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Stratifications of teardrops

by

Bruce H u g h e s (Nashville, TN)

Abstract. Teardrops are generalizations of open mapping cylinders. We prove that
the teardrop of a stratified approximate fibration X → Y ×R with X and Y homotopically
stratified spaces is itself a homotopically stratified space (under mild hypothesis). This is
applied to manifold stratified approximate fibrations between manifold stratified spaces
in order to establish the realization part of a previously announced tubular neighborhood
theory.

1. Introduction. The teardrop of a map p : X → Y × R is a space
X ∪p Y obtained by gluing Y to the positive infinity end of X determined
by the map p. Such a construction is necessary to describe neighborhoods of
Y in a space Z when Y may fail to have a mapping cylinder neighborhood.

We work in the general setting of the homotopically stratified spaces of
Quinn [15]. The failure to have mapping cylinder neighborhoods is fairly
common for such spaces, even when the strata are manifolds. In [6] a theory
of tubular neighborhoods for these manifold stratified spaces was announced
(for high-dimensional strata). The existence part of the theory says that
every skeleton Y has a neighborhood which is the teardrop of some manifold
stratified approximate fibration X → Y ×R. The uniqueness part says that
the manifold stratified approximate fibration is unique up to controlled,
stratum preserving homeomorphism.

The goal of this paper is to give the realization part of the theory. Namely,
we prove that if Y is a potential skeleton of a manifold stratified space and
p : X → Y × R is a manifold stratified approximate fibration, then X ∪p Y
is a manifold stratified space with Y as a skeleton. This is the third part of
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the Main Theorem. The first two parts show that weaker conditions on X
and Y are also reflected in the teardrop.

Main Theorem. Let p : X → Y ×R be a proper stratified approximate fi-
bration between locally compact , separable metric spaces with stratifications.
Suppose that X and Y have only finitely many strata and that the strata of
Y are path connected.

(1) If X and Y are homotopically stratified , then so is X ∪p Y .
(2) If , in addition, X and Y have ANR strata and compactly dominated

local holinks, then so does X ∪p Y .
(3) If , in addition, X and Y are manifold stratified , then so is X ∪p Y .

The three parts of this theorem appear in Theorems 4.3, 5.4 and 6.1
below.

The work [11] by Hughes, Taylor, Weinberger, and Williams contains a
complete account of the tubular neighborhood theory for manifold stratified
spaces with two strata. The papers [7] and [8], as well as the present paper,
are installments in the series (to culminate in [9]) which will provide the
theory in the general multiple strata case.

Even though certain aspects of [11] and [8] are generalized here, it is
important to understand that the present paper depends on many of the
results in the previous two (as well as [7]).

2. Definitions. In this section we gather some background material
on mapping cylinders, teardrops, spaces with stratifications, and stratified
approximate fibrations.

Mapping cylinders. The mapping cylinder of a map p : X → Y is the
space

cyl(p) = ((X × I)q Y )/{(x, 1) ∼ p(x) ∈ Y | x ∈ X}
with the teardrop topology , that is, the minimal topology such that:

(1) the inclusion X × [0, 1)→ cyl(p) is an open embedding,
(2) the function

c : cyl(p)→ Y × I,
{

[x, t] 7→ (p(x), t) if (x, t) ∈ X × [0, 1),
[y] 7→ (y, 1) if y ∈ Y ,

is continuous.

The open mapping cylinder c̊yl(p) is cyl(p) \ (X × {0}). If p : X → Y is
a proper map between locally compact Hausdorff spaces, then the teardrop
topology agrees with the usual quotient space topology on the mapping
cylinder. See [10, Chap. 12] and [11, §3] for further remarks on the teardrop
topology.
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We will have occasion to use the following three maps:

pX : cyl(p) \ Y → X, [x, t] 7→ x, (x, t) ∈ X × [0, 1),

pY : cyl(p)→ Y,

{
[x, t] 7→ p(x), (x, t) ∈ X × I,
[y] 7→ y, y ∈ Y ,

pI : cyl(p)→ I,

{
[x, t] 7→ t, (x, t) ∈ X × I,
[y] 7→ 1, y ∈ Y .

Teardrops. The teardrop of a map p : X → Y ×R is the space denoted by
X ∪p Y whose underlying set is the disjoint union X q Y with the minimal
topology such that

(1) X ⊆ X ∪p Y is an open embedding, and
(2) the function c : X∪pY → Y ×(−∞,+∞], called the teardrop collapse,

defined by

c(x) =
{
p(x) if x ∈ X,
(x,+∞) if x ∈ Y ,

is continuous.

This generalizes the open mapping cylinder of a map g : X → Y . Namely,
c̊yl(g) is naturally homeomorphic to the teardrop (X×R)∪g×idRY . However,
not all teardrops are open mapping cylinders because not all maps to Y ×R
can be split as a product.

Spaces with stratifications. The basic definitions from the theory of strat-
ifications are presented here. For a fuller treatment see [7].

(1) A partition of a space X consists of an index set I and a collection
{Xi}i∈I of pairwise disjoint subspaces of X such that X =

⋃
i∈I Xi.

(2) A stratification of a space X consists of an index set I and a locally
finite partition {Xi}i∈I of locally closed subspaces of X.

(3) In either case, for i ∈ I, Xi is the i-stratum and

Xi =
⋃
{Xk | Xk ∩ cl(Xi) 6= ∅}

is the i-skeleton.

For a space X with a stratification {Xi}i∈I , define a relation ≤ on the
index set I by

i ≤ j if and only if Xi ⊆ cl(Xj).

The stratification satisfies the Frontier Condition if for every i, j ∈ I,

Xi ∩ cl(Xj) 6= ∅ implies Xi ⊆ cl(Xj).

If {Xi}i∈I is a stratification of X, then the Frontier Condition holds if and
only if ≤ is a partial ordering of I and for each i ∈ I, Xi = cl(Xi).
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Let X be a space with a partition.

(1) A map f : Z × A → X is stratum preserving along A if for each
z ∈ Z, f({z} ×A) lies in a single stratum of X.

(2) A map f : Z × I → X is a stratum preserving homotopy if f is
stratum preserving along I.

