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Introduction

We take ‘complex’ to mean both a CW (or simplicial) complex in topology
and a chain complex in algebra. An ‘end’ of a complex is a subcomplex
with a particular type of infinite behaviour, involving non-compactness in
topology and infinite generation in algebra. The ends of manifolds are
of greatest interest; we regard the ends of CW and chain complexes as
tools in the investigation of manifolds and related spaces, such as stratified
sets. The interplay of the topological properties of the ends of manifolds,
the homotopy theoretic properties of the ends of C'W complexes and the
algebraic properties of the ends of chain complexes has been an important
theme in the classification theory of high dimensional manifolds for over 35
years. However, the gaps in the literature mean that there are still some
loose ends to wrap up! Our aim in this book is to present a systematic
exposition of the various types of ends relevant to manifold classification,
closing the gaps as well as obtaining new results. The book is intended to
serve both as an account of the existing applications of ends to the topology
of high dimensional manifolds and as a foundation for future developments.

We assume familiarity with the basic language of high dimensional man-
ifold theory, and the standard applications of algebraic K- and L-theory to
manifolds, but otherwise we have tried to be as self contained as possible.

The algebraic topology of finite CW complexes suffices for the combinato-
rial topology of compact manifolds. However, in order to understand the dif-
ference between the topological and combinatorial properties it is necessary
to deal with infinite CW complexes and non-compact manifolds. The clas-
sic cases include the Hauptvermutung counterexamples of Milnor [96], the
topological invariance of the rational Pontrjagin classes proved by Novikov
[103], the topological manifold structure theory of Kirby and Siebenmann
[84], and the topological invariance of Whitehead torsion proved by Chap-
man [22]. The algebraic and geometric topology of non-compact manifolds
has been a prominent feature in much of the recent work on the Novikov

ix
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conjectures — see Ferry, Ranicki and Rosenberg [59] for a survey. (In these
applications the non-compact manifolds arise as the universal covers of as-
pherical compact manifolds, e.g. the Euclidean space R’ covering the torus
TP = S' x St x ... x 8 = BZ'.) In fact, many current developments in
topology, operator theory, differential geometry, hyperbolic geometry, and
group theory are concerned with the asymptotic properties of non-compact
manifolds and infinite groups — see Gromov [65], Connes [33] and Roe [135]
for example.

What is an end of a topological space? Roughly speaking, an end of a
non-compact space W is a component of W\ K for arbitrarily large compact
subspaces K C W. More precisely :

Definition 1. (i) A neighbourhood of an end in a non-compact space W is
a subspace U C W which contains a component of W\K for a non-empty
compact subspace K C W.

(ii) An end € of W is an equivalence class of sequences of connected open
neighbourhoods W > U; D Uy D ... such that

m cl (Ul) = (Z)
i=1
subject to the equivalence relation
WoUiDUsD...) ~(WDViDVaD...)

if for each U; there exists j with U; C Vj, and for each Vj there exists ¢ with
V; C U;.
(iii) The fundamental group of an end € is the inverse limit

7T1(6) = h;nﬂ'l(Uz) m}

1

The theory of ends was initiated by Freudenthal [61] in connection with
topological groups. The early applications of the theory concerned the ends
of open 3-dimensional manifolds, and the ends of discrete groups (which are
the ends of the universal covers of their classifying spaces).

We are especially interested in the ends of manifolds which are ‘tame’,
and in extending the notion of tameness to other types of ends. An end of
a manifold is tame if it has a system of neighbourhoods satisfying certain
strong restrictions on the fundamental group and chain homotopy type. Any
non-compact space W can be compactified by adding a point at infinity,
W =W U{co}. A manifold end is ‘collared’ if it can be compactified by
a manifold, i.e. if the point at infinity can be replaced by a closed manifold
boundary, allowing the end to be identified with the interior of a compact
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manifold with boundary. A high dimensional tame manifold end can be
collared if and only if an algebraic K-theory obstruction vanishes. The
theory of tame ends has found wide application in the surgery classification
theory of high dimensional compact manifolds and stratified spaces, and in
the related controlled topology and algebraic K- and L-theory.

Example 2. Let K be a connected compact space.
(i) K x [0,00) has one end €, with connected open neighbourhoods

Ui = K x (i,00) C K x[0,00) ,
such that 7 (e) = 71 (K).
(ii) K x R has two ends €', e, with connected open neighbourhoods

U = K x (i,00) , U~ = Kx(—o00,—i)C K xR,

K3 (2
such that 7 (et) = 71 (K).
(iii) K x R? has one end ¢, with connected open neighbourhoods
Ui = K x{(z,y) e R?|2* +y* > i’} ,
such that 7 (e) = m(K) X Z. o

Example 3. (i) Let W be a space with a proper map d : W ——|0, co) which
is onto, and such that the inverse images U; = d~!(¢t,00) C W (t > 1) are
connected. Then W has one end € with connected open neighbourhoods

W D U; DUy D...such that cl(Uy) = d~1[t,00), N cl(U;) = 0.
i=0
(ii) Let (W,0W) be a connected open n-dimensional manifold with con-
nected compact boundary. Then W has one end ¢ if and only if there exists
a proper map d : (W,0W)—([0,00),{0}) which is transverse regular at
N={0,1,2,...} C [0,00), with the inverse images
(Wi; Mi, Miyr) = d'([iyi + 10 {i}, {i +1}) (i €N)

connected compact n-dimensional cobordisms such that

oo
w,ow) = (|J Wi, My) .
i=0
(iii) Given connected compact n-dimensional cobordisms (W;; M;, M;1)
(i € N) there is defined a connected open n-dimensional manifold with
oo
compact boundary (W,0W) = (|J W;, My). The union of Morse func-
=0
tions d; : (Wy; My, Mipq)—([i,i + 1];{i},{i + 1}) defines a proper map
d: (W,0W)—([0,00),{0}), and as in (ii) W has one end e. If the inclu-
sions M;—W;, M;;1— W, induce isomorphisms in m; then

71'1(M0) = 7T1(W0) = 7T1(M1) = ... = 7T1(W) = 7T1(€) . O
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Definition 4. An end € of an open n-dimensional manifold W can be
collared if it has a neighbourhood of the type M x[0,00) C W for a connected
closed (n — 1)-dimensional manifold M. O

Example 5. (i) An open n-dimensional manifold with one end € is (home-
omorphic to) the interior of a closed n-dimensional manifold if and only if
€ can be collared. More generally, if W is an open n-dimensional manifold
with compact boundary OW and one end €, then there exists a compact
n-dimensional cobordism (L;0W, M) with L\M homeomorphic to W rel
OW if and only if € can be collared.

(ii) If (V, 9V') is a compact n-dimensional manifold with boundary then for
any x € V\JV the complement W = V\{z} is an open n-dimensional mani-
fold with a collared end € and OW = 9V, with a neighbourhood M x [0, c0) C
W for M = S™!. The one-point compactification of W is W = V. The
compactification of W provided by (i) is L = cl(V\D"), for any neigh-
bourhood D™ C V\OV of z, with (L; OW, M) = (W U S* 10V, " 1. o

Stallings [154] used engulfing to prove that if W is a contractible open
n-dimensional PL manifold with one end € such that m(¢) = {1} and n > 5
then W is PL homeomorphic to R™ —in particular, the end € can be collared.

Let (W, 0W) be an open n-dimensional manifold with compact boundary
and one end e. Making a proper map d : (W, 0W)—([0, 00), {0}) transverse
regular at some ¢ € (0, 00) gives a decomposition of (W,0W) as

(W,0W) = (L;OW, M) Uy (N, M)

with (L; OW, M) = d='([0,]; {0}, {t}) a compact n-dimensional cobordism
and N = d~'[t,00) non-compact. The end € can be collared if and only if
N can be chosen such that there exists a homeomorphism N = M x [0, 00)
rel M = M x {0}, in which case L\M = L Upsy g0y M x [0,00) = W
rel OW. In terms of Morse theory: it is possible to collar e if and only
if (W,0W) admits a proper Morse function d with only a finite number of
critical points. Browder, Levine and Livesay [14] used codimension 1 surgery
on M C W to show that if 7 (W) = m1(e) = {1} and n > 6 then € can be
collared if and only if the homology groups H,.(W) are finitely generated
(with H,.(W) = 0 for all but finitely many values of r). Siebenmann [140]
combined codimension 1 surgery with the finiteness obstruction theory of
Wall [163] for finitely dominated spaces, proving that in dimensions > 6
a tame manifold end can be collared if and only if an algebraic K-theory
obstruction vanishes.

Definition 6. A space X is finitely dominated if there exist a finite CW
complex K and maps f: X—K, g: K—X withgf ~1: X—X. i
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Example 7. Any space homotopy equivalent to a finite CW complex is
finitely dominated. o

Example 8. A connected CW complex X with m(X) = {1} is finitely
dominated if and only if H,(X) is finitely generated, if and only if X is
homotopy equivalent to a finite CW complex. o

For non-simply-connected X the situation is more complicated :

Theorem 9. (Wall [163,164]) A connected CW complex X is finitely dom-
inated if and only if m(X) is finitely presented and the cellular Z[m1(X)]-
module chain complex C(f() of the universal cover X is chain equivalent
to a finite f.g. projective Z|m1(X)]-module chain complex P. The reduced
projective class of a finitely dominated X

[e.9]

[X] = [P] = > (-)'[P] € Ko(Z[m (X))
r=0
is the finiteness obstruction of X, such that [X] = 0 if and only if X is
homotopy equivalent to a finite CW complez. o

Definition 10. An end e of an open manifold W is tame if it admits a
sequence W D Uy D Uy D ... of finitely dominated neighbourhoods with

[e.o]

(i) =0, mU) = m(la) = ... = me) . o

i=1

Example 11. If an end € of an open manifold W can be collared then
it is tame: if M x [0,00) C W is a neighbourhood of € then the open
neighbourhoods W D Uy = M X (1,00) D Uy = M X (2,00) D ... satisfy
the conditions of Definition 10, with cl(U;) = M x [i,00), m1(€) = w1 (M). O

Tameness is a geometric condition which ensures stable (as opposed to
wild) behaviour in the topology at infinity of a non-compact space W. The
fundamental example is W = K x [0, 00) for a compact space K, in which
the topology at infinity is that of K.

Theorem 12. (Siebenmann [140]) A tame end € of an open n-dimensional
manifold W has a reduced projective class invariant, the end obstruction

[ = (U] € Ro(Zm(e)]) = lim Ko(zlm (U))

such that [e] = 0 if (and for n > 6 only if) € can be collared. O
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Even if a tame manifold end € can be collared, the collarings need not
be unique. The various collarings of a tame end € in an open manifold
W of dimension > 6 with [¢] = 0 € Ky(Z[m(€)]) are classified by the
Whitehead group Wh(m(e)): if M x [0,00), M’ x [0,00) C W are two
collar neighbourhoods of € then for sufficiently large t > 0 there exists an
h-cobordism (N; M, M') between M x {0} and M’ x {t} C W, with

M x [0,00) = NUM’X{t} M’ x [t,OO) cw.

By the s-cobordism theorem (N; M, M’) is homeomorphic to the product
M x (I;{0},{1}) if and only if 7(M ~ N) = 0 € Wh(m1(e)). The non-
uniqueness of collarings of PL manifold ends was used by Milnor [96] in
the construction of homeomorphisms of compact polyhedra which are not
homotopic to a PL homeomorphism, disproving the Hauptvermutung for
compact polyhedra. The end obstruction theory played an important role
in the disproof of the manifold Hauptvermutung by Casson and Sullivan
(Ranicki [131]) — the manifold case also requires surgery and L-theory.

Quinn [114,115,116] developed a controlled version of the Siebenmann
end obstruction theory, and applied it to stratified spaces. (See Ranicki
and Yamasaki [132] for a treatment of the controlled finiteness obstruction,
and Connolly and Vajiac [34] for an end theorem for stratified spaces.)
The tameness condition of Definition 10 for manifold ends was extended by
Quinn to stratified spaces, distinguishing two tameness conditions for ends
of non-compact spaces, involving maps pushing forward along the end and
in the reverse direction. We shall only consider the two-stratum case of a
one-point compactification, with the lower stratum the point at infinity. In
Chapters 7,8 we state the definitions of forward and reverse tameness. The
original tameness condition of Siebenmann [140] appears in Chapter 8 as
reverse mi-tameness, so called since it is a combination of reverse tameness
and mi-stability. In general, forward and reverse tameness are independent
of each other, but for m1-stable manifold ends e with finitely presented 71 (€)
the two kinds of tameness are equivalent by a kind of Poincaré duality.

Definition 13. (Quinn [116]) The end space e(W) of a space W is the
space of proper paths w : [0, c0)—W. O

We refer to Appendix B for a brief history of end spaces.

The end space e(W) is a homotopy model for the ‘space at infinity’ of W,
playing a role similar to the ideal boundary in hyperbolic geometry. The
topology at infinity of a space W is the inverse system of complements of
compact subspaces (i.e. cocompact subspaces or neighbourhoods of infinity)
of W, which are the open neighbourhoods of the point co in the one-point
compactification W = W U {oco}. The homology at infinity HX°(W) is
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defined to fit into an exact sequence
L — HX(W) — H (W) — HI (W) — HX (W) — ...,

and Hif(W) = H,(W>,{oco}) for reasonable W. The end space e(W) is
the ‘link of infinity in W’. There is a natural passage from the algebraic
topology at infinity of W to the algebraic topology of e(W), which is a one-
to-one correspondence for forward tame W, with H,(e(W)) = HX(W).

If (W,0W) is an open n-dimensional manifold with compact boundary
and one tame end e the end space e(W) is a finitely dominated (n — 1)-
dimensional Poincaré space with 71 (e(W)) = m1(e), and (W;0W, e(W)) is
a finitely dominated n-dimensional Poincaré cobordism, regarding e(W) as
a subspace of W via the evaluation map

eW) — W (w:[0,00)—W) — w(0) .

The non-compact spaces of greatest interest to us are the infinite cyclic
covers of ‘bands’:

Definition 14. A band (M, c) is a compact space M with amap ¢ : M —S*
such that the infinite cyclic cover M = ¢*R of M is finitely dominated, and
such that the projection M ——M induces a bijection of path components
mo(M) = mo(M). o

Example 15. A connected finite CW complex M with a map ¢ : M—S*
inducing an isomorphism ¢, : 71 (M) = Z defines a band (M, ¢) (i.e. the infi-
nite cyclic cover M = ¢*R is finitely dominated) if and only if the homotopy
groups 7y (M) = H,(M) (x > 2) are finitely generated. O

The infinite cyclic cover M of a connected manifold band (M, ¢) has two
ends. The projection ¢ : M——S! lifts to a proper map ¢ : M —R, such
that the inverse images

M*T =2 '0,00) , M~ = ¢ '(~00,0]C M

are closed neighbourhoods of the two ends. In Chapter 15 we shall prove
that the two ends of M are tame, with homotopy equivalences

e(M+) ~ eM )~ M.

The problem of deciding if an open manifold is the interior of a compact
manifold with boundary is closely related to the problem of deciding if a
compact manifold M fibres over S, i.e. if a map ¢ : M—S! is homotopic
to the projection of a fibre bundle. In the first instance, it is necessary for
(M, c) to be a band:
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Example 16. Suppose given a fibre bundle F— M LS ! with F a closed
(n — 1)-dimensional manifold and M = T'(h) the mapping torus of a mon-
odromy self homeomorphism h : F—F. If h preserves the path compo-
nents then (M, ¢) is an n-dimensional manifold band, with the infinite cyclic
cover M = F x R homotopy equivalent to a finite CW complex. o

Stallings [153] used codimension 1 surgery on a surface ¢ '(x) C M to
prove that a map ¢ : M—S! from a compact irreducible 3-dimensional
manifold M with ker(c,: m (M)—Z) % Zs is homotopic to the projection
of a fibre bundle if and only if ker(c,) is finitely generated, in which case
ker(c,) = m1(F') is the fundamental group of the fibre F'. In particular, the
complement of a knot k: S C §3

(M,0M) = (cl(S3\(k(S') x D?)), S x S1)

fibres over S! if and only if the commutator subgroup [, 7] of the funda-
mental group m = (M) is finitely generated. Browder and Levine [13] used
codimension 1 surgery in higher dimensions to prove that for n > 6 a com-
pact n-dimensional manifold band (M, ¢) with ¢, : 71 (M) = Z fibres. Thus
a high-dimensional knot k : S"~2 C S" (n > 6) with 71 (S™"\k(S"2)) = 2
fibres (i.e. the knot complement fibres over S') if and only if the higher
homotopy groups m(S™\k(S"2)) (x > 2) are finitely generated. More
generally :

Theorem 17. (Farrell [46], Siebenmann [145]) An n-dimensional manifold
band (M, c) has a Whitehead torsion invariant, the fibring obstruction
O (M,c) € Wh(m(M)) ,

such that ®(M,c) = 0 if (and for n > 6 only if) M fibres over S', with
c: M—S' homotopic to a fibre bundle projection. o

In the main text we shall actually be dealing with the two fibring obstruc-
tions @1 (M, c), @ (M, c) € Wh(mi(M)) defined for a CW band (M, ¢). For
an n-dimensional manifold band (M, ¢) the two obstructions determine each
other by Poincaré duality

T (M,c) = (=)" 10 (M, c)* € Wh(m (M))

and in the Introduction we write &1 (M, c) as ®(M, c).
Example 18. For any n-dimensional manifold band (M, c) the (n + 1)-

dimensional manifold band (M x S',d) with d(x,t) = c(x) has fibring ob-
struction

O(M x S'd) = 0€ Wh(m (M) xZ) .

