Surgery and stratified spaces

Bruce Hughes and Shmuel Weinberger

0. INTRODUCTION

The past couple of decades has seen significant progress in the theory
of stratified spaces through the application of controlled methods as well
as through the applications of intersection homology. In this paper we
will give a cursory introduction to this material, hopefully whetting your
appetite to peruse more thorough accounts.

In more detail, the contents of this paper are as follows: the first section
deals with some examples of stratified spaces and describes some of the
different categories that have been considered by various authors. For
the purposes of this paper, we will work in either the PL category or a
very natural topological category introduced by Quinn [Q4]. The next
section discusses intersection homology and how it provides one with a rich
collection of self dual sheaves. These can be manipulated by ideas long
familiar to surgery theorists who have exploited Poincaré duality from the
start. We will give a few applications of the tight connection between an
important class of stratified spaces (Witt spaces), self dual sheaves, and
K-theory; one last application will appear in the final section of the paper
(where we deal with the classification of “supernormal” spaces with only
even codimensional strata).

Section three begins an independent direction, more purely geomet-
ric. We describe the local structure of topological stratified spaces in
some detail, in particular explaining the teardrop neighborhood theorem
([HTWW], [H2]) and giving applications to isotopy theorems and the like.
The last three sections describe the theory of surgery on stratified spaces,
building on our understanding of teardrop neighborhoods, and some appli-
cations to classification problems (other applications can also be found in
the survey [CW4]).
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1. DEFINITIONS AND EXAMPLES OF STRATIFIED SPACES

A stratification ¥ = {X;} of a space X is a locally finite decomposition of
X into pairwise disjoint, locally closed subsets of X such that each X; € &
is a topological manifold. We always assume that X is a locally compact,
separable metric space and that X satisfies the Frontier Condition: cl X; N
X; # 0 if and only if X; C clX;. The index set is then partially ordered
by 7 < ¢ if and only if X; C clX;. The set X; € ¥ is called a stratum
and X' = clX; = U{X; | j < i} is a skeleton (or closed stratum in the
terminology of [W4]).

Partitioning non-manifold spaces into manifold pieces is a very old idea
— one has only to consider polyhedra in which the strata are differences be-
tween successive skeleta. However, it was not until relatively recently that
attention was paid to how the strata should fit together, or to the geometry
of the neighborhoods of strata. In 1962 Thom [T1] discussed stratifications
in which the strata have neighborhoods which fibre over that stratum and
which have “tapis” maps (the precursor to the tubular maps in Mather’s
formulation in 1.2 below). It was also in this paper that Thom conjectured
that the topologically stable maps between two smooth manifolds are dense
in the space of all smooth maps. In fact, it was Thom’s program for attack-
ing that conjecture which led him to a study of stratifications [T2]. The
connection between stratifications and topological stability (and, more gen-
erally, the theory of singularities of smooth maps) is outside the scope of
this paper, but the connections have continued to develop (for a recent
account, see the book of du Plessis and Wall [dPW].)

Here we review the major formulations of the conditions on neighbor-
hoods of strata. These are due to Whitney, Mather, Browder and Quinn,
Siebenmann, and Quinn. The approaches of Whitney, Mather, Browder
and Quinn are closely related to Thom’s original ideas. These types of
stratifications are referred to as geometric stratifications. The approaches
of Siebenmann and Quinn are attempts at finding an appropriate topolog-
ical setting.

1.1 Whitney stratifications. In two fundamental papers [Wh1],[Wh2],
Whitney clarified some of Thom’s ideas on stratifications and introduced
his Conditions A and B. To motivate these conditions consider a real al-
gebraic set V' C R”, the common locus of finitely many real polynomials.
The singular set XV of all points where V' fails to be a smooth manifold is
also an algebraic set. There is then a finite filtration V = V™ D ym-1 >
. D VYD V-l = with V*=! = ¥V% One obtains a stratification of
V by considering the strata V; = Vi \ Vi~l. However, with this naive
construction the strata need not have geometrically well-behaved neigh-
borhoods; that is, the local topological type need not be locally constant
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along strata. For example, consider the famous Whitney umbrella which
is the locus of 22 = 22, an algebraic set in R3. The singular set XV is the
z-axis and is a smooth manifold, so one obtains just two strata, V \ ¥V
and XV. However, there is a drastic change in the neighborhood of ¥V
in V as one passes through the origin: for negative z small neighborhoods
meet only XV whereas this is not the case for positive z.

If X, Y are smooth submanifolds of a smooth manifold M, then X is
Whitney regular over Y if whenever x; € X, y; € Y are sequence of points
converging to some y € Y, the lines [; = Z;y; converge to a line [, and the
tangent spaces T, X converge to a space 7, then

(A) T,Y C 7 and

(B) ICT.

A stratification ¥ = {X;} of X is a Whitney stratification if whenever j < i,
X; is Whitney regular over X;.

In the Whitney umbrella V', V' \ ¥V is not Whitney regular over XV at
the origin. However, the stratification can be modified to give a Whitney
stratification and a similar construction works for a class of spaces more
general than algebraic sets: a subset V' C R" is a semi-algebraic set if it
is a finite union of sets which are the common solutions of finitely many
polynomial equations and inequalities. Examples include real algebraic sets
and polyhedra. In fact, the class of semi-algebraic sets is the smallest class
of euclidean subsets containing the real algebraic sets and which is closed
under images of linear projections. If V is semi-algebraic, then there is a
finite filtration as in the case of an algebraic set discussed above obtained
by considering iterated singular sets. This filtration can be modified by
removing from the strata the closure of the set of points where the Whitney
conditions fail to hold. In this way, semi-algebraic sets are given Whitney
stratifications (see [GWdPL)).

In fact, Whitney [Wh2] showed that any real or complex analytic set
admits a Whitney stratification. These are sets defined analogously to alge-
braic sets with analytic functions used instead of polynomials. Lojasiewicz
[Lo] then showed that semi-analytic sets (the analytic analogue of semi-
algebraic sets) have Whitney stratifications. An even more general class
of spaces, namely the subanalytic sets, were shown by Hardt [Hr| to admit
Whitney stratifications. For a modern and thorough discussion of stratifi-
cations for semi-algebraic and subanalytic sets see Shiota [Shi.

1.2 Mather stratifications: tube systems. Mather clarified many of
the ideas of Thom and Whitney and gave complete proofs of the isotopy
lemmas of Thom. He worked with a definition of stratifications closer to
Thom’s original ideas than to Whitney’s, but then proved that spaces with
Whitney stratifications are stratified in his sense.
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Definition. For 0 < k < +o00, a Mather C*-stratification of X is a triple
(X, %,T) such the following hold:

(1) ¥ = {X;} is a stratification of X such that each stratum X; € ¥ is
a C*-manifold.

(2) T = {T;,m;,p:i} is called a tube system and T; is an open neighbor-
hood of X; in X, called the tubular neighborhood of X;, m; : T; — X;
is a retraction, called the local retraction of T;, and p; : T; — [0, c0)
is a map such that p; *(0) = X;.

(3) For each X;, X; € X, if T;; = T; N X, and the restrictions of m; and
pi to T;; are denoted m;; and p;;, respectively, then the map

(mij, piz) = Tij — Xi x (0,00)

is a C*-submersion.
(4) If X;,X,, Xy € ¥, then the following compatibility conditions hold
for z € Tji N Typ OV 73 (Tij):

mij o Wik(x) = mix (),
pij © mjk(z) = pir (7).

When k = 0 above, a C°-submersion, or topological submersion, means
every point in the domain has a neighborhood in which the map is topo-
logically equivalent to a projection (see [S2]).