(3) A map f : Z × I → X is a nearly stratum preserving homotopy if
f |Z × [0, 1) is stratum preserving along [0, 1).

(4) If A, Y ⊆ X, then a map f : Y × I → X is a nearly stratum preserv-
ing deformation of Y to A in X if f0 = inclusion, f is a nearly stratum
preserving homotopy, and f1(Y ) ⊆ A.

The natural partitions of mapping cylinders and teardrops. Let X and Y
be spaces with partitions {Xi}i∈I and {Yj}j∈J , respectively. If p : X → Y
is a map, then the mapping cylinder cyl(p) is naturally partitioned by

{Xi × [0, 1)}i∈I ∪ {Yj}j∈J .
If p : X → Y ×R is a map, then the teardrop X∪pY is naturally partitioned
by

{Xi}i∈I ∪ {Yj}j∈J .
The product Y × R is naturally partitioned by {Yj × R}j∈J . Moreover,
Y × (−∞,+∞] is naturally partitioned by {Yj ×R}j∈J ∪{Yj ×{+∞}}j∈J .
Thus, Y × (−∞,+∞] is the open mapping cylinder of the identity Y → Y
with the natural partition.

Stratified approximate fibrations. More definitions are recalled from [6]
and [7]. Let X and Y be spaces with partitions {Xi}i∈I and {Yj}j∈J , re-
spectively. A map p : X → Y is a stratified approximate fibration provided
given any commuting diagram

Z X

Z × I Y

×0
²²

f //

p

²²
F //

with F a stratum preserving homotopy, there exists a stratified controlled
solution, i.e., a map F̃ : Z × I × [0, 1) → X which is stratum preserving
along I × [0, 1) and such that F̃ (z, 0, t) = f(z) for each (z, t) ∈ Z × [0, 1),
and the function F : Z × I × I → Y defined by F |Z × I × [0, 1) = pF̃ and
F |Z× I×{1} = F × id{1} is continuous and stratum preserving along I× I.

Of course, an approximate fibration is a map p : X → Y which is a
stratified approximate fibration when X and Y are stratified with a single
stratum. For more background on approximate fibrations from the point of
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view used here see [12]. The original definition of an approximate fibration
is due to Coram and Duvall [3].

3. Embedding a teardrop in a mapping cylinder. In this section we
show how to embed teardrops into certain mapping cylinders. This allows us
to use our previous results on mapping cylinders [8] to prove results about
teardrops in §4. We also prove a technical result about mapping cylinders
which will be used in §4.

Let X and Y be spaces with partitions {Xi}i∈I and {Yj}j∈J , respec-
tively. Let p : X → Y × R be a proper map. Consider the composition

p′ : X
p−→ Y × R ⊆−→ Y × (−∞,+∞].

Let β : Y × (−∞,+∞] → [0, 1] be a map such that β−1(1) = Y × {+∞}.
Consider the subspace cyl(p′)β ⊆ cyl(p′) defined by

cyl(p′)β = {[x, s] ∈ cyl(p′) | βp′(x) ≤ s ≤ 1} ∪ Y × (−∞,+∞].

This is a damped mapping cylinder . Define αβ : X ∪p Y → cyl(p′)β by
{
αβ(x) = [x, β(p(x))] ∈ cyl(p′) if x ∈ X,
αβ(y) = [y,+∞] ∈ Y × {+∞} ⊆ cyl(p′) if y ∈ Y .

Proposition 3.1. αβ : X ∪p Y → cyl(p′)β is a stratum preserving em-
bedding.

P r o o f. To see that αβ is continuous, apply the Continuity Criteria
[11, 3.4]. To this end, first observe that

αβ |α−1
β (cyl(p′)β \ Y × (−∞,+∞]) ⊆ X → cyl(p′)β \ Y × (−∞,+∞]

is given by αβ(x) = (x, βp(x)), hence, is continuous. Then observe that the
composition cαβ : X ∪p Y → Y × (−∞,+∞] × I, where c : cyl(p′)β →
Y × (−∞,+∞] × I is the restriction of the teardrop collapse for cyl(p′), is
just the map c′ × βc′, where c′ : X ∪p Y → Y × (−∞,+∞] is the teardrop
collapse for X ∪p Y ; hence, αβ is continuous.

Obviously, αβ is one-to-one. To see that α−1
β is continuous, note that

Im(αβ) ⊆ X×[0, 1)∪Y ×{+∞} ⊆ cyl(p′). Define γ : X×[0, 1)∪Y ×{+∞} →
X ∪p Y by

γ(x, s) = x ∈ X ⊆ X ∪p Y, γ(y,+∞) = y ∈ Y ⊆ X ∪p Y.
Then γ is continuous (use [11, 3.4] again) and α−1

β = γ|Im(αβ).
That αβ preserves strata is immediate.

The following result will be used in the proof of Lemma 4.5.

Proposition 3.2. If X and Y are locally compact , separable, metric
spaces with stratifications satisfying the Frontier Condition and p : X →
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Y ×R is a proper stratified approximate fibration, then there exists a nearly
stratum preserving deformation of cyl(p′)β to Y × {+∞} rel Y × {+∞}.

P r o o f. The conditions on Y imply that it can be given a complete
bounded metric d. Assume that Y × (−∞,+∞] has a product metric so
that projectionY × (−∞,+∞] → Y is distance nonincreasing. Recall from
[11, 3.15] that cyl(p′)β is metrizable. We begin by giving a convenient de-
scription of a nearly stratum preserving deformation g : Y ×(−∞,+∞]×I →
Y × (−∞,+∞] of Y × (−∞,+∞] to Y × {+∞} rel Y × {+∞}. For each
i = 0, 1, . . . , let

gi : Y × (−∞,+∞]×
[

i

i+ 1
,
i+ 1
i+ 2

]
→ Y × (−∞,+∞]

be an isotopy such that

(1) gii/(i+1) = id,

(2) gi is supported on Y × (−∞, i+ 0.75],
(3) Im(gi(i+1)/(i+2)) ⊆ Y × [i+ 0.25,+∞],

(4) gi is fiber preserving over Y .