For n > 5 the geometric construction of Theorem 19 below actually gives a
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canonical fibre bundle
F—Mxs 2 g

with p homotopic to d. The fibre F' is the ‘wrapping up’ of the tame end
M7T of M, a closed n-dimensional manifold such that there are defined
homeomorphisms

FxR =2 MxS', MxS" = T(h)

for a monodromy self homeomorphism h : F——F'. The fibring obstruction
®(M,c) € Wh(m1(M)) is the obstruction to splitting off an S*-factor from
h: F—F, so that for n > 6 ®(M,c) = 0 if and only if up to isotopy

h =hx1:F=Fx8S8  —F=Fx§!
with hy : F1—F} a self homeomorphism such that M = T'(hy). o

Bands are of interest in their own right. For example, the fibring obstruc-
tion theory for bands gives a geometric interpretation of the ‘fundamental
theorem’ of algebraic K-theory of Bass [4]

Whir x ) = Wh(r) & Ko(Zlr]) & Nilo(Z[x]) & Nily(2[r])

— see Ranicki [124] for a recent account. The following uniformization the-
orem shows that every tame manifold end of dimension > 6 has an open
neighbourhood which is the infinite cyclic cover of a manifold band. It was
announced by Siebenmann [141], and is proved here in Chapter 17.

Theorem 19. Let (W,0W) be a connected open n-dimensional manifold
with compact boundary and one end €, with n > 6.

(i) The end e is tame if and only if it has a neighbourhood X = M C W
which is the finitely dominated infinite cyclic cover of a compact n-dim-
ensional manifold band X = (M, c), the wrapping up of €, such that

m(M) = m(e) , m(M) = m(e)xZ , e(W) ~ M,
(M) = [ € Ro(zlm (€)]) € Whim(e) x )

and such that the covering translation ¢ : M —— DM is isotopic to the identity.
The (n+1)-dimensional manifold band (M x S*, d) with d(z,t) = c(z) fibres
over S' : the map d : M x S'——S' is homotopic to the projection of a fibre
bundle with fibre M, with a homeomorphism

MxS' 2 MxR.

Thus ex St can be collared with boundary M : there exists a compact (n+1)-
dimensional cobordism (N;OW x S, M) with a rel & homeomorphism

(N\M,0W x S') = (W,0W) x S* .
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(ii) For tame € the Siebenmann end obstruction of € is the Wall finiteness
obstruction 0fM+

[ = [M ] e Ko(z[m(e)]) ,

with [e] = 0 if and only if € can be collared, in which case there ezists a
compact n-dimensional cobordism (K;0W, L) with a rel & homeomorphism

(K\L,0W) = (W, 0W)
and a homeomorphism
(K;0W,L) x S = (N;0W x S, M)

(N as in (i)), and (M,c) fibres over St with M = L x S' and M = L x R.
O

A CW complex X is finitely dominated if and only if X x S! is homotopy
equivalent to a finite CW complex, by a result of M. Mather [91]. A manifold
end € of dimension > 6 is tame if and only if € x S can be collared — this
was already proved by Siebenmann [140], but the wrapping up procedure
of Theorem 19 actually gives a canonical collaring of € x S*.

In principle, Theorem 19 could be proved using the canonical regular
neighbourhood theory of Siebenmann [148] and Siebenmann, Guillou and
Hé&hl [149]. We prefer to give a more elementary approach, using a combi-
nation of the geometric, homotopy theoretic and algebraic methods which
have been developed in the last 25 years to deal with non-compact spaces.
While the wrapping up construction has been a part of the folklore, the new
aspect of our approach is that we rely on the end space and the extensively
developed theory of manifold approximate fibrations rather than ad hoc en-
gulfing methods. An approximate fibration is a map with an approximate
lifting property. (Of course, manifold approximate fibration theory relies on
engulfing, but we prefer to subsume the details of the engulfing in the the-
ory.) We do not assume previous acquaintance with approximate fibrations
and engulfing.

The proof of Theorem 19 occupies most of Parts One and Two (Chapters
1-20). There are three main steps in passing from a tame end e of W to
the wrapping up band (M, ¢) such that the infinite cyclic cover M C W is
a neighbourhood of €:

(i) in Chapter 9 we show that tameness conditions on a space W imply
that the end space e(W) is finitely dominated and that, near infinity,
W looks like the product e(W) x [0, 00) ;

(ii) in Chapter 16 we use (i) to prove that every tame manifold end € of
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dimension > 5 has a neighbourhood X which is the total space of a
manifold approximate fibration d : X —R;

(iii) in Chapter 17 we show that for every manifold approximate fibration
d : X—R of dimension > 5 there exists a manifold band (M, ¢) such
that X = M, with a proper homotopy d ~¢: X —R.

The construction in (iii) of the wrapping up (M, ¢) of (X, d) is by the mani-
fold ‘twist glueing’ due to Siebenmann [145]. The twist glueing construction
of manifold bands is extended to the CW category in Chapters 19 and 20.

In Part Three (Chapters 21-27) we study the algebraic properties of tame
ends in the context of chain complexes over a polynomial extension ring
and also in bounded algebra. We obtain an abstract version of Theorem
19, giving a chain complex account of wrapping up: manifold wrapping up
induces a CW complex wrapping up, which in turn induces a chain complex
wrapping up, and similarly for the various types of twist glueing.

In Chapter 15 we introduce the notion of a ribbon (X,d), which is a
non-compact space X with a proper map d : X—R with the homotopy
theoretic and homological end properties of the infinite cyclic cover (W, ¢)
of a band (W, ¢). Ribbons are the homotopy analogues of manifold approxi-
mate fibration over R. In Chapter 25 we develop the chain complex versions
of CW ribbons as well as algebraic versions of tameness.

The study of ends of complexes is particularly relevant to stratified spaces.
A topologically stratified space is a space X together with a filtration

) = X'cx'cxlc..cxmlcx” = X

by closed subspaces such that the strata X7\X7~! are open topological
manifolds which satisfy certain tameness conditions and a homotopy link
condition. These spaces were first defined by Quinn [116] in order to study
purely topological stratified phenomena as opposed to the smoothly strati-
fied spaces of Whitney [170], Thom [161] and J. Mather [90], and the piece-
wise linear stratified spaces of Akin [1] and Stone [159]. Quinn’s paper
should be consulted for more precise definitions. Our results only apply
directly to the very special case obtained from the one-point compactifi-
cation W = X of an open manifold W, regarded as a filtered space by
X0 = {oo} € W* = X. Then X is a topologically stratified space with
two strata if and only if W is tame. (The general case requires controlled
versions of our results.) Earlier, Siebenmann [147] had studied a class of
topologically stratified spaces called locally conelike stratified spaces. The
one-point compactification of an open manifold W with one end is locally
conelike stratified if and only if the end of W can be collared. Hence,
Quinn’s stratified spaces are much more general than Siebenmann’s. The
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conditions required of topologically stratified spaces by Quinn are designed
to imply that strata have neighbourhoods which are homotopy equivalent
to mapping cylinders of fibrations, whereas in the classical cases the strata
have neighbourhoods which are homeomorphic to mapping cylinders of bun-
dle projections in the appropriate category : fibre bundle projections in the
smooth case, block bundle projections in the piecewise linear case. Strata in
Siebenmann’s locally conelike stratified spaces have neighbourhoods which
are locally homeomorphic to mapping cylinders of fibre bundle projections,
but not necessarily globally.

A stratified homotopy equivalence is a homotopy equivalence in the strat-
ified category (maps must preserve strata, not just the filtration). In the
special case of one-point compactifications, stratified homotopy equivalences
(W2, {o0})—(V>°,{o0}) are exactly the proper homotopy equivalences
W —V. Weinberger [166] has developed a stratified surgery theory which
classifies topologically stratified spaces up to stratified homotopy equiva-
lence in the same sense that classical surgery theory classifies manifolds
up to homotopy equivalence. Weinberger outlines two separate proofs of
his theory. The first proof [166, pp. 182-188] involves stabilizing a stratified
space by crossing with high dimensional tori in order to get a nicer stratified
space which is amenable to the older stratified surgery theory of Browder
and Quinn [15]. The obstruction to codimension i destabilization involves
the codimension i lower K-group Ki_;(Z[r]) € Wh(m x Z!). (Example 18
and Theorem 19 treat the special case i = 1.) The second proof outlined in
[166, Remarks p. 189] uses more directly the existence of appropriate tubular
neighbourhoods of strata called teardrop neighbourhoods. These neighbour-
hoods were shown to exist in the case of two strata by Hughes, Taylor,
Weinberger and Williams [76] and in general by Hughes [74]. In 16.13 we
give a complete proof of the existence of teardrop neighbourhoods in the
special case of the topologically stratified space (W, {oc0}) determined by
an open manifold W with a tame end. The result asserts that W contains
an open cocompact subspace X C W which admits a manifold approximate
fibration X —R. In the more rigid smoothly stratified spaces, the tubular
neighbourhoods would be given by a genuine fibre bundle projection. The
point is that Quinn’s definition gives information on the neighbourhoods
of strata only up to homotopy. The existence of teardrop neighbourhoods
means there is a much stronger geometric structure given in terms of man-
ifold approximate fibrations.

We use the theory of manifold approximate fibrations to perform geomet-
ric wrapping up constructions. This is analogous to Weinberger’s second
approach to stratified surgery, in which teardrop neighbourhoods of strata
are used in order to be able to draw on manifold approximate fibration
theory rather than stabilization and destabilization. We expect that the
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general theory of teardrop neighbourhoods will likewise allow generaliza-
tions of the wrapping up construction to arbitrary topologically stratified
spaces, using the homotopy theoretic and algebraic properties of the rib-
bons introduced in this book. Such a combination of geometry, homotopy
theory and algebra will be necessary to fully understand the algebraic K-
and L-theory of stratified spaces.

This book grew out of research begun in 1990-91 when the first-named
author was a Fulbright Scholar at the University of Edinburgh. We have re-
ceived support from the National Science Foundation (U.S.A.), the Science
and Engineering Research Council (U.K.), the European Union K-theory
Initiative under Science Plan SCI-CT91-0756, the Vanderbilt University
Research Council, and the Mathematics Departments of Vanderbilt Univer-
sity and the University of Edinburgh. We have benefited from conversations
with Stratos Prassidis and Bruce Williams.

The book was typeset in TEX, with the diagrams created using the KA\(S-
TEX, PICTEX and Xy-pic packages.

Errata (if any) to this book will be posted on the WWW Home Page
http://www.maths.ed.ac.uk/people/aar



Chapter summaries

Part One, Topology at infinity, is devoted to the basic theory of the general,
geometric and algebraic topology at infinity of non-compact spaces. Various
models for the topology at infinity are introduced and compared.

Chapter 1, End spaces, begins with the definition of the end space e(W)
of a non-compact space W. The set of path components m(e(W)) is shown
to be in one-to-one correspondence with the set of ends of W (in the sense
of Definition 1 above) for a wide class of spaces.

Chapter 2, Limits, reviews the basic constructions of homotopy limits
and colimits of spaces, and the related inverse, direct and derived limits of
groups and chain complexes. The end space e(W) is shown to be weak ho-
motopy equivalent to the homotopy inverse limit of cocompact subspaces of
W and the homotopy inverse limit is compared to the ordinary inverse limit.
The ‘fundamental group at infinity’ 77°(W) of W is defined and compared
to m1(e(W)).

Chapter 3, Homology at infinity, contains an account of locally finite sin-
gular homology, which is the homology based on infinite chains. The ho-
mology at infinity H2°(W) of a space W is the difference between ordinary
singular homology H.(W') and locally finite singular homology H. i (W).

Chapter 4, Cellular homology, reviews locally finite cellular homology, al-
though the technical proof of the equivalence with locally finite singular
homology is left to Appendix A.

Chapter 5, Homology of covers, concerns ordinary and locally finite sin-
gular and cellular homology of the universal cover (and other covers) W of
W. The version of the Whitehead theorem for detecting proper homotopy
equivalences of CW complexes is stated.

Chapter 6, Projective class and torsion, recalls the Wall finiteness ob-
struction and Whitehead torsion. A locally finite finiteness obstruction is
introduced, which is related to locally finite homology in the same way that
the Wall finiteness obstruction is related to ordinary homology, and the
difference between the two obstructions is related to homology at infinity.

xxii
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Chapter 7, Forward tameness, concerns a tameness property of ends,
which is stated in terms of the ability to push neighbourhoods towards
infinity. It is proved that for forward tame W the singular chain complex
of the end space e(W) is chain equivalent to the singular chain complex at
infinity of W, and that the homotopy groups of e(WW) are isomorphic to the
inverse limit of the homotopy groups of cocompact subspaces of W. There
is a related concept of forward collaring.

Chapter 8, Reverse tameness, deals with the other tameness property of
ends, which is stated in terms of the ability to pull neighbourhoods in from
infinity. It is closely related to finite domination properties of cocompact
subspaces of W. There is a related concept of reverse collaring.

Chapter 9, Homotopy at infinity, gives an account of proper homotopy
theory at infinity. It is shown that the homotopy type of the end space,
the two types of tameness, and other end phenomena are invariant under
proper homotopy equivalences at infinity. It is also established that in most
cases of interest a space W is forward and reverse tame if and only if W is
bounded homotopy equivalent at co to e(W) x [0, 00), in which case e(W)
is finitely dominated.

Chapter 10, Projective class at infinity, introduces two finiteness obstruc-
tions which the two types of tameness allow to be defined. The finiteness
obstruction at infinity of a reverse tame space is an obstruction to reverse
collaring. Likewise, the locally finite finiteness obstruction at infinity of
a forward tame space is an obstruction to forward collaring. For a space
W which is both forward and reverse tame, the end space e(W) is finitely
dominated and its Wall finiteness obstruction is the difference of the two
finiteness obstructions at infinity. It is also proved that for a manifold
end forward and reverse tameness are equivalent under certain fundamental
group conditions.

Chapter 11, Infinite torsion, contains an account of the infinite simple ho-
motopy theory of Siebenmann for locally finite CW complexes. The infinite
Whitehead group of a forward tame C'W complex is described algebraically
as a relative Whitehead group. The infinite torsion of a proper homotopy
equivalence is related to the locally finite finiteness obstruction at infinity.
A CW complex W is forward (resp. reverse) tame if and only if W x S?
is infinite simple homotopy equivalent to a forward (resp. reverse) collared
CW complex.

Chapter 12, Forward tameness is a homotopy pushout, deals with Quinn’s
characterization of forward tameness for a o-compact metric space W in
terms of a homotopy property, namely that the one-point compactification
W is the homotopy pushout of the projection e(W)—W and e(W)—
{o0}, or equivalently that W is the homotopy cofibre of e(W)—W.

Part Two, Topology over the real line, concerns spaces W with a proper
map d : W—R.
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Chapter 13, Infinite cyclic covers, proves that a connected infinite cyclic
cover W of a connected compact ANR W has two ends W+, W, and
establishes a duality between the two types of tameness: W™ is forward
tame if and only if W is reverse tame. A similar duality holds for forward
and reverse collared ends.

Chapter 14, The mapping torus, works out the end theory of infinite cyclic
covers of mapping tori.

Chapter 15, Geometric ribbons and bands, presents bands and ribbons.
It is proved that (M,c: M——S"') with M a finite CW complex defines a
band (i.e. the infinite cyclic cover M = ¢*R of M is finitely dominated) if
and only if the ends M, M~ are both forward tame, or both reverse tame.
The Siebenmann twist glueing construction of a band is formulated for a
ribbon (X, d : X—R) and an end-preserving homeomorphism h : X —X.

Chapter 16, Approzimate fibrations, presents the main geometric tool used
in the proof of the uniformization Theorem 19 (every tame manifold end of
dimension > 5 has a neighbourhood which is the infinite cyclic cover of a
manifold band). It is proved that an open manifold W of dimension > 5
is forward and reverse tame if and only if there exists an open cocompact
subspace X C W which admits a manifold approximate fibration X —R.