Mather [Mal], [Ma2] proved that Whitney stratified spaces have Mather
C*°-stratifications.

The Thom isotopy lemmas mentioned above are closely related to the
geometric structure of neighborhoods of strata. For example, the first
isotopy lemma says that if f : X — Y is a proper map between Whitney
stratified spaces with the property that for every stratum X; of X there
exists a stratum Y; of ¥ such that f|: X; — Y is a smooth submersion,
then f is a fibre bundle projection (topologically — not smoothly!) and
has local trivializations which preserve the strata. Mather applied this to
the tubular maps

v XpiITi —>Xi X [0,00)

defined on the tubular neighborhoods of the strata of a Whitney stratified
space X in order to show that every stratum X; has a neighborhood N such
that the pair (N, X;) is homeomorphic to (cyl(f), X;) where cyl(f) is the
mapping cylinder of some fibre bundle projection f : A — X,;. The exis-
tence of these mapping cylinder neighborhoods was abstracted by Browder
and Quinn as is seen next.
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1.3 Browder-Quinn stratifications: mapping cylinder neighbor-
hoods. In order to classify stratified spaces Browder and Quinn [BQ)
isolated the mapping cylinder structure as formulated by Mather. The
mapping cylinder was then part of the data that was to be classified. More
will be said about this in §4 below. Here we recall their definition.

Let ¥ = {X;} be a stratification of a space X such that each stratum
X; is a C*¥-manifold. The singular set ¥X; is 1 X; \ X; = U{X; | j < i}.
(This is in general bigger than the singular set as defined in 1.1.)

Definition. ¥ is a C* geometric stratification of X if for every i there is
a closed neighborhood N; of ¥X; in X* = cl X; and a map v; : ON; — 2X;
such that

(1) ON; is a codimension 0 submanifold of X,

(2) N; is the mapping cylinder of v; (with ON; and ¥.N; corresponding
to the top and bottom of the cylinder),

(3) if j < i and W; = X; \ int Nj, then v;| : v; '(W;) — W is a
C*-submersion.

The complement of int V; in X ¥ is called a closed pure stratum and is
denote X .

Note this definition incorporates a topological theory by taking k = 0.
Browder and Quinn also pointed out that by relaxing the condition on the
maps v; other theories can be considered. For example, one can insist that
the strata be PL manifolds and the v; be PL block bundles with manifold
fibers.

1.4 Siebenmann stratifications: local cones. In the late 1960s Cer-
navskii [Ce|] developed intricate geometric techniques for deforming homeo-
morphisms of topological manifolds. In particular, he proved that the group
of self homeomorphisms of a compact manifold is locally contractible by
showing that two sufficiently close homeomorphisms are canonically iso-
topic. The result was reproved by Edwards and Kirby [EK] by use of
Kirby’s torus trick. Siebenmann [S2] developed the technique further in
order to establish the local contractibility of homeomorphism groups for
certain nonmanifolds, especially, compact polyhedra.

Siebenmann’s technique applied most naturally to stratified spaces and
a secondary aim of [S2] was to introduce a class of stratified spaces that
he thought might “come to be the topological analogues of polyhedra in
the piecewise-linear realm or of Thom'’s stratified sets in the differentiable
realm.” These are the locally conelike TOP stratified sets whose defining
property is that strata are topological manifolds and for each point z in
the n—stratum there is a compact locally conelike TOP stratified set L
(with fewer strata — the definition is inductive) and a stratum-preserving
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homeomorphism of R™ x ¢L onto an open neighborhood of x where cL
denotes the open cone on L and the homeomorphism takes 0 x {vertex} to
x. Simple examples include polyhedra and the topological (C) versions

It is important to realize that Siebenmann didn’t just take the topo-
logical version of Mather’s stratified space, but he did have Mather’s C°-
tubular maps locally at each point. The reason he was able to work in
this generality was that the techniques for proving local contractibility of
homeomorphism groups were purely local.

As an example, consider a pair (M, N) of topological manifolds with N
a locally flat submanifold of M. With the two strata, N and M \ N, the
local flatness verifies that this is a locally conelike stratification. However,
Rourke and Sanderson [RS] showed that N need not have a neighbor-
hood given by the mapping cylinder of a fibre bundle projection. Thus,
Siebenmann’s class is definitely larger than the topological version of the
Thom-Whitney-Mather class.

On the other hand, Edwards [E] did establish that locally flat subman-
ifolds of high dimensional topological manifolds do, in general, have map-
ping cylinder neighborhoods. However, the maps to the submanifold giving
the mapping cylinder need not be a fibre bundle projection. It turns out
that the map is a manifold approximate fibration, a type of map which fig-
ures prominently in the discussion of the geometry of homotopically strat-
ified spaces below.

Later, Quinn [Q2,II] and Steinberger and West [StW] gave examples
of locally conelike TOP stratified sets in which the strata do not have
mapping cylinder neighborhoods of any kind. In fact, their examples are
orbit spaces of finite groups acting locally linearly on topological manifolds.
Such orbit spaces are an important source of examples of locally conelike
stratified sets and many of advances in the theory of stratified spaces were
made with applications to locally linear actions in mind. These examples
were preceded by an example mentioned by Siebenmann [S3] of a locally
triangulable non-triangulable space.

Milnor’s counterexamples to the Hauptvermutung [M1] give non-homeo-
morphic polyhedra whose open cones are homeomorphic. As Siebenmann
observed, these show that the links in locally conelike stratified sets are not
unique up to homeomorphism. Siebenmann does prove that the links are
stably homeomorphic after crossing with a euclidean space of the dimen-
sion of the stratum plus 1. The non-uniqueness of links points to the fact
that Siebenmann’s stratified spaces are too rigid to really be the topologi-
cal analogue of polyhedra and smoothly stratified sets, whereas the stable
uniqueness foreshadows the uniqueness up to controlled homeomorphism
of fibre germs of manifold approximate fibrations [HTWT1].

The main applications obtained by Siebenmann, namely local contracti-
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bility of homeomorphism groups, isotopy extension theorems, and the fact
that many proper submersions are bundle projections, can all be general-
ized to the setting of homotopically stratified sets discussed below.

Siebenmann himself experimented with a less rigid class of stratified
spaces, called locally weakly conelike. In order to include in this class strat-
ified spaces with isolated singularities which arise as the one-point compact-
ifications of manifolds with nonvanishing Siebenmann obstruction [S], he
no longer required the existence of links. However, neighborhoods around
strata of dimension n were still required to split off a factor of R™ locally.
In other words, in a locally conelike set X a point in the n-dimensional
stratum X, has a neighborhood U in X with U \ X,, homeomorphic to
L x R""! with L the compact link. In a weakly conelike set, U \ X,, is
homeomorphic to C' x R™ with C' a noncompact space with a certain tame-
ness property at infinity. While this generalization was a move in the right
direction, the role of the weak link C prevented further developments and
it was left to Quinn to make a bolder generalization.

1.5 Quinn stratifications: homotopy mapping cylinders. Quinn
[Q5] introduced a class of spaces which we will call manifold homotopi-
cally stratified sets. His objective was to “give a setting for the study of
purely topological stratified phenomena, particularly group actions on man-
ifolds.” As has been pointed out above, the previously defined topologically
stratified spaces were inadequate. On one hand, the geometrically strati-
fied spaces (that is, the topological version of Thom’s spaces as formulated
by Mather or Browder and Quinn) require too strong of a condition on
neighborhoods of strata (namely, mapping cylinder neighborhoods) ruling
out important examples (like locally flat submanifolds and orbit spaces of
locally linear group actions). On the other hand, the locally conelike strat-
ified sets of Siebenmann require a very strong local condition which need
not propagate to the entire neighborhood of the strata. Without an under-
standing of the geometry of neighborhoods of strata, topological stratified
versions of surgery, transversality, and h-cobordism theorems were missing.

