D ; 6D H �
x . To

see that for g1; g2 2 � , there are only finitely many walls separating g1Z and g2Z,
observe that fH C

x ; H �
x g separates g1Z and g2Z if and only if x 2 g1Z 4 g2Z, and

x 2 g1Z 4 g2Z � .g1Z 4 Z/ [ .g2Z 4 Z/, which is finite. The action � Õ S is
given by h � gZ D hgZ. Since hHẋ D H ˙

hx
for all h 2 � and x 2 E n .A [ B/ (and

x 2 A[B if and only if hx 2 A[B), it follows that � permutes the walls. Since, by
the second property of a zipper action (Definition 5.1), there are, for a given r > 0,
at most finitely many g 2 � such that d.gZ; Z/ D jgZ4Zj < r , the action of � is
proper.

Conversely, suppose that there is a proper action � Õ S of � on a space S

with walls. Let E be the set of all half-spaces of S . For each x 2 S , define Zx D
fH 2 E j x 2 H g. Note that g � Zx D Zgx for all g 2 � and x 2 S . Fix a base
point p 2 S and let Z D Zp be the zipper for the action. For each g 2 � , it follows
that

Zgp 4 Zp D fH 2 E j gp 2 H and p … H g [ fH 2 E j gp … H and p 2 H g
D fH 2 E j H is a half-space of a wall separating p and gpg:

Thus, jZgp 4 Zpj D 2d.p; gp/ and the properties required of a zipper action follow.
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