Chapter 17, Geometric wrapping up, uses the twist glueing construction
with h = 1: X—X to prove that the total space X of a manifold approx-
imate fibration d : X —R is the infinite cyclic cover X = M of a manifold
band (M, c).

Chapter 18, Geometric relaxation, uses the twist glueing construction with
h = covering translation : M—M to pass from a manifold band (M, c) to
an h-cobordant manifold band (M’, ¢') such that ¢’ : M’—S" is a manifold
approximate fibration.

Chapter 19, Homotopy theoretic twist glueing, and Chapter 20, Homotopy
theoretic wrapping up and relaration, extend the geometric constructions
for manifolds in Chapters 17 and 18 to CW complex bands and ribbons.
Constructions in this generality serve as a bridge to the algebraic theory of
Part Three. Moreover, it is shown that any CW ribbon is infinite simple
homotopy equivalent to the infinite cyclic cover of a C'W band, thereby
justifying the concept.

Part Three, The algebraic theory, translates most of the geometric, homo-
topy theoretic and homological constructions of Parts One and Two into
an appropriate algebraic context, thereby obtaining several useful algebraic
characterizations.

Chapter 21, Polynomial extensions, gives background information on chain
complexes over polynomial extension rings, motivated by the fact that the
cellular chain complex of an infinite cyclic cover of a CW complex is defined
over a Laurent polynomial extension.
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Chapter 22, Algebraic bands, discusses chain complexes over Laurent poly-
nomial extensions which have the algebraic properties of cellular chain com-
plexes of CW complex bands.

Chapter 23, Algebraic tameness, develops the algebraic analogues of for-
ward and reverse tameness for chain complexes over polynomial extensions.
This yields an algebraic characterization of forward (and reverse) tameness
for an end of an infinite cyclic cover of a finite CW complex. End complexes
are also defined in this algebraic setting.

Chapter 24, Relazxation techniques, contains the algebraic analogues of the
constructions of Chapters 18 and 20. When combined with the geometry of
Chapter 18 this gives an algebraic characterization of manifold bands which
admit approximate fibrations to S'.

Chapter 25, Algebraic ribbons, explores the algebraic analogue of CW rib-
bons in the context of bounded algebra. The algebra is used to prove that
CW ribbons are infinite simple homotopy equivalent to infinite cyclic covers
of CW bands.

Chapter 26, Algebraic twist glueing, proves that algebraic ribbons are sim-
ple chain equivalent to algebraic bands.

Chapter 27, Wrapping up in algebraic K- and L-theory, describes the ef-
fects of the geometric constructions of Part Two on the level of the algebraic
K- and L-groups.

Part Four consists of the three appendices:

Appendix A, Locally finite homology with local coefficients, contains a
technical treatment of ordinary and locally finite singular and cellular ho-
mology theories with local coefficients. This establishes the equivalence of
locally finite singular and cellular homology for regular covers of CW com-
plexes.

Appendix B, A brief history of end spaces, traces the development of end
spaces as homotopy theoretic models for the topology at infinity.

Appendix C, A brief history of wrapping up, outlines the history of the
wrapping up compactification procedure.



Part One: Topology at infinity

1

End spaces

Throughout the book it is assumed that ANR spaces are locally compact,
separable and metric, and that CW complezes are locally finite.

We start with the end space e(W) of a space W, which is a homotopy
theoretic model for the behaviour at co of W. The homotopy type of e(W) is
determined by the proper homotopy type of W. The set of path components
mo(e(W)) is related to the number of ends of W, and the fundamental group
m1(e(W)) is related to the fundamental group at co of W.

Definition 1.1 The one-point compactification of a topological space W is
the compact topological space

W = WuU{oo},

with open sets:

(i) U € W for an open subset U C W,
(ii) VU {oco} C W for a subset VVC W such that W\V is compact. o

The topology at infinity of W is the topology of W™ at oc.

Definition 1.2 The end space e(W) of a space W is the space of paths
w ([07 OO], {OO}) - (WOO’ {OO})
such that w™!(co) = {o0}, with the compact-open topology. o

The end space e(W) is the homotopy link holink(WW>°, {oco}) of {co} in
W in the sense of Quinn [116]. See 1.8 for the connection with the link
in the sense of PL topology, and 12.11 for the general definition of the
homotopy link.
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We refer to Appendix B for a brief history of end spaces.

An element w € e(W) can also be viewed as a path w : [0,00)—W
such that w(t) ‘diverges to 0o’ as t— 00, meaning that for every compact
subspace K C W there exists N > 0 with w([N,00)) C W\K.

Definition 1.3 (i) A map of spaces f : V—W is properif for each compact
subspace K C W the inverse image f~'(K) C V is compact. This is
equivalent to the condition that f extends to a map f>* : V— W of
the one-point compactifications with f>°(co0) = occ.

(ii)) A map f: V—W is a proper homotopy equivalence if it is a proper
map which is a homotopy equivalence in the proper category. o

We refer to Porter [111] for a survey of the applications of proper ho-
motopy theory to ends. The end space e(W) is called the ‘Waldhausen
boundary’ of W in [111, p. 135].

An element w € ¢(W) is a proper map w : [0, c0)— W, which is the same
as a path in w® : [0, co] — W such that w>[0,00) C W and w™(c0) = oco.

Example 1.4 (i) The end space of a compact space W is empty,
e(W) =0,

since W = WU{oo} is disconnected and there are no paths w™ : [0, co]—
W from w™®(0) € W to w™®(o0) = 0o € W. The converse is false: the
end space of Z is empty, yet Z is not compact.

(ii) Let T" be a tree, and let v € T be a base vertex. A simple edge
path in T is a sequence of adjoining edges ej,eq,e3,... (possibly infinite)
without repetition. By the simplicial approximation theorem every proper
map w : [0,00)—7T is proper homotopic to an infinite simple edge path
starting at v. If T" has at most a finite number of vertices of valency > 2
the end space e(T') is homotopy equivalent to the discrete space with one
point for each simple edge path of infinite length starting at v € T..

(iii) The end space of Rt = [0, 00) is contractible,

e(RY) ~ {pt.},

corresponding to the unique infinite simple edge path starting at 0 € R™.
(iv) The end space of R is such that

e(R) ~ S° = {+1,-1},
corresponding to the two infinite simple edge paths starting at 0 € R. O

In dealing with end spaces e(W), we shall always assume that W is a
locally compact Hausdorff space.
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Remark 1.5 For any space W the evaluation map
p:eW)—W;w— w()

fits into a homotopy commutative square

e(W) ———{oo}

1

wWw—* 5 W

with ¢ : W——W® the inclusion. The space W is ‘forward tame’ if and
only if this square is a homotopy pushout rel {oo} — see Chapters 7,12 for
a more detailed discussion. O

Definition 1.6 Let (K, L C K) be a pair of spaces. The space L is collared
in K if the inclusion L = L x {0}—K extends to an open embedding
f:Lx[0,00)—K. O

Proposition 1.7 If (K, L) is a compact pair of spaces such that L is collared
in K then the end space of the non-compact space

W = K\L

is such that there is defined a homotopy equivalence

L—>e(W);x—>(t—>f<$>11+t>)

with f : L x [0,00)— K an open embedding extending the inclusion L =
Lx{0}—K. o

In other words, if W is a non-compact space with a compactification K
such that the boundary

0K = K\W C K

is a compact subset which is collared in K then there is defined a homotopy
equivalence

e(W) ~ 0K .
The homotopy theoretic ‘space at infinity” e(WW') thus has the homotopy type

of an actual space at infinity, provided W is collared in the compactification
K.
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Example 1.8 (i) Let X be a compact polyhedron. For any x € X there
exists a triangulation of X with x as a vertex, with the pair of compact
spaces

(Y,Z) = (star(x),link(z))

such that Y = z % Z is the cone on Z, and Z is collared in Y. (See Rourke
and Sanderson [139] for the PL theory of stars and links.) The non-compact
spaces

Y\Z = Zx[0,0)/Z x {0},
W = X\{l‘} = CI(X\Y) UZX{O} Z X [0,00)

have one-point compactifications
Y\2)>® =Y/Z , W*® = X (c0o=2x),
with end spaces such that
e(Y\Z) ~ e(W) ~ Z.

The homotopy link of {oo} in W is homotopy equivalent to the actual
link of z in X.

(ii) Let (M,0M) be a compact n-dimensional topological manifold with
boundary. The boundary OM is collared in M. (In the topological category
this was first proved by Brown [16]. See Conelly [31] for a more recent
proof.) The interior of M is an open n-dimensional manifold

W = int(M) = M\oM

with an open embedding f : OM x [0,00)— M extending the inclusion
OM = OM x {0}—M. The end space of W is such that the map

o) s{n )

defines a homotopy equivalence, with the adjoint of ¢

homotopic to f.

(iii) In view of (ii) a necessary condition for an open n-dimensional man-
ifold W to be homeomorphic to the interior of a compact n-dimensional
manifold with boundary is that the end space e(I¥) have the homotopy
type of a closed (n — 1)-dimensional manifold. In Chapters 7,8 we shall be
studying geometric tameness conditions on W which ensure that e(W) is at
least a finitely dominated (n — 1)-dimensional geometric Poincaré complex.

O
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The following result is a useful characterization of continuity for functions
into an end space. It is based on elementary facts about the compact-open
topology and proper maps.

Proposition 1.9 For locally compact Hausdorff spaces X, W and a function
f: X—e(W), the following are equivalent :

(i) f is continuous,

(i) the adjoint f: X x [0,00)—W; (x,t)— f(x)(t) is continuous, and
for all compact subspaces C C X, K C W, there exists N > 0 such
that f(C x [N,o0)) C W\K,

(iii) for every compact subspace C' C X, the restriction f| : C'x10,00)—
W is a proper map.

Proof (ii) <= (iii) is obvious.
(i) = (iii) If f is continuous, so is the induced function

[ X x[0,00] — W™ (x,t) — {f(a:)(t) %ft< o0
00 ift=o00.
Since f = f*|, f is continuous and f| : C' x [0, 00)—W is proper.

(iii) = (i) It suffices to show that the induced function f* : X x [0, co]—
W is continuous. It is clear that f*|: C' x [0, co]— W is continuous for
each compact subspace C' C X. The local compactness of X then implies
that f* is continuous. o

It follows that for a compact Hausdorff space X, a function f : X —e(W)
is continuous if and only if the adjoint ]?: X x [0, 00)— W is a proper map.
For non-compact X, W a constant map X —e(W) is such that the adjoint
X x [0,00)— W is not proper.

Proposition 1.10 The end space defines a functor e : W——e(W) from the
category of topological spaces and proper maps to the category of topological
spaces and all maps. A proper map f: V—W induces a map

e(f) : e(V) — e(W); w— fw,
and a proper homotopy f ~ g : V—W induces a homotopy
e(f) =~ elg) : e(V) — e(W) . o

A subspace V' C W is cocompact if the closure of W\V C W is compact.
For a CW complex W a subcomplex V' C W is cofinite if it contains all but
finitely many cells of W. A cofinite subcomplex is a cocompact subspace.
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Definition 1.11 A space W is o-compact if

(e.0)
W = (JK;
j=1
with each K; compact and K; C K. o

In particular, all the AN R’s considered by us are o-compact, since we are
assuming that they are locally compact, separable and metric.

It follows from 1.10 that the homotopy type of e(W) is determined by the
proper homotopy type of W. A more general result will be established in
9.4 for a metric space W, that the homotopy type of e(W) is determined by
the ‘proper homotopy type at oo’ of W. The inclusion of a closed cocompact
subspace is a special case of a ‘proper homotopy equivalence at co’, and the
following result will be used in the proof of 9.4:

Proposition 1.12 If W is a o-compact metric space and u : V—W is the
inclusion of a closed cocompact subspace then the inclusion of end spaces
e(u) : e(V)—e(W) is a homotopy equivalence.

Proof Since W is a o-compact metric space, W and e(W) are metrizable,
and so e(W) is paracompact. For each w € e(W) choose a number ¢, €
[0,00) such that

W([tw,o0)) Cint(V) .
Let U(w) be an open neighbourhood of w in e(W) such that
a([tw,o0)) Cint(V) (a € U(w)) .

Let {U;} be a locally finite refinement of the covering {U(w)|w € e(W)}
of e(W), and let {¢;} be a partition of unity subordinate to {U;}. For each i
choose w; € e(W) such that U; C U(w;), and let ¢t; = t,,,. For each w € e(W)
let

m, = min{t; | ¢;(w) # 0} .
Note that w([my,o0)) C intV and 3° ¢;(w)t; > my,. The map

F :e(W)x I — e(W);
(w,t) — (s — w((1 —t)s + (Z di(w)t; + s)t))

(weeW),0<t<1,s>0)

is a deformation of e(W) into e(V') such that Fy(e(V)) C e(V) for 0 < ¢ < 1.
o
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Example 1.13 (i) The application of 1.12 to the inclusion
fo e R |2l > 1} = 8™ x [1,00) — E™ (m>1),
gives a homotopy equivalence
e(S™ 1 x [1,00)) >~ e(R™).
By 1.7 e(S™7! x [1,00)) is homotopy equivalent to S™ !, so that
e(S™ 1 x [1,00)) =~ e(R™) ~ S™1,
(ii) Given a compact space K and an integer m > 1 let
W = KxR"™.

The one-point compactification W = ™K is the m-fold reduced sus-
pension of K = K U {pt.}, and the end space is such that

e(W) ~ K x e(R™) ~ K x §™ 1, o

In dealing with the number of ends of a space W we shall assume the
following standing hypothesis for the rest of this chapter: W is a locally
compact, connected, locally connected Hausdorff space (e.g. a locally finite
connected CW complex).

In the literature the end space e(W) has not played as central a role as
the ‘ends of W’ or the ‘number of ends of W’. Roughly, an end of W should
correspond to a path component of e(W). We now recall these classical
notions and their relationship to m(e(W)).

Definition 1.14 (Milnor [100]) An end of a space W is a function
e {K|K CW iscompact} — {X|X CW}; K — ¢(K)
such that :

(i) e(K) is a component of W\ K for each K,
(ii) if K C L, then €(L) C ¢(K).

A neighbourhood of € is a connected open subset U C W such that U = €(K)
for some non-empty compact K C W. o

Remark 1.15 (i) For a o-compact space W the definition of an end in 1.14
agrees with Definition 1 in the Introduction. A sequence W D U; D Us D ...
of neighbourhoods of an end (in the sense of Definition 1 of the Introduction)

such that () cl(U;) = 0 determines an end e of W (in the sense of 1.14) as
j=1
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follows : for a compact subspace K C W choose j such that U; N K = () and
let €(K) be the component of W\ K which contains U;. On the other hand,

o0
if eis an end of W and W = |J K with each K; compact and K; C Kj1,
j=1

then €(K;) = U; defines a sequence of neighbourhoods of an end as above.

(ii) A subspace is unbounded if its closure is not compact. Note that if € is
an end of W, then €(K) is unbounded for each compact subspace K C W.
(Otherwise, L = K Ucl(e(K)) would be a compact subspace of W containing
K, so €(L) C ¢(K) C L, contradicting ¢(L) C W\L.) o

Definition 1.16 The number of ends of a locally finite CW complex W
is the least upper bound of the number (which may be infinite) of infinite
components of W\V for finite subcomplexes V' C W. o

Example 1.17 (i) The real line R has exactly two ends.

(ii) The dyadic tree X is the tree embedded in R? with each vertex of
valency 3, with closure the union of X together with a disjoint Cantor set.
The dyadic tree has an uncountable number of ends. See Diestel [37] for
more information on ends of graphs. o

An alternative approach to the definition of an end is to focus attention
on the number of ends of a space.

Definition 1.18 (Specker [151], Raymond [134]) The space W has at least
k ends if there exists an open subspace V' C W with compact closure cl(V)
such that W\cl(V) has at least & unbounded components. The space W
has (exactly) k ends if W has at least k ends but not at least £+ 1 ends. o

The point set conditions on W imply that if V' C W is an open sub-
space with compact closure, then W\cl(V') has at most a finite number of
unbounded components (see Hocking and Young [66, Theorem 3-9, p. 111]).
If W has exactly k ends then there exists an open subspace V' C W with
compact closure so that W\cl(V') has exactly & unbounded components.

Proposition 1.19 Let k > 0 be an integer.

(i) If W has at least k ends in the sense of Definition 1.14, then W has
at least k ends in the sense of Definition 1.18.

(ii) If W is o-compact and has at least k ends in the sense of Definition
1.18, then W has at least k ends in the sense of Definition 1.14.

(iii) For W o-compact, W has exactly k ends in the sense of Definition
1.14 if and only if W has exactly k ends in the sense of Definition 1.18.
Proof (i) Let €y, ..., ¢ be distinct ends of W in the sense of 1.14. For 1 <
i < j < k, choose a compact subspace H;; C W such that €;(H;;) # €;(H;j).
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It follows that €;(H;;) Nej(H;;) = 0. Let

H= J Hy.
1<i<j<k
Since H is compact, there is an open subspace V' C W with compact closure
such that H C V. Then €;(cl(V)),. .., ex(cl(V)) are unbounded components
of W\cl(V). Since €;(cl(V)) C €;(H;j), these are in fact k distinct compo-
nents. Thus, W has at least k ends in the sense of 1.18.