Then define g : Y × (−∞,+∞]× I → Y × (−∞,+∞] inductively by

gt = git ◦ gi−1
i/(i+1) ◦ . . . ◦ g0

1/2 for
i

i+ 1
≤ t ≤ i+ 1

i+ 2
,

and g1(y, s) = (y,+∞).
Using the fact that p is a proper stratified approximate fibration and the

interpretation of controlled maps in [11, 3.19], one can deduce the existence
of maps

g̃ i : cyl(p)×
[

i

i+ 1
,
i+ 1
i+ 2

]
→ cyl(p),

for each i = 0, 1, . . . , such that

(1) g̃ ii/(i+1) = id,

(2) g̃ i is stratum preserving along [i/(i+ 1), (i+ 1)/(i+ 2)],
(3) g̃ i is level preserving, i.e., pI g̃ i = pI ,
(4) pY×R ◦ g̃ it is 1/2i-close to git ◦ pY×R for each t ∈ [i/(i + 1),

(i+ 1)/(i+ 2)],
(5) pY×R ◦ g̃ it|p−1

Y×R(Y × [n,+∞)) is 1/2n-close to git ◦ pY×R| for each
t ∈ [i/(i+ 1), (i+ 1)/(i+ 2)] and n = 0, 1, . . . ,

(6) g̃ i|Y × R× I = gi|Y × R× I.

Extend g̃ i to a map with the same name

g̃ i : cyl(p′)×
[

i

i+ 1
,
i+ 1
i+ 2

]
→ cyl(p′)
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via the identity on Y × {+∞}. In order to show that this extension is
continuous, suppose {(wj , tj)} is a sequence in cyl(p)×[i/(i+1), (i+1)/(i+2)]
such that wj → (y0,+∞) ∈ Y × {+∞} and tj → t0 as j → ∞. It must be
shown that

g̃ i(wj , tj)→ g̃ i(y0,+∞, t0) = (y0,+∞) as j →∞.
Because of the teardrop topology and the fact that g̃ i is level preserving, it
suffices to show that pY×R◦ g̃ itj (wj)→ (y0,+∞) as j →∞. But item (5) im-
plies that the distance between pY×R ◦ g̃ itj (wj) and gitj ◦pY×R(wj) converges
to 0 as j →∞. Also, pY×R(wj)→ (y0,+∞) as j →∞. Thus,

gi(pY×R(wj), tj)→ gi(y0,+∞, t0) = (y0,+∞) as j →∞.
This completes the proof that g̃ i is continuous.

Define g̃ : cyl(p′)× [0, 1)→ cyl(p′) inductively by

g̃t = g̃ it ◦ g̃ i−1
i/(i+1) ◦ · · · ◦ g̃0

1/2 for
i

i+ 1
≤ t ≤ i+ 1

i+ 2
.

In particular, g̃ is stratum preserving along [0, 1).
Let % : cyl(p′) → cyl(p′)β be the natural retraction defined by pushing

down the mapping cylinder rays. Let p∞ : cyl(p′)→ Y ×{+∞} be given by

p∞ = projection ◦ pY×(−∞,+∞].

Define

ĝ : cyl(p′)β × I → cyl(p′)β ,
{
ĝ|cyl(p′)β × [0, 1) = % ◦ g̃,
ĝ1 = limt→1 p∞ ◦ g̃t.

Note that g|Y × (−∞,+∞]× I = g.
We need to conclude that ĝ1 is well defined and that ĝ is continuous.

Using the fact that the gi are fiber preserving over Y and the definition
of g̃, one can verify that: for every ε > 0 there exists t0 < 1 such that
d(p∞g̃t, p∞g̃s) < ε if t0 ≤ s, t < 1. The desired conclusions then follow from
standard facts about complete metric spaces.

4. Homotopically stratified teardrops. In this section we recall the
definitions relating to Quinn’s homotopically stratified spaces [15], and then
prove the main result, Theorem 4.3, showing that the teardrop construction
keeps one inside the category of homotopically stratified spaces.

Homotopy links. A homotopy model for the normal space of a subspace
is provided by the homotopy link (cf. [15]). Let X be a space with a partition
{Xi}i∈I and Y ⊆ X.

(1) The homotopy link of Y in X is defined by

holink(X,Y ) = {ω ∈ XI | ω(t) ∈ Y if and only if t = 0}.
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(2) The stratified homotopy link of Y in X consists of all ω in
holink(X,Y ) such that ω((0, 1]) lies in a single stratum of X:

holinks(X,Y )={ω ∈ holink(X,Y ) | for some i, ω(t) ⊆ Xi for all t ∈ (0, 1]}.
(3) Evaluation at 0 defines maps

q : holink(X,Y )→ Y and q : holinks(X,Y )→ Y, q(ω) = ω(0),

both called holink evaluation.
(4) The stratified homotopy link has a natural partition with i-stratum

holinks(X,Y )i = {ω ∈ holinks(X,Y ) | ω(1) ∈ Xi}.
Homotopically stratified spaces. More definitions are now recalled (see

[6], [7], [11], [15]). A subset Y ⊆ X is forward tame in X if there exist
a neighborhood U of Y in X and a homotopy h : U × I → X such that
h0 = inclusion : U → X, ht|Y = inclusion : Y → X for each t ∈ I,
h1(U) = Y , and h((U \ Y )× [0, 1)) ⊆ X \ Y . If, in addition, h can be taken
to be nearly stratum preserving, then Y is stratified forward tame in X.

Definition 4.1. A space X with a stratification satisfying the Frontier
Condition is a homotopically stratified space if the following two conditions
are satisfied:

(i) (Forward Tameness) For each k > i, the stratum Xi is forward tame
in Xi ∪Xk.

(ii) (Normal Fibrations) For each k > i, the holink evaluation

q : holink(Xi ∪Xk, Xi)→ Xi

is a fibration.

The following is the main result from [8] concerning mapping cylinders
of stratified approximate fibrations between homotopically stratified spaces.
We will use it, along with the embedding result from §3, in the proof of
Theorem 4.3 below.

Theorem 4.2 [8]. Let p : X → Y be a proper map between locally
compact homotopically stratified metric spaces each with only finitely many
strata, and suppose the strata of Y are path connected. Then p is a stratified
approximate fibration if and only if cyl(p) with the natural partition is a
homotopically stratified space.