Quinn formulated his definition to be equivalent to saying that for j < 1,
X; U X, is homotopy equivalent near X; to the mapping cylinder of some
fibration over X;. This has two pleasant properties. First, besides the
geometric condition that the strata be manifolds, the definition is giving in
homotopy theoretic terms. Second, the condition concerns neighborhoods
of strata rather than closed strata, so that, in particular, there are no
complicated compatibility conditions where more than two strata meet.
The links are now defined only up to homotopy.

Even without a geometric condition on neighborhoods of strata, Quinn
was able to derive geometric results. These will be discussed in §3 below
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along with a theorem of Hughes, Taylor, Weinberger and Williams which
says that neighborhoods of strata do carry a weak geometric structure.
One thing that Quinn did not do was to develop a surgery theory for
these manifold homotopically stratified sets. That piece of the picture was
completed by Weinberger [W4] (see §5 below).

1.6 Group actions. Suppose that G is a finite group acting on a topolog-
ical manifold M. One attempts to study the action by studying the orbit
space M /G and the map M — M/G. For example, if G acts freely, then
M/G is a manifold and M — M /G is a covering projection. Moreover, the
surgery theoretic set of equivariant manifold structures on M is in 1-1 cor-
respondence with the set of manifold structures on M /G via the pull-back
construction.

When the action is not free, M/G must be viewed as a space with
singularities and M — M /G as a collection of covering projections. The
prototypical example occurs when M is a closed Riemann surface and G
is a finite cyclic group acting analytically. Then M — M/G is a branched
covering.

More generally, if M is a smooth manifold and G acts differentiably,
then M has a Whitney stratification with the strata Mg indexed by con-
jugacy classes of subgroups of G and consisting of all points with isotropy
subgroup conjugate to H. This induces a Whitney stratification of M/G.
The standard reference is Lellmann [Le], but Dovermann and Schultz [DS]
provide a more accessible proof. In the more general setting of a compact
Lie group G, Davis [Dv1] showed how to view M — M/G as a collection
of fibre bundle projections based on the fact that each Mgy — Mg)/G is
a smooth fibre bundle projection with fibre G/H.

Now if the action of the finite group G on the topological manifold M is
locally linear (also called locally smooth), then the examples of Quinn and
Steinberger and West show (as mentioned above) that M /G need not have
a geometric stratification, but it is a locally conelike TOP stratified set, and
so Siebenmann’s results can be applied. Lashof and Rothenberg [LR] used
stratification theory of the orbit space to classify equivariant smoothings
of locally smooth G-manifolds. Hsiang and Pardon [HsP] and Madsen
and Rothenberg [MR] used stratifications for the classification of linear
representations up to homeomorphism (see also [CSSW], [CSSWW], [HP]).
Stratifications also played an important role in the work of Steinberger and
West [StW] on equivariant s-cobordism theorems and equivariant finiteness
obstructions.

The stratification theory of the orbit space actually corresponds with
the isovariant, rather than the equivariant, theory of the manifold.

Locally linear actions on topological manifolds have the property that



Surgery and stratified spaces 327

fixed sets are locally flat submanifolds. It is natural to consider all such
actions. These are essentially the actions whose orbit space is a manifold
homotopically stratified set. After being introduced by Quinn [Q5], Yan [Y]
applied Weinberger’s stratified surgery (see §5 below) to study equivariant
periodicity. More recently, Beshears [Bs| made precise the properties of the
map M — M/G and proved that the isovariant structures on M are in 1-1
correspondence with the stratum preserving structures on M/G.

1.7 Mapping cylinders. Mapping cylinders provide examples of spaces
with singularities. The mapping cylinder cyl(p) of a map p : M — N
between manifolds has a natural stratification with three strata: the top
M, the bottom N and the space in between M x (0,1). The properties
of the stratification depend on the map p. With this stratification cyl(p)
is geometrically stratified if and only if p x idg can be approximated arbi-
trarily closely by fibre fibre bundle projections. On the other hand, cyl(p)
is a manifold homotopically stratified set if and only if p is a manifold ap-
proximate fibration. The cylinder is nonsingular; i.e., a manifold with N
a locally flat submanifold if and only if p is a manifold approximate fibra-
tion with spherical homotopy fibre. (Here and elsewhere in this section, we
ignore problems with low dimensional strata.)

More generally, one can consider the mapping cylinder of amap p: X —
Y between stratified spaces which take each stratum of X into a stratum of
Y. The natural collection of strata of cyl(p) contains the strata of X and
Y. Cappell and Shaneson [ChS4] observed that even if one considers maps
between smoothly stratified spaces which are smooth submersions over each
stratum of X, then cyl(p) need not be smoothly stratified (they refer to an
example of Thom [T1]). However, Cappell and Shaneson [CS5] proved that
such cylinders are manifold homotopically stratified sets, showing that the
stratifications of Quinn arise naturally in the theory of smoothly stratified
spaces.

Even more generally, the mapping cylinder cyl(p) of a stratum preserving
map between manifold homotopically stratified sets is itself a manifold
homotopically stratified set (with the natural stratification) if and only if
p is a manifold stratified approximate fibration [H2].

2. INTERSECTION HOMOLOGY AND SURGERY THEORY

In the mid 70’s Cheeger and Goresky-MacPherson, independently and
by entirely different methods, discovered that there is a much larger class
of spaces than manifolds that can be assigned a sequence of “homology
groups” that satisfy Poincaré duality. Given the central role that Poincaré
duality plays in surgery theory, it was inevitable that this would lead to a
new environment for the applications of surgery.
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2.1. Let X be a stratified space where X*\ X*~! is an i-dimensional F-
homology manifold, for a field F. We shall assume that the codimension
one stratum is of codimension at least two and that X \ X”~! (the nonsin-
gular part) is given an F-orientation; for simplicity we will also mainly be
concerned with the case of F' = Q. It pays to think PL, as we shall, but
see [Q3] for an extension to homotopically stratified sets. A perversity p
is a nondecreasing function from the natural numbers to the nonnegative
integers, with p(1) = p(2) = 0, and for each 4, p(i + 1) < p(i) + 1. The
zero perversity is the identically 0 function and the total perversity t has
t(i) =i — 2 for i > 2. Two perversities, p and ¢ are dual if p+ g =t.

We say that X is normal if the link of any simplex of codimension
larger than 1 is connected. This terminology is borrowed from algebraic
geometry. It is not hard to “normalize” “abnormal” spaces by an analogue
of the construction of the orientation two-fold cover of a manifold.

A chain is just what it always was in singular homology: we say it is
p-transverse, or p-allowable, if for every simplex in the chain AN X"~? has
dimension at most ¢ larger than what would be predicted by transversality
and the same is true for the simplices in its boundary that have nonzero
coefficient.

Note: It is not always the case that the chain complex of p-transverse
chains with coefficients in R is just the complex for Z tensored with R,
as it would be in ordinary homology, because a non-allowable chain can
become allowable after tensoring when some simplex in the boundary gets
a 0-coefficient.

2.2. ITH,(X) is the homology obtained by considering p-allowable chains.
It is classical for normal spaces that IH! is just ordinary homology; a bit
more amusing is the theorem of McCrory that IH? is cohomology in the
dual dimension. The forgetful map is capping with the fundamental class.