(ii) We may assume that £ > 1, so that W is non-compact. Note that
if K C W is a compact subspace, then W\K has at least one unbounded
component. For if V' C W is an open subspace with compact closure such
that K C V, then all but finitely many components of W\ K are contained
in V' (see Hocking and Young [66, Theorem 3-9, p. 111]). It follows that one
of those finitely many components of W\ K must be unbounded.

Next, we shall show that if K C W is a compact subspace and C is an
unbounded component of W\K, then there exists an end e of W in the
sense of 1.14 such that e(K) = C. For W can be written as

oo
w = (JK;
j=0
with Ko = K, each K, compact and K; C Kjyi. Define € as follows.
First, let e(K) = €(Kp) = C. Then, assuming j > 1 and that €(K;_1)
has been defined, define €(K;) to be one of the unbounded components
of cl(e(K;—1))\K; (which exists by the argument above). Finally, for an
arbitrary compact subspace H C W, choose j such that H C Kj, and
define €(H) to be the component of W\ H which contains e(K;). It is easy
to verify that € is an end of W in the sense of 1.14.
Since W has at least k ends in the sense of 1.18, there exists an open
subspace V' C W with compact closure such that W\cl(V') has at least k

unbounded components, say C1,...,Ck. Then there exist ends €1, ..., €, of
W in the sense of 1.14 such that ¢;(cl(V)) = C; for j =1,... k.
(iii) Immediate from (i) and (ii). o

If a space W is not assumed to be g-compact, then we shall assume that
an end of W refers to an end in the sense of 1.14 unless otherwise stated.
Of course, such an end gives rise to an end in the sense of 1.18.

Proposition 1.20 A connected space W with exactly k ends can be ex-
pressed as

with K C W a connected compact subspace, and each W(j) C W a closed
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connected subspace with exactly one end.
Proof Let V C W be an open subspace with compact closure such that
W\cl(V) has exactly k& unbounded components, say Ci,Cs,...,Ck. Let

k
X = W\ U C; = c(V)U U{all bounded components of W\cl(V)} .
j=1

Observe that X is compact. For if U is a collection of open subsets of W
which cover X, extract finitely many Uy, Us,...,U, € U such that cl(V) C

n
U Uj. Only finitely many of the components of W\cl(V) are not con-
j=1

n
tained in |J U; (see Hocking and Young [66, Theorem 3-9, p. 111]). Let
j=1

Dy, Dy, ..., D, be the bounded components of W\cl(V') not contained in

n

U Uj. Then cl(D;) C X is compact for each j = 1,2...,m. Thus, there
j=1

exists a finite subcollection U; of U which covers cl(D;). Then

{Ul,UQ,...,Un}UulU...Uum

is a finite subcollection of U which covers X.

Now let K C W be a compact connected subspace containing X (use
Dugundji [38, page 254, exercise 2, section 6]) and let W (j) = cl(C};) for
i=1,2,... k.

It only remains to see that each W (i) has one end. Suppose on the
contrary that €; and e are distinct ends of W (j). These ends induce ends
€1, €2 of W by setting

a6(K) = e¢(KNW(j))

for K C W and ¢ = 1,2. This shows that W has at least £ + 1 ends, a
contradiction. O

Definition 1.21 The set of ends Ew of a space W is the set of ends of W
in the sense of Definition 1.14. o

Proposition 1.22 (i) The set of path components of the end space e(W) is
related to the set of ends of a space W by the map
nw : mo(e(W)) — &w ; [w] — e

with €,(K) the component of W\ K which contains w([N,0)), for any com-
pact K CW.

(ii) Given spaces X,Y, a closed cocompact subspace U C X and a proper
map f: U—Y there is induced a map

f* . EX—>5Y;€—>]£*(E)
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with (f«€)(K) the component of Y\K such that

Fle(fHE)Ud(X\U))) C (foe)(K)

for any compact K CY. The induced map fi satisfies the following prop-
erties :

(a) (Restriction) If U' C X is a closed cocompact subspace with U' C U,
then f. = (f|U)«.

(b) (Proper homotopy invariance) If g : U—Y is a proper map with f
and g properly homotopic, then f, = gx.

(¢) (Naturality) Let nx : mo(e(X))—Ex and ny : mo(e(Y))—Ey be the
maps defined above. Let e(f) : e(U)—e(Y') be the map induced by
f. Then the inclusion induced map i : wo(e(U))—mo(e(X)) is such
that fronx oi=mny oe(f).: m(e(U))—Ey.

Proof (i) Immediate from the definitions.
(ii) (a) Let K C Y be compact, and let

A = (fIU) NE)UA(X\U) S X, B = (fIUNA)CY .

Now
X\U C f~HE)ud(X\U") C (f[U")H(K) uel(X\U")
so that
ACe(fTHE)U(X\U)) CU\fTHK)
and hence

B C fe(fTH(K) Uel(X\U)) S Y\K .

It follows that the component of Y\ K containing B is also the component
of Y\K containing f(e(f~1(K) Ucl(X\U))).

(b) Let h: f ~ g: U x I—Y be a proper homotopy and let K C Y be
compact. The subspace

C = fAA R UgHE)UA(X\U)CU x I

is such that f~}(K) U cl(X\U) C C and €(C) C e(f~YK) U cl(X\U)).
Thus f.(e)(K) is the component of Y\K which contains f(e(C)). Also,
g«(€)(K) is the component of Y\K which contains g(e(C)). It suffices to
show that f(e(C)) and g(e(C)) are in the same component of Y\ K. Since
h~Y(K) is compact and €(C) is unbounded, there exists € ¢(C) such that
h(x x I) N K = . It follows that f(z) € f(e(C)) and g(x) € g(e(C)) are in
the same component of Y\ K.

(c) This is obvious. u]
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Remark 1.23 Freudenthal [61] and Raymond [134] defined the (Freuden-
thal) end point compactification W* of a non-compact space W. In the case
that W has exactly k ends €y, ..., €, this compactification is essentially by
adjoining one point at infinity for each end, with

W* = WuU{e,..., e}

and the topology on W* is such that neighbourhoods of €; are of the form
€;(K) U {e;} for compact subspaces K C W. (If W has one end this is the
one-point compactification, W* = W.) If W has infinitely many ends, the
topology on W* is more complicated because the ends are no longer isolated.
The compactification W* is characterized in [134] by the properties:

i) W* is connected,

(ii) W is open in W*,

(iii) W*\W is totally disconnected,

(iv) if z € W*\W and U is a connected open neighbourhood of z, then
U\(W*\W) is connected. o



2

Limits

In this chapter we state the basic constructions and properties of homotopy
limits and colimits of spaces, and the related direct and inverse systems
of groups. In 2.14 we shall show that the end space e(W) of a o-compact
space W has the weak homotopy type of the homotopy limit ml W; of an

j
inverse system {W; |j =0,1,2,...} of closed cocompact subspaces W; C W
o0

with) = N W; C...C W1 CW; C ... C Wy =W, and the homotopy

7=0
groups 7, (e(W)) = m.(holim W) fit into short exact sequences
J
0— pinl Tr41(W;) — m,(holim W;) — @WT(WJ') — 0
J J J
with lim! denoting the derived limit (2.11). The ‘Mittag Leffler’ and ‘sta-
bility” conditions for an inverse sequence of groups are recalled (2.20) and

related to derived limits. The related geometric condition ‘semistability at
oo’ for a space W is interpreted in terms of the end space e(W) (2.25).

We refer to Bousfield and Kan [9] for the general theory of homotopy
limits and colimits.

Definition 2.1 The direct limit of a direct system of sets

Jo fi

XU—>X1—>X2—>...

is the quotient of the disjoint union [[; X;

lim X; = HXj/(96j+1 = fi(zy)) - =
: =0

J

13
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Proposition 2.2 (i) For any set X and any sequence of subsets Xog C X7 C
Xy C ... C X the direct limit of the direct system {f; : X;— X1} defined
by the inclusions is the union

o0
imX; = |JX; X .
j j=0

(ii) The direct limit of a direct system of groups {f; : Gj—Gjq1} is a

group lim Gj. For abelian G the direct limit is an abelian group, such that
-

J
up to isomorphism

limG; = coker(1 =3 f;:> Gi—> Gj).
J J J=0 J=0

(iii) Homology commutes with direct limits: the direct limit of a direct
system of short exact sequences of groups

is a short exact sequence of groups

0 — limG; — limH; — limK; — 0. O
J J J

Definition 2.3 The mapping telescope or homotopy direct limit of a direct

f f
system of spaces X e 1 ' Xo ... is the identification space
Tel(f;) = hocolim X

J

_ (jgoxj <1) [((@3:1) = ((2:),0)

fo fi P

XO X1 X2 Xj

Example 2.4 Let X be a CW complex and let
XoCX;C...CX;CX;1C...CX

be a sequence of subcomplexes. The mapping telescope of the direct system
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{fj : Xj— X1} defined by the inclusions is a CW complex Tel( f;) which
is homotopy equivalent to the direct limit h_n)lX i =UX; € X. i

j J

Proposition 2.5 Let W = Tel(f;) be the mapping telescope of a direct
system of spaces {f; : X;—X;11}.

(i) The homology of W is the direct limit of the induced direct system of
homology groups

H.(W) = H*(hocgllij) = h_r}nH*(XJ)
J J
(ii) If each X; is compact the one-point compactification W is con-
tractible. Furthermore, the natural projection p : e(W)—W is a homotopy
equivalence, so that

e(W) ~ W.

Proof (i) Immediate from 2.2 (iii).
(ii) Define a map

g : [OaOO)XW—>W7 (ra(l'as))—>(fj+u71---fj+1fj($)7v)
(xeXj,r+s =ut+v,ueN,vel01)).
The map

t i
h : W xI— W*,; (wt) — gm,w twew,
00 if w=o00
defines a contraction of W
h :id ~ {oo} : W® — W™ |
and the map
W —eW); w— (r — g(r,w))

defines a homotopy inverse for p : e(W)—W. w

Example 2.6 Given a compact space K let
W = K x[0,00) = Tel(f;)

with f; =1: X; = K— X1 = K. The one-point compactification of W
is the cone on K

W = K x[0,00]/K x {o0} = ¢cK,
and by 1.7 there are defined homotopy equivalences
K—W;x— (z,0),
K—eW); z— (t — (z,1)) .
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The map K——e(W) sends each z € K to the ray joining it to the cone
point co € W™ = cK. ]

Definition 2.7 The inverse limit of an inverse system of sets

f1 f2

XU<—X1<—X2<—...

is the subset of the product []; X;

00
liij = {(mo,xl,xg, .. ) < H Xj | fj(.%'j) = l'j_l} . O
j j=0

Proposition 2.8 (i) For any set X and any sequence of subsets ... C Xy C
X1 € Xo C X the inverse limit of the inverse system {f; : X;—X; 1}
defined by the inclusions is the intersection

o0
mX; = () X; CX.
J J=0
(ii) The inverse limit of an inverse system of groups {G;—Gj_1} is a
group liLnGJ" o
J

Definition 2.9 The homotopy inverse limit of an inverse system of spaces
{fj : X;—X;_1} is the subspace of the product I1; Xj’ of the path spaces
X!

J

holim X; = {(wo,w1,...) € [] X [ fj(w;(0)) = wj-1(1)} . o
j j=0

Example 2.10 (i) Let
X2X02X12...2Xj2Xj+12...

be a sequence of subspaces of a space X. The homotopy inverse limit
holim X of the inverse system {f; : X;—X;_1} defined by the inclusions

J
is the space of paths w : [0, 00)—X such that w([j,j +1]) € X; (j > 0).

(ii) For any inverse system of spaces {f; : X;—X;_1} there is defined
an inclusion of the inverse limit in the homotopy inverse limit

&an — holiij i (o, 21,...) — (wo,wt,...) (wj(l) =x;) .
j j

If each f; is a fibration this is a homotopy equivalence.
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(iii) Every map f : X—Y can be replaced by a fibration: for path-
connected Y the path space Y7 is the total space of a fibration Y/—Y;
w—sw(0) and is contractible, and the pullback along f: X —Y

E(f) = f*(Y) = {(z,0) e X x Y| f(z) = w(0) € Y}
is the total space of a fibration p(f) : E(f)—Y; (z,w)— f(z) with

!
p(f) : E(f) ~ X — Y.
For any inverse system of spaces {f; : X;—X;_1} there is thus defined an
inverse system {g; : Y;—Y;_1} with each g; a fibration and

b
gi Y, 2~ Xy — Xj1 = Y.

The homotopy inverse limit of {X;} is homotopy equivalent to the inverse
limit of {Y}}:

holim X; ~ limYj . O
— —
J J

Definition 2.11 The derived limit of an inverse system of groups {f; :
Gj—Gj_1} is the pointed set

o0

.

im' G5 = []G; / ~

J J=0

with (z;) ~ (y;) if y; = 275 fj11(2j41) 7" for some (z;) € [] Gy o
J

Proposition 2.12 (i) The inverse and derived limits of an inverse system

of abelian groups {f; : G;—Gj_1} are the abelian groups

@Gj = ker(l—Hfj : HGj—>HGj) ,

J J J=0 J=0
pﬂll G; = coker(1l — H fj: H Gj— H G;)
J J J=0 J=0

with an exact sequence
e} 1_1;[fj [ee]
. 1
J Jj= J= J

(ii) The inverse and derived limits of an inverse system of short exact
sequences of abelian groups

0— G —H; — K; — 0 (j>0)
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are related by a long exact sequence

J J J
— lim' G} — lim'H; — lim' K; — 0. O
J J J

Proposition 2.13 (Bousfield and Kan [9, p. 254]) The homotopy groups of
a homotopy inverse limit fit into exact sequences

0— ml 7Tr+1(Xj) — Wr(h01iij) — @WT(Xj) — 0. O
J J J

A map of spaces f: X—Y is a weak homotopy equivalence if it induces
a bijection f, : mo(X)——m(Y) of the sets of path components, and on each
component f induces isomorphisms f, : 7 (X)—m(Y) of the homotopy
groups. A weak homotopy equivalence f : X—Y induces homology iso-
morphisms f, : H.(X)— H,(Y) by the Hurewicz theorem. If X and Y have
the homotopy types of CW complexes then f is a homotopy equivalence,
by Whitehead’s theorem.

Proposition 2.14 Let W be a o-compact space with closed cocompact sub-
spaces W; CW for j =0,1,2,... such that

Wi CW; , (\W; =0,
j=0

and write the inclusions as
g+ Wy — Wi (j=1).
The map
oo holim Wy — e(W) 5 (wj) — (t — wi(t—3)) (<t<j+1)
J

1s a weak homotopy equivalence, so that

i (holim W) = . (e()
J
and there are defined exact sequences
0 — lim" w1 (W)) — m(e(W)) — limm, (W) — 0.
J J
Proof Let a : B"—e(W) and (3 : 9B"— holim W; be maps such that

j
fofB = «a|0B™ where B" C R" is the unit ball. It suffices to construct a
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map B : B"— holim W} such that BWB" = [ and foB ~ « rel 0B™. Note
J
that an element w € e(WW) is in the image of f : holim W;——e(W) if and
(—‘

J
only if w([j,00)) € W for each j = 0,1,2,... . Therefore, the adjoint of «
is a proper map

a : B"x[0,00) — W ; (z,t) — a(x)(t)

such that a(0B" x[j,00)) € Wj for j =0,1,2,... and the problem is reduced
(via 1.9) to showing that & is properly homotopic rel 9B™ x [0, o0) to a map
& : B™ x [0,00)— W such that a(B" x [j,00)) C Wj for j =0,1,2,.... By
using a proper homotopy of & rel 9B™ x [0, 00), we may assume a&(z,t) € W;
for ||z|| > %, t>j,and j =0,1,2,.... Since & is proper, there is a sequence
Ny < N1 < Ny < ... such that

a(B" x [Nj,00)) CW; (j=0,1,2,...) .

J
Thus &(z,t) € W if t > Nj, or if ¢ > j and |[z| > L for j = 0,1,2,... .
Construct a homeomorphism

h : B" x[0,00) — B" x [0,00)
such that h is isotopic to the identity rel 9B™ x [0, 00) and
h(B™ x [j,00)) C {(z,t) € B" x [0,00) [t > Nj, ort > j and ||z|| > 3} .
Then & = @ o h is properly homotopic to & rel 9B™ x [0, 00) and

&(B" x [j,00) CW; (j=0,1,2,...) . o

Remark 2.15 (i) The exact sequences of 2.14 also appear in Brin and
Thickstun [10], with 7.(e(W)) the ‘absolute Steenrod homotopy groups’ of
the ends of W.