The teardrop of a stratified approximate fibration. We are now ready for
the main result.

Theorem 4.3. Let X and Y be locally compact , separable, homotopically
stratified metric spaces each with only finitely many strata and suppose the
strata of Y are path connected. If p : X → Y × R is a proper stratified
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approximate fibration, then the teardrop X ∪p Y with the natural partition
is a homotopically stratified space.

The proof of Theorem 4.3 is based on the following lemmas whose hy-
potheses include the hypothesis of Theorem 4.3. We also use the notation
of §3. In particular, there is the mapping cylinder collapse pY×(−∞,+∞] :
cyl(p′)→ Y × (−∞,+∞].

Lemma 4.4. If A is a closed union of strata of Y , then there exists a
map

β : Y × (−∞,+∞]→ [0, 1]

with β−1(1) = Y × {+∞} such that A × (−∞,+∞] is stratified forward
tame in cyl(p′)β.

P r o o f. It follows from [7, Theorem 6.3] that A×R is stratified forward
tame in Y × R. Thus, Theorem 4.2 above implies that A × R is stratified
forward tame in cyl(p). In fact, there is a neighborhood U of A×R in Y ×R
and a nearly stratum preserving deformation G : cyl(pU ) × I → cyl(p) of
cyl(pU ) to A×R in cyl(p) rel A×R where pU = p| : p−1(U)→ U such that
G| : U × I → Y × R is a given nearly stratum preserving deformation of U
to A×R in Y ×R rel A×R (cf. the proof of [8, Prop. 5.7]). We may assume
that U = V × R where V is a neighborhood of A in Y , that there exists a
nearly stratum preserving deformation g : V × I → Y of V to A in Y rel
A, and that G|U × I = g × idR. Let U0 = V × (−∞, 0] and, for i = 1, 2, . . . ,
let Ui = V × [i− 1, i]. For i = 1, 2, . . . choose maps δi : Ui → (0, 1] (using a
partition of unity) such that if 1 − δi(p(x)) ≤ s ≤ 1 and x ∈ p−1(Ui), then
G([x, s], t) is 1/i-close to G([p(x)], t) for each t ∈ I. Let δ0 ≡ 1. Consider the
subspace W ⊆ cyl(p′) given by

W =
∞⋃

i=0

{[x, s] ∈ cyl(p) \ (Y × R) | x ∈ p−1(Ui), 1− δi(p(x)) ≤ s ≤ 1}

∪ V × (−∞,+∞].

Note that W ∩ cyl(p) ⊆ cyl(pU ) and W \ cyl(p) = V × {+∞}. Now
G|(W ∩ cyl(p)) × I extends continuously to G̃ : W × I → cyl(p′) by set-
ting G̃(y,+∞, t) = (g(y, t),+∞) for y ∈ V .

Use a partition of unity to construct a map β : Y × (−∞,+∞] → [0, 1]
such that β−1(1) = Y × {+∞} and cyl(p′)β ∩ cyl(pU ) ⊆ W . Note that
there is a stratum preserving retraction r : cyl(p′) → cyl(p′)β defined by
pushing down along the mapping cylinder rays. Since W ∩ cyl(p′)β is a
neighborhood of A × (−∞,+∞] in cyl(p′)β and there is a nearly stratum
preserving deformation

(W ∩ cyl(p′)β)× I → cyl(p′)β , (x, t) 7→ rG̃(x, t),
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to A × (−∞,+∞] in cyl(p′)β rel A × (−∞,+∞], we have shown that A ×
(−∞,+∞] is stratified forward tame in cyl(p′)β .

Lemma 4.5. If A is a closed union of strata of Y , then there exists a
map

β : Y × (−∞,+∞]→ [0, 1]

with β−1(1) = Y × {+∞} such that A × {+∞} is stratified forward tame
in cyl(p′)β.

P r o o f. Choose β by Lemma 4.4 so that A× (−∞,+∞] is stratified for-
ward tame in cyl(p′)β . Let U be a neighborhood of A×(−∞,+∞] in cyl(p′)β
for which there is a nearly stratum preserving deformation h : U × I →
cyl(p′)β of U to A× (−∞,+∞] in cyl(p′)β rel A× (−∞,+∞]. By Proposi-
tion 3.2 there is a nearly stratum preserving deformation g : cyl(p′)β × I →
cyl(p′)β to Y × {+∞} rel Y × {+∞}. Define H : U × I → cyl(p′)β by
H(x, t) = g(h(x, t), t). It is not difficult to see that H is a nearly stratum
preserving deformation of U to Y × {+∞} in cyl(p′)β rel Y × {+∞}. Per-
haps the only point that needs to be addressed is why H1(U) ⊆ A×{+∞}.
To this end, let x ∈ U . If h1(x) ∈ A × (−∞,+∞], then clearly H1(x) ∈
A×{+∞}. If h1(x) ∈ A×R, then g being nearly stratum preserving implies
g(h(x, 1), 1) ∈ cl(A×R) = A× (−∞,+∞]. Also, g(h(x, 1), 1) ∈ Y × {+∞}.
Since Y × {+∞} ∩A× (−∞,+∞] = A× {+∞}, we are done.

Lemma 4.6. If A is a closed union of strata of Y , then A is stratified
forward tame in X ∪p Y .

P r o o f. By Lemma 4.5 there are a map β and a neighborhood U of A×
{+∞} in cyl(p′)β for which there is a nearly stratum preserving deformation
H : U × I → cyl(p′)β of U to Y ×{+∞} in cyl(p′)β rel Y ×{+∞}. Let αβ :
X ∪p Y → cyl(p′)β be the embedding from §3. Define a stratum preserving
retraction

r : cyl(p′)β \ (Y ×R)→ αβ(X ∪p Y ),
{
r([x, t]) = [x, β(p(x))] if x ∈ X,
r([y,+∞]) = [y,+∞] if y ∈ Y .

Then h : α−1
β (U)× I → X ∪p Y defined by h(x, t) = α−1

β (rh(αβ(x), t)) is a
nearly stratum preserving deformation of α−1

β (U) to A in X ∪p Y rel A.

Lemma 4.7. The natural partition of X∪pY is a stratification satisfying
the Frontier Condition and the Forward Tameness condition 4.1(i).