Note that I H is not set up to be a functor. It turns out to be functo-
rial with respect to normally nonsingular or (homotopy) transverse maps.
(We'll discuss these in a great deal more details in §§4,5.) Thus, it is func-
torial with respect to (PL) homeomorphisms and inclusions of open subsets
and collared boundaries.

Note also, that one can give “cellular” versions of IH, which means
that one can define perverse finiteness obstructions and Reidemeister and
Whitehead torsions in suitable circumstances. (See [Cu, Dr|.) Here one
would usually want to build in refinements to integer coefficients that we
will not discuss till 2.10 below.

2.3. The main theorems of [GM1] are that (1) IH is stratification inde-
pendent (indeed it is a topological invariant, even a stratified homotopy
invariant) and (2) for dual perversities the groups in dual dimensions are
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dual. The latter boils down to Poincaré duality in case X is a manifold,
however it is much more general.

2.4. What is important in many applications is that one can often get
a self duality. Unfortunately, there is no self dual perversity function
(what should p(3) equal?). However, we have two middle perversities
0,0,1,1,2,2,... and 0,0,0,1,1,2...; note that these differ only on the
condition of intersections with odd codimensional strata. Consequently,
for spaces with only even codimensional strata, the middle intersection
homology groups are self dual.

2.5. It turns out that the middle perversity groups have many other amaz-
ing properties. Cheeger independently discovered the “De Rham” version
of these. He gave a polyhedral X as above a piecewise flat metric (i.e.
flat on the simplices, and conelike) and observed that the L? cohomol-
ogy of the incomplete manifold obtained by removing the singular set was
very nice. Under a condition that easily holds when one has even codimen-
sional strata, the * operator takes L? forms to themselves, and one formally
obtains Poincaré duality. A consequence of this is that the Kiinneth for-
mula holds.

In addition, Goresky and MacPherson [GM3] proved that Morse theory
takes a very nice form for stratified spaces when you use intersection ho-
mology. This leads to a proof of the Lefschetz hyperplane section theorem.
(A sheaf theoretic proof appears in [GM2].) [BBD] proved hard Lefschetz
for the middle perversity intersection homology of a singular variety using
the methods of characteristic p algebraic geometry. This requires the sheaf
theoretic reformulation to be discussed below. Finally Saito [Sa] gave an
analytic proof of this and a Hodge decomposition for these groups.

2.6. Let us return to pure topology by way of example. Consider a man-
ifold with boundary W, W, and the singular space obtained by attaching
a cone to dW. Normality would correspond to the assumption that oW is
connected.

What are the intersection homology groups in this case? Fix p. We
would ordinarily not expect any chain of dimension less than n to go
through the cone point. Once ¢ + p(i) is at least n, we begin allowing
all chains to now go through the cone point, so one gets above that dimen-
sion all of the reduced homology. Below that dimension, we are insisting
that our chains miss the cone point, so one gets H,(W). There is just
one critical dimension where the chain can go through and the boundary
cannot: here one gets the image of the ordinary homology in the reduced
homology.

Using these calculations, one can reduce the Goresky-MacPherson dual-
ity theorem to Poincaré-Lefschetz duality for the manifold with boundary.
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If the dimension of W is even, one gets in the middle dimension (for the
middle perversity) the usual intersection pairing on (W, W) modulo its
torsion elements.

Note though that if W is odd dimensional the failure of self duality
is caused by the middle dimensional homology of dW. If its homology
vanished, we’d still get Poincaré duality.

2.7. Of course, one immediately realizes that one can now define signatures
for spaces with even codimensional singularities (that lie in the Witt group
W (F) of the ground field.) We’ll, for now, only pay attention to F' = R
and ordinary signature.

Thom and Milnor’s work on PL L-classes and Sullivan’s work on KO|[3]
orientations for PL manifolds all just depend on a cobordism invariant
notion of signature that is multiplicative with respect to products with
closed smooth manifolds. Thus, as observed in [GM 1] it is possible to
define such invariants lying in ordinary homology and KO[1] of any space
with even codimensional strata.

2.8. It is very natural to sheafify. Nothing prevents us from considering the
intersection homology of open subsets and one sees that for each open set
one has duality between locally finite homology and cohomology. It turns
out that the usual algebraic apparatus of surgery theory mainly requires self
dual sheaves rather than manifolds. So we can define symmetric signatures
that take the fundamental group into account, which are just the assemblies
(in the sense of assembly maps) of the classes in 2.7.

2.9. The original motivations to sheafify were rather different. Firstly,
using sheaf theory there are simple Eilenberg-Steenrod type axioms that
can be used to characterize I H; these are useful for calculational purposes
and for things like identifying the Cheeger description with the geometric
definition of Goresky and MacPherson.

Secondly, using various constructions in the derived category of sheaves,
push forwards and proper push forwards and truncations of various sorts,
it is possible to give a direct abstract definition of IH without using chains.
This definition is appropriate to characteristic p algebraic varieties.

Finally, there is a very simple sheaf theoretic statement, Verdier dual-
ity, that can be used to express locally the self duality of the intersection
homology of all open subsets of a given X. It says that IC™ is a self-dual
sheaf for spaces with even codimensional singularities. We will see below
that this is quite a powerful statement.

2.10. We can ask for which spaces is IC self dual? We know that all
spaces with even codimensional strata have this property, but they are not
all of them, for we saw in 2.6 that if we have an isolated point of odd
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codimension one still gets Poincaré duality in middle perversity I H if (and
only if) the middle dimensional homology of the link — which is a manifold
— vanishes. One can generalize this observation to see that if the link of
each simplex of odd codimension in X has vanishing middle IH™, then
IC is self dual on X. (Indeed this condition is necessary and sufficient.)
Such X’s were christened by Siegel [Si], Witt spaces. Actually they were
introduced somewhat earlier by Cheeger as being the set of spaces for which
the * operator on L? forms on the nonsingular part behaves properly.

The main point of Siegel’s thesis, though, was to compute the bordism
of Witt spaces. Obviously the odd dimensional bordism groups vanish, be-
cause the cone on an odd dimensional Witt space is a Witt nullcobordism.
For even dimensional Witt spaces this only works if there is no middle
dimensional TH™. By a surgery process on middle dimensional cycles, he
shows that you can cobord a Witt space to one of those if and only if the
quadratic form in middle TH™( ; Q) is hyperbolic — so there is no obstruc-
tion in 2 mod 4, but there’s an obstruction in W(Q) in 0 mod 4. Moreover,
aside from dimension 0, where all that can arise is Z C W(Q) given by
signature, in all other multiples of 4 all the other (exponent 4 torsion,
computed in [MH]) elements can be explicitly constructed, essentially by
plumbing. The isomorphism of the bordism with W (Q) is what gives these
spaces their name.

However, making use of the natural transformations discussed above, we
actually see that Witt spaces form a nice cycle theory for the (connective)
spectrum L(Q) if we ignore dimension 0. Siegel phrases it by inverting 2:

Theorem. Witt spaces form a cycle theory for connective KO ® Z[1/2],
i.e.

QVit(X) ® Z[1/2] - KO(X) ® Z[1/2]
s an isomorphism.

Pardon, [P] building on earlier work of Goresky and Siegel, [GS], showed
that the spaces with integrally self dual IC form a class of spaces (which
does not include all spaces with even codimensional strata: one needs an
extra condition on the torsion of the one off the middle dimension IH
group) whose cobordism groups agree with L*(Z) and then give a cycle
theoretic description for the connective version of this spectrum.