(i) In 7.10 it will be proved that if W is ‘forward tame’ the 11311 terms in

2.14 vanish, and that

m(e(W)) = lmm(Wy) , Hi(e(W)) = lim H.(W;) :

Definition 2.16 The mapping cotelescope of an inverse system of spaces

bil p)

X0<—X1<—X2<—...

is the space

W) = (gxk 1) [ 1,0) = (w1
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fi fa I3

Proposition 2.17 Let W = W(f;) be the mapping cotelescope of an inverse
system of spaces {f; : X;—X;_1}.
(i) The inclusion
Xo — W(fj) 5 2o — (0,0)

is a homotopy equivalence (but not in general a proper homotopy equiva-
lence).

(ii) If each X is a compact space then the end space of W is weak homo-
topy equivalent to the homotopy inverse limit

e(W) ~ holim X .
J
Proof (i) The projection
W — Xo; (Jjj,t) — f1f2 fj(x])

is a homotopy inverse for the inclusion Xo—W.
(ii) Apply 2.14 with

Wi = W(filizj) €W = W(f;) . o

Example 2.18 Fix an integer s > 2, and consider the inverse system of
fibrations

fj :SZX]' :Sl—>X]’,1 :SI;Z—>ZS (jzl)

The end space e(W(f;)) of the mapping cotelescope W(f;) is homotopy
equivalent to the s-adic solenoid

[e.9]
St = limX; = {(zo,21,22,...) € HSl\x;?H = x; for j > 0} .
J =0

See Bourbaki [8, 11, 7, Ex. 6, p. 325] for the topological properties of S’\; See
23.25 and 23.28 for the homological properties of S.. O
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Proposition 2.19 (i) The direct limit of a direct system of chain complezxes
and chain maps

fG) = CGH) — CG+1) (120)

18 a chain complex

lii)nC(j) = cokerl—z ZC —>i0(]))
=0

J J
such that

(ii) The inverse and derived limits of an inverse system of chain complexes
and chain maps

9(g) : € — CG-1) (G=1)

are the chain complexes

[e.9]

liLnC(j):kerl—H H —>HC’

J J Jj=0

lim' C(j) = coker(l—Hg ﬁ —>HC’

A ;
J J
If h£11 C(j7) = 0 there are defined short exact sequences
J
0 — lim' H,41(C(j)) — H,(imC(j)) — lim H,(C(j)) — 0.
J J J
IfliglC’(j) = 0 there are defined short exact sequences
J
1 . 1 . . .
0 — lim" H,(C(j)) — H,(lim" C(j)) — lim H, ,(C(j)) — 0.
J J J
Proof (i) The direct limit fits into a short exact sequence of chain complexes
1= FG) o
>_Clj) — limC(j) —0,

J

[ee]
0— Z C(7)
j=1
and the homology exact sequence breaks up into short exact sequences

- DN (F)
0 — Y HC(j) ——— Y HC() — H(mC(f) — 0.

J=1 J
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(ii) If 11211 C(j) = 0 the inverse limit fits into a short exact sequence of

chain complexes

~ =1T9G)
. . . ] .
0 — limC(j) — []CG) [[cG —o,
j =1 j=1

inducing a long exact sequence of homology groups
1— Hg(j -

H Hr-i—l

LT HHT+1 C

7j=1

(th — H H,(
J
If liLnC(j) = 0 the derived limit fits into a short exact sequence of chain
com]plexes
0— HC’(]) HC —>hm C(j) — 0,

Jj=1 ]

inducing a long exact sequence of homology groups

1—Hg(j) ~

. — HHT(C'
j=1

— H,,(li_'ml C(4)) — ﬁHr_l(C(j)) — .

Definition 2.20 Let {f; : G;—G;_1|j > 1} be an inverse system of
groups.

(i) The inverse system is Mittag—Leffler if there exists k > 1 such that the
morphisms

fil o im(fi1) — im(fj)

are onto for all j > k.
(ii) The inverse system is stable if there exists k > 1 such that the mor-
phisms

fil o im(fje1) — im(f;)

are isomorphisms for all j > k. O
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Proposition 2.21 Let {f; : G;—G,_1|j > 1} be an inverse system of
groups.
(i) {G;} has the same inverse and derived limits as {im(f;)—im(f;_1)} :

imG; = limim(f;) , lim' G; = lm"im(f;) .
J J J J

(ii) If {G;} is Mittag—Leffler then

lm' Gy = lim'im(f) = 0.

J J
(iii) If {G;} is stable then it is Mittag-Leffler, with
j J

for sufficiently large k > 0.
(iv) An inverse system {G;} is stable if and only if there exist a group H
and an integer k > 0 with morphisms

pj - H—G; , ¢ : Gg— H (j>k)

such that the diagrams
H _ —— H
|2
4 i

i

pj
G ——G

commute, in which case

im G = im(fy) = m(frp) = ... = H , lm'Gj =0
J J

and up to isomorphism
fi 1 G = HxK; — Gj_1 = HxKj_1; (z,y) — (z,1) (j > k)
with K; = ker(fj) = coker(p;) = ker(g;).
Proof (i) By 2.12 (ii) the short exact sequences
0 — ker(f;) — G; — im(f;) — 0
determine a long exact sequence
0— @ker(fj) — limG; — @ml(f])
J J J
— lim' ker(f;) — lim' G; — lim"im(f;) — 0.
J J J
It follows from f;| = 0 : ker(f;)—ker(f;—1) that
timker(f;) = 0, Jim'ker(f;) = 0.
J J
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(ii) By (i) the derived limit of {G;} is the same as the derived limit of
{im(f;)}, so it suffices to note that 11311 G; = 0if each f; : G;—Gj_1 is

J
onto.

(iii) Immediate from (i) and (ii).
(iv) If {G;} is an inverse system which is stable, let

H = im(fy) = m(fpr1) = ...,
p; = inclusion : H = im(fj+1) — Gy,
q; = projection : G; — H = im(f;) .

Conversely, given H, k,pj,q; note that since ¢;p; = id : H—H each p; is
one-to-one and each g; is surjective, and since f; = pj_1q; : G;—Gj_1 it
is possible to identify H = im(f;) for j > k, and hence to apply (iii). O

Remark 2.22 Geoghegan [62] has proved the converse of 2.21 (ii) in the

countable case: if {G;} is an inverse system of countable groups such that
. 1 R . . . o

h;n G; = {1} then {G,} is Mittag-Leffler. a]
J

As in 1.22 let ny : mo(e(W))—Ew be the function which associates an
end of a space W to each path component of the end space e(W).

Definition 2.23 (i) A o-compact space W is path-connected at oo if every
cocompact subspace of W contains a path-connected cocompact subspace
of W, or equivalently if there exists a sequence W D Wy D Wy D Wse D ...
of path-connected cocompact subspaces with () cl(W;) = 0.

J

(ii) A space W is semistable at oo if any two proper maps wi,ws :
[0, 00)— W with nw ([w1]) = nw ([we]) are properly homotopic.

(iii) A space W has stable m1 at oo if it is path-connected at co, and there
exists a sequence as in (i) such that the sequence of inclusion induced group

morphisms
g 92

7T1(W0) — 7T1(W1) — 7'(‘1(W2) — ...

(with base points and base paths chosen) is stable, i.e. for some k > 1 there
are induced isomorphisms

1%

im(g) — im(ggg1) «— ... .
(iv) If W has stable m at oo, define the fundamental group at oo
o (W) = limm (W)
J
for some fixed sequence {W;} as above, with

(W) = im(gr) = im(gg1) = ... . o
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Example 2.24 If (M,0M) is a compact manifold with boundary then each
component L of OM is collared in the complement W = M\L, so that W
has stable m at infinity with 73°(W) = m(L). o

Proposition 2.25 (i) If W is o-compact and locally path-connected, then
nw : mo(e(W))—Ew is surjective.

(ii) W is semistable at oo if and only if nw is injective.

(iii) If W is o-compact and locally path-connected, then W is semistable
at oo if and only if nw is bijective.

(iv) If W is o-compact, locally path-connected and semistable at oo, then
W is path-connected at oo if and only if mo(e(W)) = 0.
Proof (i) Write

W = |JK;
j=0

with each K; compact and K; C K. Let € be an end of W (in the sense
of 1.14). For each j, choose x; € €(Kj;). Then z;, 241 € €(K;) and €(Kj)
is a component of an open subset of a locally path-connected space. Hence,
(k) is path-connected, so there is a map

wj i (4,5 +1] — e(K;)

with w;(j) = z; and w;(j + 1) = j41. Then the w;’s amalgamate to define
a proper map w : [0, 00)—W with nw ([w]) = €.

(ii) Immediate from the Definition 2.23.

(iii) follows from (i) and (ii).

(iv) Since nw is bijective, we need to show that W is path-connected at co
if and only if W has exactly one end. Suppose that W is path-connected at
oo and that €1, €5 are distinct ends of W. Then there is a compact subspace
K C W such that €(K) # e2(K), and so €1(K) Ne(K) = 0. Let X
be a path-connected cocompact subspace of W\ K. Since €;(K), e2(K) are
unbounded

El(K)ﬁX #+ 1) #+ GQ(K)QX.

But X must be contained in exactly one of the components of W\K, a
contradiction.

On the other hand, if € is the only end of W, then for every cocompact
subspace X C W, e(cl(W\X)) must be a path-connected cocompact sub-
space of W. o

Example 2.26 Jacob’s ladder can be realized as the subspace X C R?
defined by

X = {(z,y)|z=0,1,y>0}U{(z,n)|0<z<1,n=1,2,3,...}.
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Then X has exactly one end, but mp(e(X)) is infinite and X is not semistable
at oo.

Jacob’s ladder (Genesis 28:12)

Remark 2.27 (i) In 9.5 below it will be proved that if X and Y are proper
homotopy equivalent then X is semistable (resp. has stable 1) at oo if and
only if YV is semistable (resp. has stable 1) at co.
(ii) Let W = U K be a locally path-connected o-compact space, which is
J

expressed as a union of compact subspaces K; C K 1. The complements
W; = W\Kj are cocompact subsets of W such that

W;2Wipa ., (\W; =0,
=0

so that 2.14 gives an exact sequence
.1 ) . )
0 — lim' 1 (W) — mo(e(W)) — Lmmo(W;) — 0.
J J

with lim mo(W;) = &w the number of ends of W. Mihalik [93] proves that

j
W is semistable at oo if and only if @11 m1(W;) = 0, giving another proof

j
of 2.25 (iii). If W has stable m at oo the h£11 term in the exact sequence
of 2.14

0— @1 ma(Wj) — m(e(W)) — limmy(Wj) — 0
J J
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vanishes, and
limmy (Wy) = (W) = m(e(W)) .
J
(iii) A well-known conjecture states that if W is a finite connected CW

complex, then the universal cover W is semistable at co. This is known to
be a property of 71(W) and has been verified in many special cases. See
Mihalik [93], Mihalik and Tschantz [94]. o

The homological properties of non-compact spaces are closely related to
the localization and completion of rings. Here is a brief account of these con-
structions, in the special cases of the localization inverting a single element
and the completion with respect to a principal ideal.

Definition 2.28 Let A be a ring (associative, with 1) and let s € A be a
central non-zero divisor.

(i) The localization of A inverting s is the ring A[1/s] with elements the
equivalence classes a/s’ of pairs (a,s’) (a € A, j > 0), subject to the
equivalence relation

(a,s7) ~ (b,s*) if as® = bs' € A,

and the usual addition and multiplication of fractions. The localization is
(up to isomorphism) the direct limit

s S s
All/s] = li_n)l(A—>A—>A — A — ..,

with an actual isomorphism defined by

hmA — A[l/s : Za]/s] )
El
The ring morphism
A— All)s]; a — a/1 (s"=1)

is an injection, with cokernel the derived limit

A[L/s]/A = Hm'(4 < A A A L)

(ii) The s-adic completion of A is the inverse limit of the natural projec-
tions A/s"t1A——A/sI A, the ring

Ay = lm(A/sA — A/$A — A[$PA — ).

The ring morphism

A— Ay a — (a)
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has kernel the inverse limit

o s s S
ﬂsJA = lim(A +— A — A — A— ..,

%

=0
and cokernel the derived limit

N s s s

As/A = &n%A — A— A— A—— ...) = All/s]/A

See 23.20 below for the cartesian square of rings relating localization and
completion. =]

Example 2.29 The localization inverting
s = z€A = Z[7]
is the Laurent polynomial extension of Z
AlY/s] = z[z,27'],
and the s-adic completion of A is the formal power series ring of Z
A, = z[2]].

See Chapter 21 for more on polynomial extension rings. O

Example 2.30 Let W = Wy D W1 D Wy D ... be the sequence of subspaces

of R"*2 with W; the union Of the line {(z,0,...,0) |z > j} and a copy of
S+ wedged on at (k, 0, . ) for each 1nteger k > 7.
Jj+1 j+2 Jj+3 j+4
W

Use the inclusion w : R*—W as the base point w € e(W). For n = 0
W is proper homotopy equivalent to Jacob’s ladder (2.26). For n > 1 the
homotopy groups of the W;’s in dimensions n,n + 1 are given by

Wn(Wj) =0, 7Tn+1(Wj) = Z[Z],

with the inclusion W1 —— W) inducing

z ot T (Wina) = Z[z] — ma(W;) = Z[2] ,
so that
lim (W) = 0, male(W)) = lim! w0 (W) = Z[[2]) # 0.
J J

Moreover, for n > 1 W has stable 7 at oo. ]
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Homology at infinity

The homology at infinity H°(W) of a space W is the proper homotopy
invariant given by the difference between homology H.(W') and locally fi-
nite homology HY (W). The extent to which a space W is non-compact
is measured in the first instance by the failure of the natural maps i :
H*(W)—>Hif (W) to be isomorphisms, or equivalently by the extent to
which H°(W) is non-zero. The homology groups of the end space e(W)
are related to the homology at infinity by morphisms H,(e(W))— H*(W),
which are isomorphisms if W is forward tame (in the sense of Chapter 7).

Locally finite homology is as important in studying non-compact spaces
as ordinary homology is important in dealing with compact spaces. Since
there is no elementary account of locally finite homology in the literature,
we provide one here.

We shall also investigate the connection between the locally finite ho-
mology HY (W) of a space W and the reduced homology of the one-point
compactification W

H,(W>®) = H,(W>, {x}) .

In general, these homology groups are not isomorphic — see 3.18 below for an
actual example. In 3.16 we identify the singular locally finite chain complex
SU (W) of a o-compact space W with an inverse limit of singular chain
complexes, the singular chain complex at infinity S°°(W) with a derived
limit of singular chain complexes, and the singular locally finite homology
with the homology of an inverse limit of ordinary singular chain complexes
involving W*°. In Chapter 7 we use 3.16 to prove that H L (W) is isomorphic
to H, (W, {oo}) for a forward tame . 3.16 is used in Appendix A, which
relates locally finite singular and cellular homology to each other.

29
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A singular r-chain in W is a formal linear combination Y n,o, with

coefficients n, € Z of singular r-simplexes o, : A"—W. The singular
chain complex S(W) is the chain complex with S, (W) the abelian group of
singular r-chains, and the usual differentials. The (singular) homology of
W is defined by

H (W) = H,(S(W)).

A map f: V—W induces a chain map f : S(V)—S(W), which in turn
induces morphisms in homology fi : Hy(V)— H.(W).

Definition 3.1 (i) A locally finite singular r-chain in W is a product
[Inaoa of formal multiples by coefficients n, € Z of singular r-simplexes

ga : A"—W such that for each € W there exists an open neighbourhood
UCW of z with {a|U N0c(A") # 0, ny # 0} finite.

(ii) The locally finite singular chain complez S (W) is the chain complex
with SY (W) the abelian group of locally finite singular r-chains, and the
usual differentials. The locally finite homology of W is defined by

HY (W) = H,(SY(W)). O

A map f: V—W is closed if f(C) is a closed subspace of W for every
closed subspace C C V.

Proposition 3.2 A proper closed map f : V—W induces a chain map
[ SY(V)—SY (W), which in turn induces morphisms in locally finite
homology f, : HY (V) —HY (W). o

In fact, for W locally compact Hausdorff or metric every proper map
f:V—W is closed.

The relative singular and locally finite singular chain complexes of a pair
of spaces (W, V C W)
S(W,V) = coker(S(V)—S(W)) ,
SYW,V) = coker(SY(V)—SY (W)
fit into the short exact sequences
0— S(V)— SW) — SW,V) —0,
0— SY(V) — SYW) — SYwW, V) — 0.