P r o o f. The partition of X ∪p Y is obviously locally finite (in fact, it is
finite). That each stratum is locally closed (i.e., the intersection of an open
set and a closed set) follows easily from the fact that Y is closed in X ∪p Y .
For both the Frontier Condition and Forward Tameness there is only one
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nontrivial case to consider: suppose Xi, Yj are strata of X, Y , respectively,
and Yj ∩ clXi 6= ∅ where the closure is taken in X ∪p Y .

For the Frontier Condition we need to show that Yj ⊆ clXi. We begin by
showing that (Yj ×R)∩ cl(Xi × [0, 1)) 6= ∅ in cyl(p). Choose y0 ∈ Yj ∩ clXi

so that there is a sequence {xn} in Xi with xn → y0 in X ∪p Y . It fol-
lows that p(xn) → (y0,+∞) in Y × (−∞,+∞]. For each n, write p(xn) =
(x1
n, x

2
n) ∈ Y × R. Let ωn : I → Y × R be the path ωn(t) = (x1

n, (1− t)x2
n),

so that it is a stratum preserving path from p(xn) to (x1
n, 0). Since p is

a stratified approximate fibration, there are stratum preserving approx-
imate lifts ω̃n : I → X with ω̃n(0) = xn. Thus, ω̃n(1) ∈ Xi and p,
ω̃n(1) → (y0, 0) ∈ Yj × R, showing that (Yj × R) ∩ cl(Xi × [0, 1)) 6= ∅
in cyl(p) as promised. Now [8] implies that cyl(p) satisfies the Frontier Con-
dition so that Yj × R ⊆ cl(Xi × [0, 1)) in cyl(p). In particular, if y0 ∈ Yj ,
then {y0} × R ⊆ cl(Xi × [0, 1)). Thus, for each n = 1, 2, . . . there exists
(xn, tn) ∈ Xi × [0, 1) such that (xn, tn) is so close to (y0, n) that p(xn) is
1/n-close to (y0, n) in Y × R. It follows that xn → y0 in X ∪p Y , verifying
the Frontier Condition.

To show that Yj is forward tame in Xi ∪ Yj , we know from Lemma 4.6
that Y j = clYj is stratified forward tame in X ∪p Y . So let U be a neigh-
borhood of Y j in X ∪p Y for which there is a nearly stratum preserving
deformation h : U × I → X ∪p Y of U to Y j in X ∪p Y rel Y j . Let
V = h−1

1 (Yj)∩ [Xi∪Yj ]. Then V is a neighborhood of Yj in Xi∪Yj ⊆ X∪pY
and h restricts to a nearly stratum preserving deformation of V to Yj in
Xi ∪ Yj rel Yj .

Proof of Theorem 4.3. Given Lemma 4.7 it only remains to verify the
Normal Fibrations condition 4.1(ii). As in the proof of Lemma 4.7,
there is only one nontrivial case to consider: suppose Xi, Yj are strata
of X, Y , respectively, and Yj ∩ clXi 6= ∅ where the closure is taken in
X ∪p Y (hence, Yj ⊆ clXi). We need to show that the holink evaluation
holink(Xi ∪ Yj , Yj)→ Yj is a fibration.

Let U be a neighborhood of Y j = clYj in Y for which there is a nearly
stratum preserving deformation h : U × I → Y of U to Y j in Y rel Y j

[7, Theorem 6.3]. Let pU×R = p|p−1(U ×R)→ U ×R. According to [8, 5.6]
there exists a homotopy H : cyl(pU×R)× I → cyl(p) such that

(1) H0 = inclusion,
(2) H|U × R× I = h× idR,
(3) H((cyl(pU×R) \ U × R)× I) ⊆ cyl(p) \ (Y × R),
(4) H| : (cyl(pU×R) \U ×R)× I → cyl(p) is a stratum preserving homo-

topy,
(5) H is level preserving, i.e., pI ◦ Ht = pI for each t ∈ I (this is not

stated in [8], but follows from the proof).
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A partition of unity argument shows that there exists a map β : Y ×
(−∞,+∞] → I such that β−1(1) = Y × {+∞} and H| : cyl(pU×R)β × I
→ cyl(p) extends continuously to U × {+∞}× I via h× id{+∞}. Let p′U×R
be the composition

p′U×R : p−1(U × R)
pU×R−−−→ U × R ⊆−→ U × (−∞,+∞].

Define H̃ : cyl(p′U×R)β × I → cyl(p′)β by H̃|cyl(pU×R)β × I = % ◦ H and
H̃t|U × {+∞} = ht × id{+∞} for each t ∈ I, where % : cyl(p) → cyl(p′)β
is the natural retraction obtained by pushing down the mapping cylinder
rays.

Let U ′ = U \ h−1
1 (Y j \ Yj). Note that U ′ is a neighborhood of Yj in Y

and h : U ′ × I → Y \ (Y j \ Yj). Thus, p−1(U ′ × R) ∪ U ′ is a neighborhood
of Yj in X ∪p Y . It follows that if X ′i = Xi ∩ p−1(U ′×R), then it suffices to
show that holink(X ′i ∪ Yj , Yj)→ Yj is a fibration. Let Y ′j = Yj ×{+∞} and
X ′′i = X ′i × [0, 1)∩ cyl(p′U×R)β . Recall from 3.1 that αβ : X ∪p Y → cyl(p′)β
is an embedding. Now note that this embedding restricts to an embedding
αβ | : X ′i ∪ Yj → X ′′i ∪ Y ′j ⊆ cyl(p′U×R)β . Moreover, the image αβ(X ′i ∪ Yj) is
a stratum preserving strong deformation retract of X ′′i ∪Y ′j rel Y ′j = αβ(Yj).
This implies that the holink evaluation holink(X ′i ∪ Yj , Yj) → Yj is a fiber
preserving retract of holink(X ′′i ∪ Y ′j , Y ′j ) → Y ′j . Thus, it suffices to prove
that q : holink(X ′′i ∪ Y ′j , Y ′j ) → Y ′j is a fibration. To this end, consider a
lifting problem:

(4.3.1)

Z holink(X ′′i ∪ Y ′j , Y ′j )