Other interesting bordism calculations for classes of singular spaces can
be found in [GP].

2.11 (Some remarks of Siegel). The fact that one has a bordism invari-
ant signature for Witt spaces contains useful facts about signature for man-
ifolds. For instance, using the identification of signature for manifolds with
boundary with the intersection signature of the associated singular space
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with an isolated singular point, it is easy to write down a Witt cobordism
(the pinch cobordism) which proves Novikov’s additivity theorem [AS].

Also, the mapping cylinder of a fiber bundle is not always a Witt cobor-
dism: there is a condition on the middle homology of the fiber. One could
have thought that one can still define signature for singular spaces where
the links have signature zero (obviously one can’t introduce a link type with
nonzero signature and have a cobordism invariant signature). However,
Atiyah’s example of nonmultiplicativity of signature gives a counterexam-
ple to this [A]. It is thus quite interesting that having no middle homology
is enough for doing this.

2.12. Siegel’s theorem has had several interesting applications. The first is
a purely topological disproof of the integral version of the Hodge conjecture
(already disproven by analytic methods in [AH]) on the realization of all
(p,p) homology classes of a nonsingular variety by algebraic cycles. If one
were looking for nonsingular cycles, then one can use failure of Steenrod
representability, or better, Steenrod representability by unitary bordism!,
but here we allow singular cycles. Thanks to Hironaka, we could apply res-
olution of singularities to make the argument work anyway. However, even
without resolution one sees that these homology classes have a refinement
to K-homology, which is a nontrivial homotopical condition (as in [AH]
which develops explicit counterexamples along these lines).

Another application stems from the fact that the bordism theory is ho-
mology at the prime 2. Since one can define a signature operator for Witt
spaces which is bordism invariant [PRW], one can view the signature oper-
ator from the point of view of Witt bordism and thus obtain a refinement
at the prime 2 of the K-homology class of the signature operator to ordi-
nary homology [RW]. This, then implies that the K-homology class of the
signature operator is a homotopy invariant for, say, RP".

Yet other applications concern “eta type invariants”. The basic idea
for these applications is that if one knows the Novikov conjecture for a
group 7, then by Siegel’s theorem QWVit'(B7r) — L(Qn) rationally injects.
This means that one can get geometric coboundaries from homotopical
hypotheses. Thus, for instance, homotopy equivalent manifolds should be
rationally Witt cobordant (preserving their fundamental group).

In particular, then, the invariant of Atiyah-Patodi-Singer [APS] associ-
ated to an an odd dimensional manifold with a unitary representation of
its fundamental group can only differ, for homotopy equivalent manifolds,
that a twisted signature of the cobounding Witt space, e.g. a rational
number. In [W3], known results regarding the Novikov conjecture and the
deformation results of [FL] are used to prove this unconditionally.

A similar application is made in [W6] to define “higher rho invariants”



Surgery and stratified spaces 333

for various classes of manifolds. For instance, say that a manifold is an-
tisimple if its chain complex is chain equivalent to one with 0 in its mid-
dle dimension (this can be detected homologically). Then its symmetric
signature vanishes and, therefore, assuming the Novikov conjecture, it is
Witt nullcobordant. By gluing together the Witt nullcobordism and the
algebraic nullcobordism one obtains a closed object one dimension higher,
whose symmetric signature (modulo suitable indeterminacies) is an inter-
esting invariant of such manifolds. It can be used to show that the homeo-
morphism problem is undecidable even for manifolds which are given with
homotopy equivalences to each other [NW].

2.13 (Dedicated to the Cheshire cat). Associated to any Witt space
one has a self dual sheaf, namely IC™. Actually, the cobordism group of
self dual sheaves over a space X (assuming the self duality is symmetric)
can be identified with H.(X; L*(Q)), (see [CSW] for a sketch, and [Ht] for
a more general statement including some more general rings!).

This statement has some immediate implications: Since IC™ is topo-
logically invariant, all of the characteristic classes introduced for singular
spaces in this way are topologically invariant. (This is basically the topo-
logical invariance of rational Pontrjagin classes extended to Witt spaces.)

We thus have, away from 2, three rather different descriptions of K-
homology: Witt space bordism, homotopy classes of abstract elliptic oper-
ators (see [BDF, K]), and bordism of self dual sheaves (and, not so different
from this one: controlled surgery obstruction groups).

A number of applications to equivariant and stratified surgery come from
these identifications (and generalizations of them). We will return to some
of these in §6.

2.14. A very nice application of cobordism of the self dual sheaves asso-
ciated to IH and its various pushforwards is given in [CS2]. The goal is
to extend the usual multiplicativity of signature in fiber bundles (with no
monodromy) to stratified maps. We will not give a precise definition of a
stratified map, but it is the intuitive notion, e.g. a fiber bundle has just
one stratum.

Theorem. Let f : X — Y be a stratified map between spaces with even
codimensional strata, and suppose that all the strata of f are of even codi-
mension and the pure strata are simply connected. We then have

Fo(L(X)) =Y sign(e(stars (V) L(V),

1n general there are algebraic K-theoretic difficulties with identifying the Witt group
self dual sheaves, at 2, with a homology theory. However, as Hutt himself was aware,
one can certainly include many more rings than included in that paper.
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where V' runs over the strata of f (which is a substratification of Y). Here
c(+) stands for a compactification — in this case it means the following. If
V =Y it is just the generic fiber. If V is a proper stratum, then one can
consider f~1(cone(L)), where L is the link of a generic top simplex of V,
and then one-point compactify it (i.e, cone off its boundary).

One can deal with nonsimply connected open strata by putting in a cor-
rection term for the monodromy action of 7 (int(V)) on IH (c(starf(V))).

The proof of the theorem in [CS2] is very pretty; it makes use of the ma-
chinery on perverse sheaves found in [BBD] but in explicit cases essentially
produces an explicit cobordism between f.IC(X) and an explicit sum of
other intersection sheaves: one for each stratum of the map.

Remarks.

(1) To get a feeling for the theorem it is worth considering a few special
cases. Firstly, the case of a fiber bundle just reduces to [CHS]. As a
second special case, if one considers a pinch map from a union of two
manifolds along their common boundary, the formula boils down to
Novikov additivity, and the cobordism implicit in the proof is the
pinch cobordism of 2.11. As a final example, one can consider the
case of a circle action on a manifold. Aside from some fundamental
group points, there is a similar cobordism between M and some
projective space bundles over the fixed set components of the circle
action, and the formula of the theorem generalizes by considering
projection to the quotient — with some slight modifications for 0
mod 4 components of fixed set, which lead to non-Witt singularities
— (or specializes to) the formula in [W2] that identifies the higher
signature of a manifold and that of its fixed point set of any circle
action with nonempty fixed point set. The cobordism (discussed
in both [W2] and [CS2]) is then the bubble quotient cobordism of
[CW3].

(2) In the case of an algebraic map, one could directly apply [BBD]
which gives a beautiful and deep decomposition theorem for f,IC
(X) and the general machinery on self dual sheaves to prove the
existence of a formula like the one in the theorem. However, it is
not so clear what the coefficients are.

(3) Still in the algebraic case, it is important to realize that there are
many additional characteristic classes that can be defined for sin-
gular varieties beyond just the L-classes, for instance, MacPherson
Chern classes and Todd classes. In [CS3], there are announced gen-
eralizations of the basic formula where the meaning of c is different:
one must use projective completion to get a variety, and then the
formula must be rewritten to account for the extra topology (think
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about the case of intersection Euler characteristic classes, which can
be dealt with by the proof of the usual Hurwitz formula for Euler
characteristic of branched cover, together with the sheaf version of
intersection Kiinneth). To prove such formulae one uses deforma-
tion to the normal cone (see [Fu2]) to replace the cobordism theory.