Proposition 3.3 If W is a space and V C W is a closed cocompact subspace
then

SW,v) = SYw,v) , H(W,V) = HI(W, V).
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Proof The inclusion S(W)——S (W) induces a chain isomorphism
SW,V) — STW, V) D naoa — Y naos
with inverse
SHYW, V) — SW, V) ; [[raca — > ngos ,

where the sum is taken over all the 8 = a with |og| N cl(W\V) # 0 and
ng 75 0. m}

Example 3.4 If K is a compact space
S(K) = SY(K) , H.(K) = H/(K).
This is just the special case (W, V) = (K, () of 3.3. o

Definition 3.5 (i) A chain map f: C—D is a chain equivalence if there
exist a chain map g : D—C and chain homotopies

h:9f ~1¢:C—C |, k: fg~1p : D—D.

(ii) A chain map f : C—D is a homology equivalence if it induces iso-
morphisms f, : H,(C)— H,.(D) in homology. o

Every chain equivalence is a homology equivalence. A chain map f :
C—D of projective A-module chain complexes which are bounded below
is a chain equivalence if and only if f is a homology equivalence.

The locally finite singular chain groups S% (W), are not in general free
Z-modules — see 3.18 for an example. (Note, however, that for any field
F the F-modules SY (W; F), = F @z SY(W), are free.) In fact, S¥ (W)
may not even be chain equivalent to a free Z-module chain complex. We
shall therefore have to be careful to distinguish between homology and chain
equivalences of chain complexes.

Given a chain complex C' and any k € Z let C,.) denote the k-fold
suspension of C, the chain complex defined by

dC*_,_k = dC’ : (C*+k)7“ = r4+k T (C*Jrk)r—l = CrJrkfl .

The algebraic mapping cone €(f) of a chain map f : C——D is the chain
complex defined by

de(sy = (doD (_i;lf>

e(f)T = Dr @ Cr—l - e(f)r—l = Dr—l b CT_Q ’
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The homology groups of €(f) are the relative homology groups of f:

H.(C(f)) = H.(f) -

Lemma 3.6 Let f : C—D be an A-module chain map.
(i) The short exact sequence of chain complexes

0— D —¢e(f) — Cicy — 0

induces a long exact sequence of homology groups

e HA(C) L H(D) — H(f) — Hy 1 (C) — ..

(ii) The chain map f : C—D is a homology equivalence if and only if
H.(f)=0.

(iii) The chain map f : C—D is a chain equivalence if and only if C(f)
s chain contractible.
Proof Standard homological algebra. |

Lemma 3.7 Let f : C—D be an A-module chain map such that each
f:C.—D, (r € Z) is an injection, and let

E = coker(f:C—D),

so that there is defined a short exact sequence of A-module chain complexes

0o—cp B 0.
(i) The projection

ho:C(f) — E; (x,y) — [g(x)]

is a homology equivalence.

(ii) If each f : C,—D, is a split injection (e.g. if E is projective) then
h:C(f)—FE is a chain equivalence.

(iii) If E is projective and bounded below the following conditions are
equivalent :

f is a chain equivalence,

f is a homology equivalence,
FE is chain contractible,
H

«(E) =0.

()
(b)
(c)
(d)

Proof (i) Immediate from the homology long exact sequence

C—— H(C) 2 HA(D) S HAE) — H 1 (C) — ...
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(ii) There is no loss of generality in assuming

1
f = <0> :C.— D, = C,®E,,

g=(01): D, =C.®oE — E,,
de (=)"J

dn =

b (0 dg

h=(0 1 0):¢ef), =CaodE.aC._1 — E,

> D, = C.oE — Dy = Co1 @B,

for a chain map j : E——Cy_1. The chain map k : E—C(f) defined by

0
k= 11|:E —¢f)y =CadE &C,

J

is a chain homotopy inverse for h : ¢(f)—FE.

(iii) (a) = (b) Trivial.

(b) <= (d) Immediate from (i).

(¢) <= (d) Standard homological algebra.

(¢) = (a) Given a chain contraction
':' 1~0: F—F

define a chain homotopy inverse f~' : D—C for f by

7= (1 (9)yr) : D, = C,&E, — C, . -

Definition 3.8 (i) The singular chain complex at co of a space W is the
algebraic mapping cone (with dimension shift)

S®(W) = €(i: S(W)—5"(W))uta

of the inclusion i : S(W)——S! (W) defined by regarding singular r-simplexes
o : AT—W as locally finite singular chains.
(ii) The singular homology at oo of a space W is defined by

HE(W) = H.(S®(W)) . o
Proposition 3.9 The various homology groups are related by a long exact
sequence

C— HE(W) — H(W) — HI(W) — HZ (W) — ... . ©

Example 3.10 (i) If K is compact then S(K) = S (K), H,(K) = HY (K)
(3.4), so that

S®(K) ~ 0, H®K) = 0.
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(ii) If W = K x [0, 00) for a compact space K then
H. (W) = H®*(W) = H.(K) , HIY(W) = 0.
(iii) f W = K x R™ (n > 1) for a compact space K then
HW) = H.(K) , BY(W) = H,_(K) ,
HX(W) = H (K xS = H (K)® H,_n1(K) . O

Remark 3.11 In Chapter 12 we shall investigate the sequence of 3.9 for
‘forward tame’ W. The locally finite homology of such W is expressed as

HI(W) = H.(W>,{c})

— H.(im S(W,W\K)) = lim H.(W,W\K)
K K

with W the one-point compactification of W, and K running over all the
compact subspaces of W. In Chapter 7 we shall prove that for forward tame

w
H.(e(W)) = HZX(W).
In Chapter 12 the exact sequence of 3.9
L HE(W) — Hy(W) = HI (W) — B2 (W) — ...
is identified with the sequence
s Hy(e(W)) — Hp(W) — H (W™, {oc0}) — Hp_1(e(W)) — ...

induced by a cofibration sequence
e(W) — W — W™ . o

Just as the ordinary homology groups H,(W) are homotopy invariant,

so the locally finite homology groups HY (W) and the homology groups at
oo H°(W) are proper homotopy invariant. Another essential difference is
revealed in the homology of disjoint unions:

Proposition 3.12 (i) For any collection {Xx |\ € A} of spaces

H.([ X\ = > H.(X)) .
A A

(ii) For any collection {X x| A € A} of compact spaces

HIJ]x)) = [[H (X)) -
A A
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The natural map

i (X)) = Y Ho(x)) — HI([[ X)) = [[H(X))
A A A

A

is the inclusion of the direct sum in the direct product, and

H2(1%0) = [[Hon(0) /S Hea (X))
A A A

with H° (11 X)) = 0 if and only if the set {\ € A| Xy # 0} is finite. o
A

The homology at co H°(W) is invariant upon passing to cocompact
subspaces of W :

Proposition 3.13 If W is a space and V. C W s a closed cocompact
subspace the inclusion S (V)—S*>°(W) is a chain equivalence, and

HX(V) = HX(W) .

Proof For any subspace V' C W there is defined a short exact sequences of
chain complexes

0— S®(V) — S®(W) — S®(W,V) — 0

with each S°(V)——S2°(W) a split injection and

SEW,V) = e(S(W,V)—S"(W,V)).s1 .
If VC W is a closed cocompact subspace then S(W,V) = SV (W, V) by
3.3, so that S°°(W,V) is a contractible chain complex by 3.6 (iii), and
S®(V)—S5°°(W) is a chain equivalence by 3.7 (iii). o
Notation 3.14 For any space X let

g X — X xI;z— (z,k) (k=0,1)
and let

Dx : g ~ g : S(X) — S(X x 1)

be a natural chain homotopy, with

ODx + Dx0 = gf — g : Sp(X) — S.(X xI). O

If one checks any standard source (e.g., Munkres [101, pp. 171-172]) for the
acyclic model definition of Dx, one sees that Dx induces a chain homotopy

DY gl ~ X o S (X) — SY(X x 1)

on the locally finite chain level.
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We have already mentioned that a proper map between locally compact
Hausdorff spaces induces a chain map in locally finite homology. More
generally, suppose

f={fs : X —Y}
is a locally finite family (i.e., the collection of images {f3(X)} is locally

finite) of proper maps between locally compact Hausdorff spaces, then there
is an induced chain map

I Slf(X) — Slf(Y) : Hnaaa — Hna(fgoaa) )
«@ a,f3

Proposition 3.15 For any space W there is defined a natural chain map
a : S(e(W)) — S*®((W)
such that the homology morphisms induced by the projection
pe(W)—W; (w:[0,00)—W) — w(0)
factor as
pe + Hi(e(W)) = HX(W) — H.(W) .

Proof In the first instance we prove that for any locally compact space X
the inclusion

kx : X — X x[0,00) ; © — (z,0)
is such that there is defined a chain homotopy
Gx : kx ~ 0 : SY(X) — SY(X x[0,00)) .
The locally finite family of proper closed maps
tx = {ty : X x[— X x[0,00); (x,8) — (z,s+ k) |k >0}
induce chain maps
tx : SY(X xI) — SY(X x[0,00)) .

The morphisms
igoxy DX gir Xy
Gx : S7(X) — S (X xI) — S ,(X x[0,00))

are such that
MGx +Gx0" = txol(g —gi)
= ky : SY(X) — SY(X x [0,00)),

defining a chain homotopy Gx : kx ~ 0.
The adjoint of a singular simplex o : A”"——e(W) is a proper map

g : A" x[0,00) — W (z,t) — o(x)(t)
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such that
po = ckar : AT — W .

The chain map

a i S(e(W)) — S®(W) = e(i: S(W)—S8Y (W)
defined by

ot Si(e(W)) — SEW) = 81, (W) & S (W) ;

(0 : A"—e(W)) — (6Gar(1ar),po)

is such that

[e%

p: Se(W)) — S*W) — S(W). o

The following result expresses the chain complexes of a o-compact space
W to the chain complexes of an ascending sequence K; C K 1 of com-
pact subspaces K; C W and also to the chain complexes of a descending
subsequence W; 2 W;_; of closed cocompact subspaces W; 2 W. In the
applications it is convenient to have available both expressions.

Proposition 3.16 Let W be a o-compact space, with compact subsets K; C
W for 7 =0,1,2,3,... such that

o]
KggKlgnggKJ+1gg UKj =W 5 Kjgint(KjH).
7j=1

Write the closed cocompact subsets defined by the closures of the comple-
ments as

W; = d(W\Kj) ,
so that

W 2 WoDWi2..2W;D2W;12..2\W; =0,
Jj=1

LLCWN\K; CW; CWA\K; i CW1 CLL
(i) The singular locally finite chain complex S (W) is the inverse limit
STW) = LimS(W,W\K;) = lim S(W,W;) ,
j J

and there are defined short exact sequences

0 — lim' Hop (W,W\K;) — HJ (W) — lim H.(W,W\K;) — 0,
J J

0 — lim" Hy (W, W) — HY (W) — lim H,(W,W;) — 0.
J J
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(ii) The singular chain complex at oo S*°(W) is homology equivalent to
the derived limit

coker(i : SW)—SY(W))wrr = lm' SVAK;)ser = lim’ S(W)usr

J J
so that
HE(W) = H.oot(lim' S(W))
J

and there are defined short exact sequences

0 — li! Hyp (W\K;) — HE(0F) — lim H,(W\K;) — 0.

j J
0— @1 H,  (W;) — HX(W) — er(W]) — 0.
J J

(iii) The composites
Hurewicz

T (e(W)) ——— Hy(e(W)) — H=(W)

T

fit into morphisms of exact sequences

0 —— lim" 7p4 (W) ——— m.(e(W)) ———— lim 7, (W;) ——— 0
— —
j j

0 ——— lim" H,,,(W;) HX (W) —— lim H,(W;) ——— 0
——

j o
(iv) The inclusion W—W induces a chain map
SH(W) = Tim S(W, W\K;) — lim S, W\K;)
J J
which is a homology equivalence, inducing isomorphisms in homology

HY (W) = H*(@S(W, W\K;)) — H*(@S(W“,Wm\Kj)) .
j j
Proof The inverse systems {S(W\Kj)}, {S(W;)} have the same inverse
and derived limits, since
. CSW\K;) CS(W;) CS(W\K;j_1) CSW;_1) C ... .

Similarly for {S(W,W\Kj;)}, {S(W,W;)}. Thus in verifying (i) and (ii) it
suffices to only consider the expressions in Kj’s in detail.
(i) We shall define a chain isomorphism
.ol ;
U SY(W) — Lm S(W,W\K;) .
J
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Suppose given an element [[nq0, of SY(W). For every j = 1,2,3,...
«

there exist at most finitely many o, say «j,, ... TS such that n, # 0
and |oq| N K; # 0. Here | - | denotes the image of a map. Define

n(j)
U, Slf(W) — S(W,W\Kj) Hnaaa — [Zn%kaam}
k=1

where [-] denotes the class of an element of S(W) in S(W, W\Kj). Since ¥,
is the composition
I \ TN incs
ST(W) — S(W,W\Kj11) — S(W,W\Kj)

we have an induced chain map

[ .

v SYw) — lim S(W, W\K;) .
j

To define the inverse of ¥ note that an element of lim S (W, W\K;) is repre-

J
sented by a sequence of elements z; € S(W) with z; = ;41 € S(W, W\ Kj).
It follows that we can assume that the z; are given as follows: there exist a

sequence of singular simplexes o in W and integers ny for k =1,2,3,..., as
n(j)

well as a sequence of integers 1 < n(1) <n(2) <...suchthat z; = Y ngoy
k=1

where |og| N K; # 0 if and only if k£ < n(j). Then ¥~ is given by
U lim S(W,W\K;) — SY(W) 5 lima; — []ngon .
J J k
(ii) The inverse system of short exact sequences of chain complexes
0 — SW\K;) — S(W) — S(W,W\Kj;) — 0 (j 20)
is such that

@S(W\K = S( ﬂ (W\K; > = S = 0.
j =0
By 2.12 (ii) there is defined a short exact sequence
0 — lim S(W) — lim S(W,W\K;) — lim' S(W\K;) — 0,
J J J
which (by (i)) can be identified with
0 — S(W) — SY (W) — coker(i) — 0 .
(iii) The composite of the chain maps

S (holim ;) — S(e(W)) — S*(W)
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given by 2.14 and 3.15 is a chain map such that the induced homology

morphisms
H*(hol'iij) — H.(e(W)) — HX(W)
J

are compatible with the inverse and derived limits.
(iv) The inverse system {S(W>, W>\Kj)} is such that each of the chain
maps

S(W® WR\K;) — S(W™, WS\K;_1)
is a surjection, so that
gnl S(W® WR\K;) = 0
J
and by 2.19 (ii) there are defined short exact sequences
0— ml H, (W™, WS\K;) — Hr(mS(Ww,Ww\Kj))
J J
— @HT(WOO,WOO\KJ-) — 0.
J
The chain maps

S(W,WAK;) — S(W=,W=\K;) (5 =0)

are chain equivalences by excision. Applying the 5-lemma to the morphism
of exact sequences

0 — lim" H, 1y (W, W\K;) — H,.(lim S(W, W\ K;)) — lim H,.(W, W\K;) — 0
— —

J J J

I%4
I%4

0 }ilanrH (W, WNK;) » Hy (lmS(W™, W\K;)) » i H, (W, W*\K;) + 0
J J J

gives that HY (W)—H, (lim S(W, W>\Kj)) are isomorphisms. o
J

Remark 3.17 (i) The first short exact sequence in 3.16 (i) also occurs in
Spanier [150, Thm. 7.3].
(ii) It is not known if the homology equivalence in 3.16 (iv)

ST (W) — lim S(W, W>\K;)
J

is a chain equivalence in general. In 7.15 it is shown that it is a chain
equivalence if W is a forward tame AN R. O
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In general, H* (W) # 0 and HY (W) # H, (W™, {co}):

Example 3.18 Let W =N = {0,1,2

, ...}, with the discrete topology, and
let

Kj =A{0,12....5} , W; = {j+Lj+2..}cW (j=0).
The end space is e(W) = (. Now

J o J 1 0o J

S(K;) — Y Z— Y Z— > L— Y7,
0 0 0 0

j 0 J L 0 I

SWWj) + ... — Y2 — Y Z— > L— Y 7,

0 0 0 0

SWy) : .. — > Z— Y Z— Y ZL— > 7,
j+1 1 j+1 j+1

so that

SW, o) = S(W) = lmS(K;)

YL — Y7 — YL — > L,
0 0 0 0
J

SYW) = tmSW, W) ¢ ... — [[z — [[z — [[z — [z.
j 0 0 0 0

SC(W) =~ coker(i)sy1 = llnl S(Wj)sg1 -
j

. — ﬁz/iz 2, ﬁz/iz . ﬁz/iz 2, ﬁz/iz.
0 0 0 0 0 0 0 0
Thus
Ho(W) = Hoy(W*, {0}) = iZ = Z[7]
2 Yoy =[]z = 2],
0
a5y = [[2/3 7 = 26z # o,
0 0

with H,(W) = HY (W) = H® (W) = 0 for * # 0.
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A singular r-cochain in W is a formal product [[nyo) with coefficients
ng € 7Z of singular r-simplexes o, : A"—W. The saz'ngular cochain complex
S(W)* = Homgz(S(W),Z)

has S(W)" the abelian group of singular r-cochains, with (singular) coho-
mology given by

HY(W) = H*(S(W)) .
A locally finite singular r-cochain in W is a formal sum ) n,o. The locally

finite singular cochain complex S (W)* is the subcomplex of S(W)* with
SU(W)" the abelian group of locally finite singular r-cochains. The locally
finite cohomology of W is defined by

Hj(W) = H(SY(W)").
The cohomology of W at oo is defined by
HL,(W) = H*(S®(W)) = Hen(i*: ST (W) —S(W)") .