Z × I Y ′j = Yj × {+∞}

f //

×0

²²
q

²²
F //

Now f induces a map f ′ : Z × (0, 1] → holink(X ′′i ∪ (U ′ × R), U ′ × R)
by letting f ′(z, s) be the path beginning in U ′ × R and continuing up the
mapping cylinder ray until reaching f(z)(s); that is,

f ′(z, s)(t) = [pXf(z)(s), t · pIf(z)(s) + (1− t)] ∈ cyl(p)

(where we are using the notation from §2).
Use H to deform f ′ to a new map f ′′ by defining

f ′′(z, s)(t) = H(f ′(z, s)(t), 1− t)
for (z, s, t) ∈ Z × (0, 1]× I. Now f ′′(z, s) is still a path in cyl(p′) which ter-
minates at f(z)(s), but it originates at the point (h1× idR)(pY×Rf(z)(s)) ∈
Yj × R. Thus, f ′′ : Z × (0, 1]→ holink((Xi × [0, 1)) ∪ (Yj × R), Yj × R).
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We will now define a map F ′ : Z × (0, 1]× I → Yj ×R so that there is a
commuting diagram

(4.3.2)

Z × (0, 1] holink((Xi × [0, 1)) ∪ (Yj × R), Yj × R)

Z × (0, 1]× I Yj × R

f ′′ //

×0

²²
q

²²
F ′ //

We will use the natural map pY×R : cyl(p)→ Y × R along with the projec-
tions πY : Y × R→ Y and πR : Y × R→ R. Define F ′ by

πRF
′(z, s, t) = πRpY×R(f ′′(z, s)(0)),

πY F
′(z, s, t) =




πY f

′′(z, s− t)(0) if 0 ≤ t < s,
πY F (z, 0) if t = s,
πY F (z, (t− s)/(1− s)) if s < t ≤ 1.

Since p : X → Y × R is a stratified approximate fibration, it follows that
cyl(p) is a homotopically stratified space (Theorem 4.2). Hence, (4.3.2) has
a solution F̃ : Z × (0, 1]× I → holink((Xi × [0, 1)) ∪ (Yj × R), Yj × R).

In fact, F ′ extends continuously to

F ′′ : Z × I × I → cyl(p′)

by setting F ′′(z, 0, t) = F (z, t). According to [7, Lemma 8.1] there exists a
map u : Z × I × I → I such that u−1(0) = Z × I × {0} and such that the
function F ∗ : Z × I → cyl(p′)I defined by

F ∗(z, s)(t) =
{
%F̃ (z, t, s)(u(z, s, t)) if t > 0,
F (z, s) if t = 0,

is continuous. Inspection shows that F ∗ is a solution of (4.3.1).

5. Compactly dominated local holinks. In this section we embellish
Theorem 4.3 by considering homotopically stratified spaces whose homotopy
links have an additional finite domination property: compactly dominated
local homotopy links. Theorem 5.4 below shows that the teardrop will also
have this property. This is an important fact because the domination prop-
erty is one of the defining properties of a manifold stratified space (see §6).

To motivate the definition, recall that a CW complex W is dominated
by a finite CW complex if and only if W is dominated by a compact sub-
space. In the current stratified setting, we find the formulation with compact
subspaces to be more convenient.

Let X be a space with a partition {Xi}i∈I . Let x0 ∈ Xi ⊆ X. The local
holink at x0 is
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holink(X,x0) = {ω ∈ holinks(X,Xi) | ω(0) = x0}.
The local holink inherits a natural partition from holinks(X,Xi).

Definition 5.1. X has a compactly dominated local holink at x0 if
there exist a compact subset C ⊆ holink(X,x0) and a stratum preserving
deformation

d : holink(X,x0)× I → holink(X,x0)

such that d1(holink(X,x0)) ⊆ C. We say X has compactly dominated local
holinks if for every x0 ∈ X, X has a compactly dominated local holink at x0.

Lemma 5.2. Let X be a homotopically stratified metric space with only
finitely many strata and suppose the strata are ANRs. If x0 ∈ X, then there
exist a neighborhood U of x0 and a nearly stratum preserving deformation
h : U × I → X of U to {x0} in X rel {x0}.

P r o o f. Let Xi be the stratum containing x0. Since Xi is an ANR, there
exist an arbitrarily small neighborhood V of x0 in Xi and a deformation
g : V × I → Xi of V to x0 in Xi rel x0. The Homotopy Extension Property
gives an extension of g to a deformation g̃ : Xi× I → Xi which is supported
on a slightly larger neighborhood of x0 inXi. Thus, g̃ extends via the identity
to a stratum preserving deformation with the same name g̃ : Xi × I →
Xi. Moreover, the Stratum Preserving Deformation Extension Property [7]
implies that g̃ can be extended to a stratum preserving deformation g̃ :
X×I → X, also with the same name. Since Xi is stratified forward tame in
X [7, Theorem 6.3], there exist a neighborhood W of Xi in X and a nearly
stratum preserving deformation k : W × I → X of W to Xi in X rel Xi.
Now define h′ : W × I → X by h′(x, t) = g̃t(kt(x)). Finally, let U = k−1

1 (V )
and h = h′|U × I.

Lemma 5.3. Let X be a homotopically stratified metric space with only
finitely many strata and suppose the strata are ANRs. Then X has a com-
pactly dominated local holink at x0 ∈ Xi ⊆ X if and only if for every neigh-
borhood U of x0 there exist a neighborhood V of x0 with V ⊆ U , a compact
subset K ⊆ U , and a stratum preserving deformation g : (V \Xi)× I → U
such that g1(V \Xi) ⊆ K.