2.15. It is worth mentioning but beyond the purview of this survey to
describe in any detail the applications of 2.14 given in [CS3, CS4, Sh2] to
lattice point problems. The connection goes via the theory of toric varieties
for which there are several excellent surveys [Od, Da, Ful], which gives an
assignment of a (perhaps singular) variety to every convex polygon with
lattice point vertices on which a complex torus acts. (See also [Gu] for a
discussion of the purely symplectic aspects of this situation.) Problems like
counting numbers of lattice points inside such a polytope (= computation of
the Erhart polynomial) and Euler —Maclaurin summation formulae can be
reduced to calculations of the Todd class, which are studied in tandem with
L-classes using the projection formulae. These, in turn, have substantial
number theoretic implications.

3. THE GEOMETRY OF HOMOTOPICALLY STRATIFIED SPACES

One of the strengths of Quinn’s formulation of manifold homotopically
stratified spaces is that the defining conditions are homotopic theoretical
(except, obviously, the geometric condition that the strata be manifolds).
This, of course, makes it easier to verify the conditions, but harder to
establish geometric facts about manifold homotopically stratified spaces.
Nevertheless, Quinn was able to prove two important geometric results:
homogeneity and stratified h-cobordism theorems.

Quinn’s homogeneity result says that if x,y are two points in the same
component of a stratum (with adjacent strata of dimension at least 5) of a
manifold homotopically stratified space X, then there is a self-homeomor-
phism (in fact, isotopy) of X carrying = to y. Quinn obtains this as a
consequence of an stratified isotopy extension theorem (an isotopy on a
closed union of strata can be extended to a stratum preserving isotopy on
the whole space). In turn, Quinn proves the isotopy extension theorem by
using the full force of his work on “Ends of maps” (see [Q2,IV]).

As an example of the usefulness of the homogeneity result, consider a
finite group acting on a manifold M. Even though the action need not be
locally linear, the quotient M /G is often a manifold homotopically stratified
space. Thus, the homogeneity result can be used to verify local linearity
by establishing local linearity at a single point of each stratum component.
Quinn first used this technique to construct locally linear actions whose
fixed point set does not have an equivariant mapping cylinder neighborhood
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[Q2,IT]. Weinberger [W1] and Buchdahl, Kwasik and Schultz [BKS] have
also used this result to verify that certain actions were locally linear.

It turns out that there is an alternative way to prove Quinn’s homogene-
ity theorem which is based on engulfing (the classical way that homotopy
information is converted into homeomorphism information in manifolds).
In fact, this alternative method uses a description of neighborhoods of
strata together with MAF (manifold approximate fibration) technology,
and is useful for many other geometric results.

We have seen in §1 that in certain formulations of conditions on a strat-
ification ¥ = {X;} of a space X one considers tubular maps

7i Ui — X; x [0, 400)

where U; is a neighborhood of X; and 7; restricts to the identity U; \
X; — X; x (0,400). For Whitney stratifications, the tubular maps are
submersions on each stratum and fibre bundles over X x (0,+00). Since
strata of manifold homotopically stratified spaces need not have mapping
cylinder neighborhoods, such a result is too much to hope for in general.
However, there is the following result which was proved by Hughes, Taylor,
Weinberger and Williams [HTWW] in the case of two strata and by Hughes
[H3] in general.

Theorem. For manifold homotopically stratified spaces in which all strata
have dimension greater than or equal to 4, tubular maps exist which are
manifold stratified approximate fibrations.

The neighborhoods of the strata which are the domains of these MSAF
(manifold stratified approximate fibration) tubular maps are called teardrop
neighborhoods. They are effective substitutes for mapping cylinder neigh-
borhoods, and the result should be thought of as a tubular neighborhood
theorem for stratified spaces. The point is that even though Quinn’s defi-
nition does not postulate neighborhoods with any kind of reasonable tubu-
lar maps, one is able to derive their existence. The situation is optimal:
minimal conditions in the definition with much stronger conditions as a
consequence. This makes the surgery theory conceptually easier than for
geometrically stratified sets for which the geometric neighborhood struc-
ture must be part of the data.

As mentioned above, these teardrop neighborhoods can be used to give
a different proof of Quinn’s isotopy extension theorem. Manifold approxi-
mate fibrations have the approximate isotopy covering property [H1]. This
property holds in the stratified setting and is used inductively to extend
isotopies from strata to their teardrop neighborhoods. In fact, parametric
isotopy extension is now possible whereas Quinn’s methods only work for
a single isotopy.
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Similarly, other results in geometric topology can be extended to man-
ifold homotopically stratified sets by using MAF technology. For exam-
ple, the homeomorphism group of a manifold homotopically stratified set
is locally contractible, and a stratified version of the Chapman and Ferry
[ChF] a-approximation theorem holds. In short, the case can be made that
manifold homotopically stratified sets are the correct topological version of
polyhedra and Thom’s stratified sets.

4. BROWDER-QUINN THEORY

In [BQ], Browder and Quinn introduced an interesting, elegant, and use-
ful general classification theory for strongly stratified spaces. The setting
is a category where one has a fixed choice of strong stratification as part of
the data one is interested in.

4.1. Let X be a strongly stratified space (Q.g. a geometrically stratified

space as in §1.3) with closed pure strata X (see §1.3). An h-cobordism
with boundary X is a stratified space Z with boundary X U X’ where
the inclusions of X and X’ are stratified homotopy equivalences, and the
neighborhood data for the strata of Z are the pullbacks with respect to
the retractions of the data for X (and of X’). This condition is automatic
in the PL and Diff categories when one is dealing with something like the
quotient of a group action stratified by orbit types.

Theorem. The h-cobordisms with boundary X (ignoring low dimensional
strata) are in a 1-1 correspondence with a group WhB9(X). There is an

isomorphism WhP??(X) =~ @ Wh(X").
The map WhP?(X) — @Wh(yl) is given by sending

—t =51

(Z,X) — (r(Z",X")).

One proves the isomorphism (and theorem) inductively, using the classical
h-cobordism theorem to begin the induction, and using the strong stratifi-
cations to pull up product structures to deal with one more stratum.

4.2. The surgery theory of Browder and Quinn deals with the problem of
turning a degree one normal map into a stratified homotopy equivalence
which is transverse, i.e. one for which the strong stratification data in
the domain is the pullback of the data from the range.

This transversality is, in practice, the fly in the ointment. When one
is interested in classifying embeddings or group actions usually the bundle
data is something one is interested in understanding rather than a prior:
assuming. Still, in some problems (e.g. those mentioned in 6.3) one can
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sometimes prove that transversality is automatic. Also, of course, if one
uses the machinery to construct examples, it is certainly fine if one produces
examples that have extra restrictions on the bundle data.

4.3. Either by induction or by mimicking the usual identification of normal
invariants, one can prove that NIP?(X) = [X; F/Cat].

4.4. Define SB?(X) to be the strongly stratified spaces with a transverse
stratified simple homotopy equivalence to X up to Cat-strongly stratified
simple isomorphism (note this implicitly is keeping track of “framings”).
Then, one has groups LZ?(X) and a long exact surgery sequence:

- — LPO(X x I'rel 9) — SB9(X) — [X; F/Cat] — LP?(X).