The cohomology version of 3.9 is given by :

Proposition 3.19 The wvarious cohomology groups are related by a long
exact sequence

. — H[ (W) == H'(W) — HL (W) — HF' (W) — ... ©
Remark 3.20 Epstein [42] identifies the number of ends (1.14) of a lo-

cally finite CW complex W with the dimension of the real vector space
Hc?o(W; R). |
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Cellular homology

It is well-known that the singular homology groups of a CW complex are
isomorphic to the cellular homology groups; it is less well documented (and
much harder to prove) that the singular locally finite homology groups of a
‘strongly locally finite’ C'W complex are isomorphic to the cellular locally
finite homology groups. This is stated in 4.7, and is proved in Appendix A.

Definition 4.1 The cellular chain complex of a CW complex W is the free
Z-module chain complex C' (W) with chain objects

cw), = HW®",wr=y =3z (r>0)
I;

the direct sums of Z-modules indexed by the sets I,. of r-cells, and differen-
tials

deqwy + C(W), = H, (WO, w1
—s C(W)_y = Hrf]_(W(ril),W(T72))

the homology boundary maps of the triple (W(T), w1, W(’”*Q)). O

Unfortunately, it is not in general possible to regard C(W) as a subcom-
plex of the singular chain complex S(W). (This is possible in special cases,
e.g. if W has the cell structure of a simplicial complex.) We now recall from
Wall [164] the precise relationship between C'(W) and S(W). The filtration
of W by its p-skeleta WP induces a filtration of S(W') by letting FPS(W) be
the image of S(WP?) — S(W) under the chain map induced by inclusion.
Following [164, p. 130] define a free subcomplex D(W) of the singular chain
complex S(W) by

D,(W) = ker(9 : FPS,(W)— FPS, (W)/FP~1S, 1(W)),
such that C'(W) is a quotient complex of D(W).

43



44 Ends of complezes
Proposition 4.2 (Wall [164, Lemma 1]) The natural chain maps
S(W) « D(W) — C(W)

are chain equivalences of free Z-module chain complexes. In particular,
S(W) and C(W) are chain equivalent and

H.(W) = H.(S(W)) = H.,(C(W)) . O
This is of course well-known. The locally finite version is somewhat less

familiar.

Definition 4.3 The locally finite cellular chain complex of a CW complex
W is the Z-module chain complex C' (W) with chain objects

clw), = HYW w1y = T[z (r>0)
I,

the direct products of Z-modules indexed by the sets I. of r-cells. The
differentials

dclf(W) : le(W)r = Hif(W(ﬂv W(r—l))
SN le<W)r—1 _ H,{Jil(W(r_l),W(r_Q))
are the boundary maps of the triples (W(r)7 W(r—l)’ W(r_g)). -

For an arbitrary locally finite CW complex W, the chain complexes
CY (W) and S (W) need not be homology equivalent :

Remark 4.4 For an arbitrary locally finite CW complex W, the chain com-
plexes CY (W) and S (W) need not be homology equivalent. For example,
define

W = fueluciu...

by attaching each n-cell e to e® Uel U...Ue" ! by collapsing all of de” to
a point in the interior of "~ !. By 3.16

Ho(SY (W) = H (W) = 0.

Since W has only one cell in each dimension

s 0 0 0
c’w)=0cw): ... —2—72—17Z,

and Ho(CY (W) = Hy(W) = Z, so that C/ (W) and S (W) are definitely
not homology equivalent. o

We now introduce a class of CW complexes for which the locally finite
singular chain complex is homology equivalent to the locally finite cellular
chain complex.
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Definition 4.5 (Farrell, Taylor and Wagoner [51]) A CW complex is strongly
locally finite if it is the union of a countable, locally finite collection of finite
subcomplexes. o

Strongly locally finite CW complexes are AN R’s.

It is shown in [51] that every countable locally finite, finite dimensional
CW complex is strongly locally finite, and that every countable locally
finite simplicial complex is a strongly locally finite CW complex. A proper
homotopy extension theorem and a proper cellular approximation theorem
for strongly locally finite CW complexes are established in [51].

Lemma 4.6 If W is a strongly locally finite CW complex and C is a compact
subset of W, then there exists a cofinite subcomplex V.C W such that V C
WA\C.

Proof Let € be a locally finite family of finite subcomplexes which cover W.
Note that only finitely many subcomplexes in 2 meet C'. Thus

V =({KeQKnC=0}

is a cofinite subcomplex of W such that V' C W\C. O

It is pointed out in Farrell, Taylor and Wagoner [51] that the CW complex
in Remark 4.4 is not strongly locally finite. W also does not satisfy the
conclusion of Lemma 4.6.

Let DY (W) be the subcomplex of the locally finite singular chain complex
S (W) defined by

! 1l
DY (W) = ker(d : FPSY (W) — FPSIL (W)/FP=18i (W) ,
such that CY (W) is a quotient complex of D! (). By analogy with 4.2:

Proposition 4.7 For a strongly locally finite CW complex W the natural
chain maps

STW) « DIW) — (W)

are homology equivalences of Z-module chain complexes. In particular,
S (W) and CY (W) are homology equivalent and

HI(W) = H(SY(W)) = H.(CY(W)) .

Proof See Proposition A.7 in Appendix A. o

By analogy with the singular chain complex at co S*°(W) (3.8):
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Definition 4.8 The cellular chain complex at co of a CW complex W is
defined by

C®W) = €(i: C(W)—CY(W))st1

with i : C(W)——CY (W) the inclusion defined by regarding cellular r-
simplexes ¢ : A"—W as locally finite cellular chains. O

Corollary 4.9 For a strongly locally finite CW complex W the inclusion
C®(W)——S5°°(W) is a homology equivalence, so that

H(C®(W)) = H,(S®(W)) = H*(W). o

The cohomology version of 4.7 gives:

Proposition 4.10 The locally finite cohomology groups of a strongly locally
finite CW complex W are such that

Hjy(W) = H.(ST(W)") = H.(C[(W)),

where Cfy(W) C C(W)* is the locally finite cellular cochain subcomplex
defined by

Cr(W) = Hp(wO,we=b) = Yz
I
ccrw) = H'(wWO,wr)y = ]z
I

with I, an indexing set for the r-cells. o

Proposition 4.11 Let W be a CW complex with a proper cellular map
p: W—[0,00) such that the inverse images

Vi = p ', i+ CW (j>0)

are (necessarily finite) subcomplexes, so that W is a strongly locally finite
CW complex. Define the subcomplexes

Ui = p'(j) = V;.ny;,
W; = p i) = JVi,
i=j
7j—1

K; =p 04 = v cw,
1=0
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so that
o0 o0 o0
w=Uv=Uw=U%xL,
=0 =0 =0
Up = KoCKiCKyC...CW,

W =Wo2Wi2We2D..., W =0,
j=0

and write the inclusions as

f;_ U — fj_ c U — Vi, g5 0 Wi — Wi

Vi1 Vj Vit

Uj—1 Uj Uj+1 Uj+o
W

(i) The cellular chain complex is such that up to homology equivalence
) = lm O(K;)
J
o o (e e}

12

eQ_(fi = 17): 2 CU)— > C(V) .

7=1 7=1 7=0
The homology groups are such that
H(W) = lim HL(K;) ,
J
and fit into a long exact sequence

Y=

J

e}

Z HT(VJ) — H (W)
j=0

L — Z H,(Uj)
j=1

=)

J

o0

S Ho 1 (V) — ... .
j=0

- Z Hy— (Uj)
j=1

(ii) The cellular locally finite chain complex is such that up to homology
equivalence
cw) = lim C(W,W;) = limC(K;,Uj)
J J
e(II =) ITcwn—TIIcvy)) -
j 0

=1 j=1 j=

1
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The locally finite homology groups ﬁt into a long exact sequence

H(f+ -

]:
H( 57
’ HHT_l Vi) — ...

- H H,—1(Uj)
j=1

The locally finite homology groups also fit into a long exact sequence
1- HQJ 0
L — Hm+1 W, W) ——— [[ H (W, W) — HY (W)
Jj=1 7j=1
1— Hg] o
—>HH W.w)) —— [[HW, W) — ...,
Jj=1 7=1
which breaks up into short exact sequences
0— gnl Hy (W, W) — anf(W) - lgnHr(W W;) —0
J J
(iii) The cellular cochain complex is such that up to homology equivalence
CW)" = lm C(K;)"
J

e () - ﬁ 4—{10

J

The cohomology groups fit into a long exact sequence
o l;[((f;r)**(ff)*)
— [THE (V) [[E'(U;) — H (W)

- [IH =0
T J T
— [[H (V) [1a W) —
j=0 J=1

The cohomology groups also fit into a long exact sequence
00 1_1;[ f; 00
— [[HNK) —— [[H U(K;) — H (W)
, ot
00 l_l}fj 00
— [[H"(K;) —— [[H(K;) — ...,
. ot
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which breaks up into short exact sequences
0 — g2311{T—1(1{;)<——a H (W) — gggzyT(}{5)<——+ 0.
J J

(iv) The locally finite cellular cochain complez is such that up to homology
equivalence

CH(W)* = lmC(W,W;)* = limC(K;,U;)"

J J
00

() = (7)) 2 CVy) ™ — > CU)™) .
j=0 J=1

=1

12

The locally finite cohomology groups of W are such that
Hiy(W) = lim B (W, W),
J

and fit into a long exact sequence

(="

J

L— Y HTNW) > HTNU;) — Hip(W)
j=0 J=1

S =)

J

— Y _H"(V;) S H'(Uj) — ... .
=0 =1

(v) The cellular chain complez at 0o is such that up to homology equivalence
CX(W) = Tim! C(W))as |
J
and the homology at oo
HE(W) = Hopa(lim! C(W)))
J
fits into a long exact sequence
0 1_ng o9
J (o0]
T HHT+1(Wj) - HHrJrl(Wj) — HX(W)
j=1 j=1
g
— [[&W;) —— [[HW;) — ...,
j=1 j=1
which breaks up into short exact sequences
0 — lim' Hyy (W) — HE(W) — lim Ho(W5) — 0.
J J
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The cohomology at oo is such that
HZ(W) = H*(lm! C(W;)) = lim H*(W;) .
J J

Proof (i)—(iv) Use the definitions, and the various types of Mayer—Vietoris
exact sequence.

(v) Working as in the singular case (3.16) the application of 2.12 (ii) to
the inverse system of short exact sequence of chain complexes

0 — C(W)) — C(W) — C(W.W;) — 0 (j > 0)

gives a short exact sequence of chain complexes

0 — Lim C(W;) — Hm C(W) — Lim C(W, W)

J J J
— lim' C(W;) — lim'C(W) — 0,
— —
J J
with
mC(W;) = C(\W;) = C) = 0, limC(W) = C(W),
J J J
_ Lf s 1 _
lim C(W,W;) = CY (W) , lim C(W) =0 =
J J

Remark 4.12 The short exact sequence for H"(W') of 4.11 (iii) is the
prototypical lim — liinl exact sequence of Milnor [97]. o

Example 4.13 If each of the finite CW complexes U;, V; (j > 0) in 4.11 is
path-connected then W is path-connected with

Ho(W) = HW) = z , Hf (W) = Hjy(W) = 0,

HXN(W) = HJ'(W) = 0. o

[e.9]

Example 4.14 Let W = {(2,0) |z > 0} U U C; C R?, with C; the circle
=0
centre (j,1/4) of radius 1/4 and p: W — [0, 00) ; (z,y) — .

Q0 000,
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Thus W is half an infinite cyclic cover of S'V S!. Note that W is the special
case n = 0 of the space in 2.30, and that it is proper homotopy equivalent
to Jacob’s ladder (2.26). The cellular chain complex of W is given by

(1—-2 0)
COW) & . — 0 — 2l 2] —— 2l
so that
Z lf r = 0 ,
H,(W) = {Z[z] ifr=1,
0 otherwise ,
Z lf r = 0 ,
H' (W) = {ann ifr—1,
0 otherwise ,
HY (W) = {ZHZ]] ifr=1,
0 otherwise ,
H (W) = ,
lf( ) {0 otherwise ,
H®(W) = {(Z[[ZH/Z[Z]) oz ifr=0,
0 otherwise ,
Z lf r = 0 ,
Heo(W) = {znzn/zm -1,
0 otherwise . :

Proposition 4.15 Let W = Tel(f;) be the mapping telescope (2.3) of a
direct system of cellular maps of finite CW complezes

fi + Uj — Ui (120) .
The various homology and cohomology groups are given by
HAW) = HE(W) = lim H.(U))
J
H(W) = HL(W) , HI(W) = H(W) = 0

with short exact sequences

0— li_ml H Y U;) — H (W) — @H?(Uj) — 0.
J J
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Proof Apply 4.11, with p : W——[0, c0) such that
Vi =p i+1]

= (mapping cylinder of f; : Uj—Uj1) ~ Ujq1,
Wy = p o) = Tl(fili =) = W,
K; = p'[0,5]
= (mapping cylinder of fj_1--- fifo: Uy—U;) ~ Uj,
f+ >~ fj : UJ—>V3 ~ Uj+1,f; ~ 1: Uj—>‘/jfl ~ Uj.

m}

Proposition 4.16 Let W = W(g;) be the mapping cotelescope (2.16) of an
inverse system of cellular maps of finite CW complezes

g9i Uy — Ui (G=1).
(i) The homotopy groups of the end space e(W) fit into short exact se-
quences
0 — lim! 7,41 (U)) — m(e(W)) — limm, (U) — 0.
J J
(ii) The various homology and cohomology groups are given by
H (W) = H.(Uo) , H'W) = H*(lo) ,
(W) = lm HY(Uy) | Hi(W) = lim H* (U0, U))
J j
with Hif(W), H* (W) fitting into short exact sequences

0— liinl H, 1 (Uy,Uj) — anf(W) - @HT(UO’UJ') — 0,

J J

0 — lim' Hyyy (Uj) — HX(W) — lim H,(U;) — 0.
J J
Proof Apply 2.14 for (i) and 4.11 for (ii), with p : W ——]0, 00) the canonical
proper map such that
V; = p '[j,j+1] = (mapping cylinder of gj41 : Uj1—U;) ~ Uj ,
Wi = p'lj,00) = W(fili 235) ~ Uj,
K; = p'[0,]]
= (mapping cylinder of g; - - - gj_19; : Uj—Up)
fr~1: Ui —V; ~ Uj,fj_ ~ g; U — Vi1 =~ Uj_1.

ZU()ZW,
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Example 4.17 Fix an integer s > 2, and let
T = T(s: S'—8Y = (S' x I)/{(x,0) = (z°,1) |z € S}

be the mapping torus of s : S'——S1; x—z*. In (i) and (ii) below we shall
apply 4.11, 4.15 and 4.16 to compute the homology at co of the two ends
TT,T~ of the canonical infinite cyclic cover T of T, one of which is the
mapping telescope of {s : S'——S'} regarded as a direct system, and the
other is the mapping cotelescope of {s : S'—S1} regarded as an inverse
system. The general theory of the mapping torus and its canonical infinite
cyclic cover is developed in Chapter 14 below.
(i) Let TF = Tel(s) be the mapping telescope of the direct system

fi=s:U =8 —Umn =5 (j=0.
The chain complexes are such that
C(TT) =~ (1 — sz : Z[z]—Z[2])s—1 ® C(1 — 2 : Z[2]—Z[2]) ,

CH(TT) =~ e(1 — sz : Z[[z]] —Z[[2]])s1 & C(1 — z : Z[[z]] —Z[[2]])
~ 0,

and the various (co)homology groups are given by

HI(TY) = Hj3(TY) =0,

Z ifr=0,
H(TY) = HX(TY) = lmH.(U;) = {21/3] ifr=1,
0 otherwise ,

7Z ifr=0,
H'(T") = HL(TY) = ImH"(U;) = {ZS ifr=1,
' 0 otherwise ,

with Z[1/s] the localization inverting s € Z and Z, = @(Z/sjz) the s-adic

J
completion of Z

28).
(i) Let T~ s

\(/\?( ) be the mapping cotelescope of the inverse system
g =s:U; =8 —U_; =8 (j>1).
The chain complexes are such that
C(T™) ~ €(s — 2z : Z[z|—Z[2])s—1 ® C(1 — 2z : Z[z]—Z[2])
~ C(S") = Z..18Z,
CNT™) = €(s — 2 : Z[[]]—Z[[2]])s-1
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with
7 ifr=0,1
H.(T™) = H(T™) = T
A (") {0 otherwise ,
Zs ifr=1,
0 otherwise ,
7®(Zs)7) ifr=0,
0 otherwise ,
Z1/s|)Z ifr =2,

Hlf(T ) = 0 otherwise ,
Z ifr=0,
H (T7) = {Z[l/s] ifr=1,
0 otherwise . o

The Steenrod homology groups HE'(X) are defined for compact metric
spaces X (Steenrod [156]). For a compact subset X C S™*1:

HY(X) = HHI*(smH gnrh\ X)
(= H"*(S"™\X) for x #0,n) ,
or equivalently
H(X) = H"*(S™\X) .