P r o o f. Suppose first that X has a compactly dominated local holink at
x0 and let U be a given neighborhood. An element of holink(X,x0) is a nearly
stratum preserving path in X beginning at x0. It can be shrunk along itself
to give a nearly stratum preserving path in U beginning at x0. A partition
of unity argument turns this idea into a stratum preserving deformation
of holink(X,x0) to holink(U, x0) rel holink(U, x0). Hence, holink(U, x0) is
compactly dominated; i.e., there exist a compact subset C ⊆ holink(U, x0)
and a stratum preserving deformation d : holink(U, x0)× I → holink(U, x0)
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such that d1(holink(U, x0)) ⊆ C. Use Lemma 5.2 to get a neighborhood V of
x0 and a nearly stratum preserving deformation h : V ×I → U of V to {x0}
in U rel x0. Let h̃ : V → holink(U, x0) be given by h̃(x)(t) = h(x, 1− t). Let
p : holink(U, x0)→ U be evaluation at 1 (p(ω) = ω(1)) and let K = p(C), a
compact subset of U . Define g : (V \Xi)× I → U by g(x, t) = d(h̃(x), t)(1),
which is a deformation satisfying the desired properties.

Conversely, let U be a neighborhood of x0 for which there exists a nearly
stratum preserving deformation h : U × I → X of U to x0 in X rel x0

(Lemma 5.2). Then the hypothesis implies that there exist a neighborhood
V of x0, V ⊆ U , a compact subset K ⊆ U , and a stratum preserving
deformation g : (V \ Xi) × I → U such that g1(V \ Xi) ⊆ K. Define
h̃ : K → holink(X,x0) by h̃(x)(t) = h(x, 1 − t). Let C = h̃(K), a compact
subset of holink(X,x0). We will show that there is a stratum preserving
deformation of holink(X,x0) into C. First, note that by the argument in
the first part, there is a stratum preserving deformation of holink(X,x0)
into holink(V, x0), Second, there is a stratum preserving deformation
f : holink(V, x0) × I → holink(U, x0) of holink(V, x0) into K, where K =
{ω ∈ holink(U, x0) | ω(1) ∈ K}. This is defined by

f(ω, t)(s) =
{
ω(2s/(2− t)) if 0 ≤ s ≤ (2− t)/2,
g(ω(1), 2s+ t− 2) if (2− t)/2 ≤ s ≤ 1.

In words, ω is stretched out using g to a path terminating in K. Finally,
there is a stratum preserving deformation e : K × I → holink(X,x0) of K
into C defined by

e(ω, t)(s) = h(ω((1− s)t+ s), (1− s)t).
Theorem 5.4. Let X and Y be locally compact , separable, homotopically

stratified metric spaces with only finitely many strata. Suppose the strata are
ANRs and X and Y have compactly dominated local holinks. If p : X →
Y × R is a proper stratified approximate fibration, then X ∪p Y with the
natural partition has compactly dominated local holinks. Moreover , X ∪p Y
is a locally compact , separable homotopically stratified metric space with only
finitely many ANR strata.

P r o o f. We only need to show that X ∪p Y has compactly dominated
local holinks at points of Y . Thus, let y ∈ Y , say y ∈ Yj . We will use
Lemma 5.3. Neighborhoods of y in X ∪p Y contain neighborhoods of the
form U = c−1(W × [N,+∞]) where N ≥ 0, W is a compact neighborhood
of y in Y , and c : X ∪p Y → Y × (−∞,+∞] is the teardrop collapse.
Suppose one such neighborhood is given. Since Y has compactly dominated
local holinks, Lemma 5.3 implies that there exist an open neighborhood W1

of y in Y and a stratum preserving deformation g : (W1 \Yj)× I →W such
that g1(W1 \ Yj) ⊆W \W1 (which is compact).
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Now W1 \ Y j is open in Y , so there exists an open subset W̃1 ⊆ X ∪p Y
such that W̃1 ∩ Y = W1 \ Y j and cl W̃1 ⊆ U . The Stratum Preserving
Deformation Extension Property of [7] implies that there is an extension
of g to a stratum preserving deformation g̃ : W̃1 × I → U . (Actually,
[7, Corollary 6.4] does not apply exactly as stated, but its proof does.)

Let W2 be a compact neighborhood of y in Y such that W2 ⊆ W1.
Let % : W \ Y j → I be a map such that %−1(0) = U \ (W̃1 ∪ Y j) and
%−1(1) = W2 \ Y j . Then g̃ can be modified to ĝ : (U \ Y j)× I → U by

ĝ(x, t) =
{
x if x ∈ U \ (W̃1 ∪ Y j), t ∈ I,
g̃(x, %(x)t) otherwise.

In particular, ĝ|(W1 \ Y j)× I = g.
Use the fact that p : X → Y ×R is a stratified approximate fibration to

get a stratum preserving deformation h : X × I → X such that

h1(p−1(W2 × [N + 1,+∞))) ⊆ p−1(W × [N,N + 2]).

Then define H : (U \ Y j)× I → X ∪p Y by

H(x, t) =
{
ĝ(x, 2t) if 0 ≤ t ≤ 1/2,
h(ĝ(x, 1), 2t− 1) if 1/2 ≤ t ≤ 1.

Note that H1(c−1(W2× [N + 1,+∞] \Y j)) is a compact subset of U . Thus,
Lemma 5.3 implies that X ∪p Y has a compactly dominated local holink
at x0.

The additional properties listed in Theorem 5.4 are either obvious or
follow from Theorem 4.3, from [11, Lemma 3.15], or from the proof of
[11, Corollary 4.10].

6. Manifold stratified teardrops. In this section we apply the pre-
vious results to teardrops of manifold stratified approximate fibrations. A
homotopically stratified space X with compactly dominated local holinks is
a manifold stratified space if, in addition, X is a locally compact, separable
metric space and each stratum is a topological manifold (without bound-
ary). A proper stratified approximate fibration p : X → Y between manifold
stratified spaces is called a manifold stratified approximate fibration.

Theorem 6.1. If X and Y are manifold stratified spaces each with only
finitely many strata and p : X → Y ×R is a manifold stratified approximate
fibration, then the teardrop X ∪p Y with the natural partition is a manifold
stratified space.

P r o o f. Immediate from Theorem 5.4.

Remark 6.2. (1) If X and Y are manifolds (i.e., manifold stratified
spaces with exactly one stratum each), then a manifold stratified approx-
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imate fibration p : X → Y × R is called simply a manifold approximate
fibration. In this case, X ∪p Y has compactly dominated local holinks (in
fact, finitely dominated) by [11, Corollary 4.10]. It follows that Theorem 6.1
reduces to [11, Corollary 4.11] in this special case.