4.5. Note that unlike the Whitehead theory LZ?(X) does not decompose
into a sum of L-groups of the closed strata. Indeed, for a manifold with
boundary SP@ is just the usual structure set (existence and uniqueness
of collars gives the strong stratification structures) and the L-group is the
usual L-group of a manifold with boundary, i.e. is a relative L-group, not
a sum of absolute groups.

However, there is a connection between the L-groups of the pure strata
and LPQ(X). This exact sequence generalizes the exact sequence of a pair
in usual L-theory, and expresses the fact that as a space LE?(X) is the
fiber of the composition

L(Xy) — L(0Neighborhood(Xy)) — L(cl(X \ Xo))

where the first map is a transfer and the second is an inclusion.

4.6. The proof of this theorem is by the method of chapter 9 of [Wa]: one
need only verify the w7 theorem. This is done by induction.

5. HOMOTOPICALLY STRATIFIED THEORY

If one does not want to insist on the transversality condition required
in the Browder-Quinn theory, or if one is only dealing with homotopically
stratified spaces, it is necessary to proceed somewhat differently. For more
complete explanations, see [W4], [W5]. We will only discuss the topological
version. The PL version is simpler but slightly more complicated.

5.1 The h-cobordism theorem. That new phenomena would arise in
any systematic study of Whitehead torsion on nonmanifolds was clear from
the start. Milnor’s original counterexamples to the Hauptvermutung for
polyhedra were based on torsion considerations [M1]. Siebenmann gave
examples of locally triangulable nontriangulable spaces — not at all due to
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Kirby-Siebenmann considerations, but rather Ky. More pieces came for-
ward in the work on Anderson-Hsiang [AnH1, AnH2] and then in [Q2],
which showed that under appropriate K-theoretic hypotheses one can tri-
angulate, and therefore apply the straightforward PL torsion theory.

Real impetus came from the theory of group actions. Cappell and Shane-
son [CS1] gave the striking examples of equivariantly homeomorphic repre-
sentation spaces, which laid down the gauntlet to the topological commu-
nity at large to deal with the issue of equivariant classification. h-cobordism
theorems suitable for the equivariant category were produced by Stein-
berger (building on joint work with West) [St] and by Quinn [Q4] in the
generality of homotopically stratified spaces (although the theorem in that
paper does not include realization of all torsions in an h-cobordism?).

The ultimate theorem asserts, as usual, that (ignoring low dimensional
issues) h-cobordisms on a stratified space X are classified by an abelian
group Wh'P(X).

Theorem. Wh'P(X) = @ Wh'P(X?, X*~1), and we have an evact se-
quence

- — Ho(X" 1 Wh(m (holink))) — Wh(r (X*\ X)) —
Wh'P (X4 X1 — Ho(X" 1 Ko (i (holink))) — Ko(m (X*\ X*71)).

Boldface terms are spectra. This decomposition of Wh' into a di-
rect sum does not respect the involution obtained by turning h-cobordisms
upside down, which is a pleasant descendant of the analogous fact in the
Browder-Quinn theory. It does not have an analogue in L-theory.

5.2 Stable classification. Ranicki (following a sketch using geometric
Poincaré complexes in place of algebraic ones, by Quinn) has elegantly
reformulated the usual Browder-Novikov-Sullivan-Wall surgery exact se-
quence in the topological manifold setting as the assertion that there is a
fibration:

S(M) — Hy,(M;L(e)) — Ly (1 (M))

where X means a space (or better a spectrum) whose homotopy groups are
those of the group valued functor ordinarily denoted by X. S(M) is the
structure set of M, which essentially® consists of the manifolds simple ho-
motopy equivalent to M up to homeomorphism. The map H,, (M;L(e)) —

2As pointed out in [HTWW], the teardrop neighborhood theorem can be used to
complete the proof of realization.

3In actuality, for our purposes it is best to use the finite dimensional ANR homology
manifolds, and the equivalence relation is s-cobordism. See Mio’s paper [Mi] in Volume 1
for a discussion of the difference this makes. (It is at most a single Z if M is connected.)
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L, (m(M)) is called the assembly map and can be defined purely alge-
braically. Geometrically it has several interpretations: most notably, as
the map from normal invariants to surgery obstructions in the topological
category, or as a forgetful map from some variant of controlled surgery to
uncontrolled surgery.

Since the assembly map has a purely algebraic definition, one can ask
whether it computes anything interesting if X is not a manifold? and
alternatively, if X is just a stratified space, what is the analogue of this
sequence?

Cappell and the second author gave an answer to the first question in
[CW2] where it is shown (under some what more restrictive hypotheses)
if X is a manifold with singularities, i.e. X contains a subset ¥ whose
complement is a manifold, and suppose further that ¥ is 1-LCC embedded*
in X, then S*8(X) = S(X rel X) where S*8(X) denotes the fiber of the
algebraically defined assembly map H,(X;L(e)) — L(X) and S(X rel X)
means

{p: X" — X | pis a stratified simple® homotopy equivalence
with p|2(X’) already a homeomorphism}.

The answer to the second question is a bit more complicated, and actually
requires two fibrations in general. The first is a stable generalization of the
surgery exact sequence:

S™®(X rel Y) — Ho(X;LP?(— el Y)) — LBY™°(X rel V).

Here the superscripts —oo denote that we are using a stable version of
structure theory: we will soon explain that it only differs from the usual
thing at the prime 2, and the phenomenon is governed by algebraic K-
theory. The coefficients of the homology is with respect to a cosheaf of
L-spectra: to each open set U of X one assigns the spectrum L(U rel U N
Ywith compact support). The BQ superscripts are a slight generalization
of the theory discussed in §4.

To complete the theory one needs a destabilization sequence. This is
given by the following:

S(X) — S7%(X) — H(Z; Wh'P(X)=)

Here S(X) is the geometric structure set, and S™°°(X) is the stabilized
version, which differ by a Tate cohomology term. An analogous sequence

4This means that maps of 2-complexes into X can be deformed slightly to miss 3.
5The material of 5.1 can be used to make sense of this.
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developed for a quite similar purpose appears in [WW]. Indeed in [HTWW]
the theory outlined in this subsection is deduced from the [WW] results
using blocked surgery [Q1, BLR, CW2] and [HTW1,2] (the classification of
manifold approximate fibrations) and the teardrop neighborhood theorem.
On the other hand, there are different approaches to all this using controlled
end and/or surgery theorems that are sketched in [W4], [W5].

6. SOME APPLICATIONS OF THE
STRATIFIED SURGERY EXACT SEQUENCE

In practice the application of the theory of the previous section requires
additional input for the calculations to be either possible or comprehensible.
See [CW4] for the application to topological group actions. The last 100
pages of [W4] also give more applications than we can hope to discuss here.

6.1. Probably the simplest interesting and illustrative example of the clas-
sification theorem is to locally flat topological embeddings. The first point
is that this problem is susceptible to study by these methods: Every topo-
logical locally flat embedding gives a two stratum homotopically stratified
space where the holink is a homotopy sphere and conversely. This last is
essentially Quinn’s characterization of local flatness in [Q2,]].

Things are very different in codimensions one and two from codimension
three and higher. We will defer to 6.3 the low codimensional discussion and
restrict our attention here to the last of these cases.

Lemma. If (W, M) is a manifold pair with cod(M) > 2, then LB? (W, M)
>~ (W) x L(M) where the map is the forgetful map.

The proof is straightforward. Note that the lemma implies the analo-
gous statement holds at the level of cosheaves of spectra (2 being quasi-
isomorphism). It is quite straightforward in this case to work out the
Whitehead theory: there are no surprises. Thus, we obtain:

Corollary. S(W, M) = S(W) x S(M).