(2) Theorem 6.1 was announced in [6, Theorem 3.1] with the compactly
dominated local holinks condition replaced by an apparently stronger con-
dition (called “finite domination” in [6]). The relationship between these
conditions and the reverse tameness condition of Quinn will be clarified
in a future paper. For current information, see [15, Proposition 2.15 and
Lemma 4.6] and [10, Chapters 8, 9].

7. Examples. In this section we try to give enough examples of manifold
stratified approximate fibrations to show that there are plenty of opportu-
nities to perform the teardrop construction and apply the results of this
paper. Hopefully, these examples foreshadow future applications.

7.1. Manifold approximate fibrations. We begin with manifold approxi-
mate fibrations. For more complete details and references, see [6], [11], [12],
[13], [14].

(1) Locally flat submanifolds of topological manifolds (of high dimension)
have manifold approximate fibration mapping cylinder neighborhoods [4],
[13]. These neighborhoods need not be fiber bundle mapping cylinders [16].

(2) A noncompact manifold M (of high dimension) with one end which
is tame in the sense of Siebenmann [17] has a neighborhood U of the end
equipped with a manifold approximate fibration p : U → R (see [10]). In this
case, the one-point compactification M ∪ {∞} of M is a manifold stratified
space with two strata,M and {∞}. The teardrop U∪p{∞} is a neighborhood
of the singular point. M has a manifold completion if and only if the singular
point has a mapping cylinder neighborhood.

(3) More generally, if (M,B) is a manifold stratified pair (i.e., M is a
manifold stratified space with two strata, M \B and B), then B has a neigh-
borhood U for which there is a manifold approximate fibration p : U \B →
B×R and U is homeomorphic to the teardrop (U \B)∪pB rel B (see [11]).
As in (2), B need not have a mapping cylinder neighborhood; even when it
does, the neighborhood need not be a fiber bundle mapping cylinder. Exam-
ples are constructed in [11] with B = S1 which have manifold approximate
fibration mapping cylinder neighborhoods, but not fiber bundle mapping
cylinder neighborhoods, even after arbitrary euclidean stabilization.

(4) Manifold approximate fibrations arise naturally in controlled topol-
ogy. If p : M → B is a fiber bundle between closed manifolds, f : N →M is
a homotopy equivalence with N also a closed manifold, then f is a controlled
homotopy equivalence if and only if pf : N → B is a manifold approximate
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fibration [2], [5]. The same result holds if p is only required to be a manifold
approximate fibration.

7.2. Manifold stratified approximate fibrations. A generalization of 7.1(2)
above to the multiple strata case has been announced [6]. Here are some
other examples.

(1) Let G be a finite group acting locally linearly on a manifold M .
With the natural orbit type stratification, M and M/G are manifold strat-
ified spaces (in fact, locally conelike) and Beshears [1] has shown that the
orbit map M →M/G is a manifold stratified approximate fibration (even a
stratified fibration). He also extends this result to so-called Quinn actions.

(2) If p : X → Y is a proper algebraic map between algebraic varieties,
then X and Y have natural Whitney stratifications (in particular, they are
manifold stratified spaces) for which p is a manifold stratified approximate
fibration [8].

7.3. Teardrop collapse. Teardrops can be used to construct new stratified
approximate fibrations from other ones.

Proposition 7.1. Let X and Y be locally compact homotopically strat-
ified metric spaces. If p : X → Y × R is a proper stratified approximate
fibration, then the teardrop collapse c : X ∪p Y → Y × (−∞,+∞] is also a
proper stratified approximate fibration.

P r o o f. For a stratified lifting problem

Z X ∪p Y

Z × I Y × (−∞,+∞]

f //

×0

²²
c

²²
F //

let Z0 = f−1(Y ) and Z1 = f−1(X). According to [7, Remark 5.5(2)] we may
assume that Z is a metric space. Restriction gives another stratified lifting
problem:

Z1 X

Z1 × I Y × R

f | //

×0
²²

c|=p
²²F | //

Let

G : Z1 × I × [0, 1)→ X

be a stratified controlled solution of this second problem. In particular,

G : Z1 × I × I → Y × R
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defined by G|Z1 × I × [0, 1) = pG and G(z, s, 1) = F (z, s) for each (z, s) ∈
Z1 × I, is continuous. Extend G to

G+ : (Z1 × I × [0, 1)) ∪ (Z0 × I × {1})→ X ∪p Y
by setting G+(z, s, 1) = πY F (z, s) for each (z, s) ∈ Z0 × I, where

πY : Y × (−∞,+∞]→ Y

is projection. Now G+ is not continuous, but the function

G+ : (Z1 × I × I) ∪ (Z0 × I × {1})→ Y × (−∞,+∞]

defined by G+ = cG+, i.e.,{
G+|(Z1 × I × I) = G, and
G+(z, s, 1) = F (z, s) if (z, s) ∈ Z0 × I,

is continuous when restricted to Z1 × I × I and to Z × I × {1}. It follows
from a partition of unity argument (this is where the metrizability of Z is
used, cf. [7, Lemma 8.1]) that there is a map u : Z × I → I such that
u−1(1) = Z0 × I and such that

Ĝ+ : Z × I × I → Y × (−∞,+∞]

defined by

Ĝ(z, s, t) = G+(z, s, (1− t) · u(z, s) + t)

=
{
pG(z, s, (1− t) · u(z, s) + t) if (z, s, t) ∈ Z1 × I × [0, 1),
F (z, s), if (z, s, t) ∈ (Z × I × {1}) ∪ (Z0 × I × I),

is continuous. It follows from the Continuity Criteria [11, Lemma 3.4] that

F̃ : Z × I × [0, 1)→ X ∪p Y
defined by

F̃ (z, s, t) =
{
G(z, s, (1− t) · u(z, s) + t) if (z, s, t) ∈ Z1 × I × [0, 1),
πY F (z, s) if (z, s, t) ∈ Z0 × I × [0, 1),

is continuous. One easily checks that F̃ is a stratified controlled solution of
the original problem.

In particular, if X and Y are manifolds and p : X → Y ×R is a manifold
approximate fibration, then c : X ∪p Y → Y × (−∞,+∞] is a stratified
approximate fibration.
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