Note that the discussion makes perfect sense even if (W, M) is just a
Poincaré pair (see [Wal), and then the corollary boils down to the statement
that isotopy classes of embeddings of one topological manifold in another
(in codimension at least 3) are in a 1-1 correspondence with the Poincaré
embeddings (see [Wal).

(Actually, a bit more work enables one to prove the same thing for M
an ANR homology manifold.)

6.2. Using the material from §2 we can also analyze, away from 2, S(X)
for a very interesting class of spaces that have even codimensional strata.
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We continue to let S2'8(X) denote the fiber of the classical assembly map
H.(X;L(e)) — L(X). Tt is what the structure set of X would be if X were
a manifold.

Theorem([CW2]). If X is a space with even codimensional strata and
all holinks of all strata in one another simply connected, then there is an
isomorphism ®[1/2]

S(X) = P 5¥8(V)
where the sum is over closed strata.

The proof consists of building an isomorphism LB%(X) = @ L(V)[1/2]
for arbitrary X satisfying the hypotheses. It is obvious enough how to
introduce Q coefficients into LP®?. Ranicki [R] has shown that introducing
coefficients does not change L at the odd primes, but with Q-coefficients one
can make forgetful maps to L(V; Q) using the intersection chain complexes.

6.3. To give an example where things work out differently, we shall assume
that the holinks are aspherical, and that the Borel conjecture holds for the
fundamental groups of these holinks. (This example is a special case of the
theory of “crigid holinks” in [W4].)

In this case there is nothing good that can be said about the global
LB term, in general. However, the assumptions are enough to imply that
H.(X;LP?) = [X;L(e)]. (See [W4], [BL] for a discussion.) In particu-
lar, for locally flat embeddings in codimension 1 and 2, one sees that the
fiber of S(W, M) — S(W) only involves fundamental group data, not, say,
the whole homology of the manifold and submanifolds. This, too, reflects
phenomena already found in Wall’s book [Wa].

Another amusing example is X = simplicial complex, stratified by its
triangulation. Then one gets LB (X) 2 [X; L(e)].

There are other interesting examples that display similar phenomena
that come up from toric varieties. The theory of multiaxial actions (see §2
and [Dv2]) is another situation where the local cosheaves tend to decompose
into pieces that can be written in simple terms involving skyscraper L(e)-
cosheaves. Not all holinks are crigid and consequently different phenomena
appear: indeed signatures 0 and 1 alternate in the simply connected holinks,
with quite interesting implications. As a simple exercise, one can see that
while S"~1/U(n) is contractible, its structure set® S(S"=1/U(n)) = Zo,.
Similarly, S*2"~1/Sp(n) is contractible, but its structure set” is Z.

6 Actually, the structure set is Z x Zo with the extra Z corresponding to actions on
nonresolvable homology manifolds that are homotopy spheres.
7Same caveat as above.



Surgery and stratified spaces 343

Remark. If all holinks are simply connected (as in the case of multiaxial
actions of U(n) and Sp(n)) one always has a spectral sequence computing
S(X) in terms of the S28(X;). For instance, if there are just two strata
X D X, there is an exact sequence:

cee— Salg(z x I)— Salg(X) - 5(X) — Salg(z) — ...

The sequence continues to the left in the most obvious way. On the right it
continues via deloops of the algebraic structure spaces. The map S2&(X x
I) — S*2(X) depends on the symmetric signature of the holink (and on the
monodromy of the holink fibration). The case where the simply connected
holink is rigid is essentially that of manifolds with boundary. The normal
invariant term here is [X; L(e)], but thought of here as H(X,9X; L(e)).
On the other hand, in 6.2 we gave an important case where this spectral
sequence degenerates (at least away from the prime 2).

6.4. As our final example, let us work out in detail a case that is some-
what opposite to the one of the previous paragraph: X = the mapping
cylinder of even a PL block bundle V' — N, with fiber F', where N is a
sufficiently good aspherical manifold. (Sufficiently good is a function of
the reader’s knowledge. Even the circle is a case not devoid of interest.)
We are interested in understanding what the general theory tells us about
S(X rel V).

Firstly, there is the calculation of the Whitehead group. (Or even pseu-
doisotopy spaces ... ). In this case, the sequence boils down to:

Ho(N; Why (F)) — Why (V) — Wh*P(X rel V)

In a totally ideal world, the assembly maps Ho(N; Why(F)) — Why (V)
and Ho(N;Ko(F)) — Ko(V) would be isomorphisms, and Wh*?(X rel V)
would vanish. However, even in the case of N = S' where the assembly
map (for the product bundle) was completely analyzed by [BHS], this is
not true. In that case, there is an extra piece called Nil that obstructs
this; however, Nil is a split summand. Thus, the assembly maps are still
injections, and one obtains an isomorphism of Wh**?(X rel V) with a sum
of Nils. In general, the pattern discovered by Farrell and Jones [FJ] shows
that the cokernel of these assembly maps is at least reasonably conjectured
to be a “sum” of Nils.

The splitting of the K-theory assembly map essentially boils down to the
assertion that Wh@(X rel V) — Wh'P(X rel V) has a section. There are
fairly direct proofs of this fact when N is a nonpositively curved Riemannian
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manifold in [FW] and in [HTW3]. The first approach notes that putting
a PL structure on stratified spaces can be viewed (essentially following
[AnH1, AnH2]) as a problem of reducing the tangent microbundle to the
group of block bundle maps: but in the presence of curvature assumptions
this can be done in the large by the methods of controlled topology.

The approach in [HTW3] depends on the same controlled topology, but
its focus is showing that one can associate a MAF structure to any map
whose homotopy fiber is finitely dominated. The teardrop neighborhood
theorem of course provides the relation between these approaches.

The same analyses can be done for the (stable) structure set S(X rel V).
In this case one does often have the vanishing of the analogue of Nil (al-
though if there’s orientation reversal or complicated monodromy in the
bundle, this might not be the case). The structure set is here described as
the fiber of the assembly map, and thus it often vanishes.

This has an interesting interpretation. Let us suppose that the fiber is
K-flat, i.e. that Wh(mi(F) x Z*) = 0 for all k to avoid any potential end
obstructions. In this case one also knows that all MAF’s are equivalent to
block bundle projections.

The vanishing of S(X rel V) means that S(X) 2 S(V) by the “obvious”
fibration: S(X rel V) — S(X) — S(V). (We'll discuss the “” marks in
a moment.) Now S(X) is basically the same thing as the F-block bundles
on N with fiber a manifold homotopy equivalent to F. Thus we have
a generalized fibration theorem for manifolds with maps to N. (Indeed,
the Farrell fibration theorem [Fa] is all that is necessary to feed into the
machinery to get out the calculation of L-groups: that’s the content of
Shaneson’s thesis [Sh1]!)

Without the K-flatness, we see that there are still only Nil obstructions
to obtaining MAF structures (but genuine K-theory obstructions to getting
block structures).

To return to the “obvious” fibration, a little thought shows that it is not
at all obvious. What is obvious is that it is a fibration over the components
of S(V) in the image of the map S(X) — S(V). We are asserting, after the
arguments given above, that this image is all the components, but prima
facie, the argument in whole is circular.

However, that is not the case as a consequence of the complete general
theory. The map S(X) — S(V) is actually an infinite loop map, isomorphic
to its own 4*" loop space (see [CW1, We5]). Thus, the fact that we knew
exactness at the m; level for ¢ = 3,4 gives us everything we want for any
such ad hoc component problem. (This is exactly the same point involved
in continuing the exact sequence of 6.3 further to the right.)
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