The Steenrod homology groups are homotopy invariant, like the singular
homology groups, and for finite CW complexes are just the usual singular
homology groups. The reduced singular and Steenrod homology groups
behave differently on countable infinite one-point unions, with

H(\/ Xn) = Y H(X,) , HMN\ X)) = [[ H'(Xn) |
n=0 n=0 n=0 n=0

assuming that hi)n diam(X,,) = 0 for Steenrod homology.
n

More generally, Milnor [95] proved that if X = @X j is the inverse limit

J
of an inverse system Xg+—X;<— Xo«— ... of compact metric spaces there
are defined exact sequences

0 — lim! H3L, (X,) — HEH(X) — lim HE(X;) — 0.
J J
See Kahn, Kaminker and Schochet [80], Kaminker and Schochet [81]. Also,

see Carlsson and Pedersen [21] and Ferry [56] for the applications of Steenrod
homology to the Novikov conjecture.
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If W is a locally compact separable Hausdorff space (e.g. a countable
locally finite CW complex) then W is compact separable Hausdorff, hence
metrizable, and H'(W™) is defined.

Proposition 4.18 (Milnor [95]) The locally finite cellular homology groups
of a countable locally finite CW complex W are such that

H.(CY(W)) = HI (W™, {oo}),
with HE the Steenrod homology groups. O

Remark 4.19 (i) For a strongly locally finite CW complex W the result of
4.18 can also be written as

HY W) = HH (W™=, {x}),

using 4.7 to identify H,(CY(W)) = Hif(W)
(ii) If W is a countable locally finite CTW complex such that (W, {cco})
has the homotopy type of a finite CW pair

H.(CY(W)) = HX W™ {o0}) = H,(W™, {co}).

It will be proved in 7.11 below that for a forward tame countable C'W
complex W the pair (W, {oo}) has the homotopy type of a finite CW
pair, so that

H.(W> {oo}) = H'(W™, {oc}) . o
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Homology of covers

In dealing with the homological properties of non-compact spaces W and
the end spaces e(W) we shall also need to consider the homology of some

cover W of W (usually the universal cover) and the pullback cover e(W)
of e(W). The ordinary Whitehead theorem detects homotopy equivalences
by homology isomorphism of the universal covers. The main result of this
chapter (5.7) is the analogue of the Whitehead theorem which detects proper
homotopy equivalences using locally finite homology isomorphisms of the
universal covers.

Let W be a space with a regular cover W, with group of covering trans-
lations 7. The covering translations
g: W —W;z— gz (gem)
are proper maps inducing isomorphisms
g+ HAW) = H.(W) | g« HI(W) — HY (W)

so that the homology groups H, (W) and the locally finite homology groups
HY (W) are Z|r]-modules.

Definition 5.1 (i) The locally 7-finite homology Z[x]-modules of W are
HUS(T) = HL(S (7))

with S (W) C S (W) the subcomplex consisting of the locally finite
singular chains in W which project to locally finite singular chains in W.
(ii) The singular Z|r]-module chain complezx at co

S®T(W) = €(i : S(W)—S""(W)).p1
with 4 the inclusion. The locally 7-finite homology of W at oo is defined by

HXT(W) = H.(S7(W)),

56
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to fit into an exact sequence

s HT(W) — H (W) — HI™(W) — HOT(W) — ... .

(iii) The 7-cohomology of W is

HA(W) = H*(Homgy(S(W),Z[x])) . o

Example 5.2 (i) In the special case W = W, = = {1}

g9y = gYwy , B W) = HRW) |
Hiy(W) = H*(W).

(i) If W is compact then for any W,

HST™(W) = H(W) , HX™(W) = 0.

By analogy with 3.15,3.16:
Proposition 5.3 Let e(,ﬁ/) be the cover of the end space e(W) induced from

the cover W of W by the projection p : e(W)—W, and let p : e(W)—W
be a w-equivariant lift of p.

(i) There is defined a natural Z[w]-module chain map

a :S(e(W)) — ST (W)
such that

— o —~ —~

e+ Hi(e(W)) — HZT(W) — H.(W) .

(ii) If W is a o-compact space such that

W 2 Wo2Wi2..2W;2W; 1 2...2 W =0

j=1

for closed cocompact subsets W; C W with induced covers 17/] C W there
are defined short exact sequences

0— @1 H, (W, W;) — HI™(W) — lim H, (W, W;) —0,

J J

0 — tim" Hya (W) — HZ™(W) — lim H (W) — 0. °

J J
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A proper map f : V—W between locally compact Hausdorff spaces
induces a Z[r]-module chain map

f o S5y — SYm W) 5 [[ra0a — [[na(fooa)

for any regular cover W of W with group of covering translations , V=
f*W the induced cover of V and f : V—W a m-equivariant lift of f.

Remark 5.4 In 7.10 it will be shown that for a ‘forward tame’ o-compact

metric space W the Z[r]-module chain map & : S(e(AT/TJ/))—>S°°’“(W) of 5.3
(i) is a chain equivalence, inducing isomorphisms

~ —~

G+ Ho(e(W)) — HZ™(W),

so that there is defined an exact sequence of Z[r|-modules

s Hy (e(W) — H (W) — HY™ (W) — Hy_1(e(W)) — ... . ©

Let now W be a CW complex with a regular cover W and with group of
covering translations 7.

Definition 5.5 (i) The cellular locally w-finite homology Z[r|-modules of w
are the homology modules H,(CY™(W)) of the Z[r]-module chain complex
CHYm (W) with

CHm (W) = HI~(W0), WD) .

(ii) The cellular Z[m]-module chain complex of W at oo is defined by

COT(W) = (i : C(W)—CH™(W))stq . o

Proposition 5.6 Let W be a countable strongly locally finite CW complex
with a reqular cover W and with group of covering translations m, and for
each r > 0 let I, be an indexing set for the r-cells of W.

(i) The inclusions

le,ﬂ'(W) _ Slf,ﬂ'(W) , COO,ﬂ'(W) _ SOOJI’(W)

are homology equivalences.
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(ii) The various homology and cohomology groups ofW are such that

H.(W) = H.(C(W)), H*(W) = H*(Homy(C(W),2)) ,
HX(W) = H*(Homgm(C(W),Z[r]))

HIT(W) = H(CT™(W))

H;(f,ﬂ(W) = H*(leJ(W)*)7

HX™(W) = H.(C®T(W))
with

CW), = H, (WO wr-1) ZZ

Homy (C(W),Z)" = HT’(W(T),W(”" ) Hz

Homy (C(W), Z[r))" = Hi(W®, we=D) Hz

cYw), = HYWO, w1y = T]z[x)]

c(wy

Hy (W, WD) = 3 z[x]

CU(), = HYn(TO,T0D) = Tz

where Z[r] = ;Z, Z[[r]] = ];[Z.

Proof There exists a subcomplex DY™(W) c SY7(W) such that the nat-
ural Z[r]-module chain maps

Slf,Tr(W) P le,ﬂ'(MN/') N le,ﬂ'(MN/')

are homology equivalences. See Proposition A.7 in Appendix A. |

The Whitehead theorem states that a map of connected CW complexes
is a homotopy equivalence if and only if it induces isomorphisms of funda-
mental groups and the homology groups of the universal covers. Farrell,
Taylor and Wagoner [51] established a Whitehead theorem in the proper
category; roughly speaking, a homotopy equivalence of locally finite infinite
CW complexes is a proper homotopy equivalence if and only if it induces
isomorphisms of the fundamental groups at co and of the locally finite co-
homology groups. We shall only need the following special case:
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Proposition 5.7 Let Wy, Wy be connected finite dimensional locally finite
infinite CW complezes equipped with proper cellular maps p; : W;—R such
that the subcomplezes

Wi = (pi)il[ovoo) . W= (pi)il(_ooi)] CWi;

(2 7

are connected with the inclusions inducing isomorphisms

m(WE) = 7 (WE) = m(Wi) (1=1,2).

2

Let f: Wi—Ws be a proper cellular map with a proper homotopy psf =~
p1: Wi—sR.

(i) The map f is a proper homotopy equivalence if and only if it induces
isomorphisms

fo mW) — mWa) . Fo @ H(W) — H.(W) |
Fr o Hfy(Wa) — Hj(Wh)

with 17[71, Wg the universal covers of Wy, Wa.
(ii) The map f is a proper homotopy equivalence if and only if it induces
isomorphisms

Lo mW) — m(Wa) , Fo o H(W) — H.(W) |
oo HYR() — HY7 (1)

with m = 7T1(W1) == 7T1(W2).
Proof (i) A special case of the proper Whitehead theorem of [51].

(ii) Given a Z[r]-module which is expressed as a countable direct sum of
f.g. free Z[m]-modules

M= S M)
j=—00

define the locally finite Z[r|-module

MY = ﬁ M(j) ,

j=—00
and the locally finite dual Z[m|-module

HoleJEﬂ(M,Z[w]) = HOHIZ[W](MU,Z[TF])

= i Homy (M (j), Z[n]) .

Jj=—00
There are evident identifications
M(]) = HomZ[ﬂ (HomZ[T(] (M(])a Z[ﬂ-])) Z[T(‘]) )

MY = HomZ[ﬁ](Homlf (M, Z[r]), Z[x])

Z[~)
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so that

% %

CY(W;)* = Homyp (CY7(Ws), Zln])
le’w(ﬁ//i) = HomZ[W](le(Wi)*aZ[ﬁ]) :

Thus the Z[r]-module chain map f* : C’lf(Wg)*—L’lf(Wi)* is a homology
equivalence if and only if the Z[r]-module chain map f : CUm(Wy)—
CY™(W3) is a homology equivalence, and (i) is equivalent to (ii). o

Definition 5.8 (i) An n-dimensional geometric Poincaré complez is a finite
CW complex W with a fundamental class [W] € H,, (W) such that the cap
product defines Z[r]-module isomorphisms

~

(Win—« Hy(W) — Hpo(W),

with W the universal cover of W and 7 = m (W).

(ii) An n-dimensional geometric Poincaré pairis a finite CW pair (W, 0W)
with a fundamental class [W] € H, (W, 0W) such that the cap product de-
fines Z[r|-module isomorphisms

~

Wln— : HXW,0W) — H,_, (W),

with W, as in (i) and OW C W the induced cover of W. In addition, it
is required that W be an (n — 1)-dimensional geometric Poincaré complex
— this is automatic if m; (OW) = 7 (W).

(i) An n-dimensional geometric Poincaré cobordism (V;U,U’) is an n-
dimensional geometric Poincaré pair (V,9V) such that 9V = U I1 U’ for
disjoint subcomplexes U, U’ C V, in which case the cap product defines
Z[r]-module isomorphisms

Vin— : H\V,0) — Ho o(V,T") (x = m(V)).

(iv) An open n-dimensional geometric Poincaré pair is a locally finite
CW pair (W, 0W) with OW finite, together with a fundamental class [W] €
HY (W,0W) such that the cap product defines Z[r]-module isomorphisms

~

(WN— ¢ Hfs(W,0W) — H,_ (W) (7 = m(W)) .

In addition, it is required that OW be an (n — 1)-dimensional geometric
Poincaré complex — as in (i), this is automatic if 71 (OW) = m (W).

(v) A proper map p : (W,0W)—([0,00),{0}) from a locally finite CW
pair is n-dimensional (geometric) Poincaré transverse if each

(VisUj, Ujsr) = p ([, 5 + 1 {51 {G+1}) (5 =0)

is an n-dimensional geometric Poincaré cobordism. O
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Example 5.9 (i) A compact n-dimensional manifold is an n-dimensional
geometric Poincaré complex, and similarly for pairs and cobordisms.

(ii) An open n-dimensional manifold with compact boundary (W, 0W) is
an open n-dimensional geometric Poincaré pair with a Poincaré transverse
map p : (W, 0W)—([0,00),{0}) (cf. 5.11 below).

(iii) If W is an n-dimensional geometric Poincaré complex with a map
¢ : W——S8"! then the infinite cyclic cover W = ¢*R of W is an open n-
dimensional geometric Poincaré complex (= open n-dimensional geometric
Poincaré pair of the type (W,0)). o

Proposition 5.10 (i) The various homology and cohomology groups associ-
ated to an open n-dimensional geometric Poincaré pair (W,0W) are related
by a Poincaré duality isomorphism of exact sequences

oo — HIZYW) —— H}} (W, 0W) —— HL(W,0W) —— H, (W) — ...

00,

win —% wln —‘g win —% wln —hg

(ii) If (W, 0W) is a locally finite CW pair with an n-dimensional Poincaré
transverse map p : (W,0W)—([0,0),{0}) then (W,0W) is an open n-
dimensional geometric Poincaré pair.

Proof (i) The dual of the Poincaré duality chain equivalence

~

Wln— : CY™(W,oW)"* — C(W)
is the Poincaré duality chain equivalence

W]n— : C(W,aW)— — Y7 (i) .
The cap product

W)= SOm(W)" 7 — ST (W)

is a Poincaré duality chain equivalence by the 5-lemma.

(ii) Each
j—1
(Kj;0W,Uj) = p~([0,5: {0}, {7}) = J(VisUsUia) (21)
i=0

is an n-dimensional geometric Poincaré cobordism, with

1=j
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The direct limit of the Poincaré duality isomorphisms
1N~ « HL(W,0W W) = HY(E,0W 11T)) — H,(K))
is the Poincaré duality isomorphism

(WN = : Hf; (W,0W) = lim Hy(K;,0W I1U;)
J

~

— Hpr(W) = h_?)lﬂn—T(Kj) .
J

The inverse and derived limits of the Poincaré duality isomorphisms
[Kj|N =« HP7(K;,0W) — H.(K;,U;) = H.(W,W;)

determine an isomorphism of short exact sequences

0 — lim! H!~Y(K;,0W) — HL(W,0W) —— lim H’(K;,0W) — 0
—

[N —|= W] —| [K;] N —|=~

J J

Example 5.11 By Morse theory, an (oriented) open n-dimensional manifold
with compact boundary (W, 0W) admits a proper map

p : (W,0W) — (]0,00),{0})
which is manifold transverse at {0,1,2,...} C [0,00), with each
(ViU Ujn) = p~ (5,7 + {15+ 1) (G20)
an n-dimensional manifold cobordism. Then p is geometric Poincaré trans-

verse and (W, 0W) is an open n-dimensional geometric Poincaré pair. O

For any space W satisfying the forward tameness condition of Chapter 7
below the homology and cohomology at oo are realized by the end space
e(W), with

HX(W) = Hi(e(W)) , HL(W) = H(e(W)) .

By 5.10 the homology and cohomology at co of an open n-dimensional
geometric Poincaré pair (W,0W) with a Poincaré transverse proper map
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p : (W, 0W)—([0,00),{0}) are related by (n — 1)-dimensional Poincaré
duality
HT'H (W) = HX(W) .
If (W,0W) is forward tame and also reverse tame (Chapter 8) this is real-

ized geometrically, with the end space e(W) a finitely dominated (n — 1)-
dimensional geometric Poincaré space such that

H"' 7 (e(W)) = Hi(e(W)) .
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Projective class and torsion

This chapter serves two purposes: firstly, a recollection of the fundamental
properties of the algebraic theories of the Wall finiteness obstruction and
Whitehead torsion, and secondly to introduce the locally finite finiteness
obstruction. The relationship between ordinary homology, locally finite
homology and homology at oo is mirrored in the context of the finiteness
obstruction.

Let A be aring. A domination (D, f, g, h) of an A-module chain complex
C by an A-module chain complex D is given by chain maps
f:¢—D  , g:D—C

and a chain homotopy h: gf ~ 1: C—C| so that C is a homotopy direct
summand of D. An A-module chain complex C is chain homotopy finite if
it is chain equivalent to a finite chain complex of f.g. free A-modules

F....—-0—...—0—F —F 11— ...—F.
An A-module chain complex C'is finitely dominated if it is dominated by a

finite chain complex of f.g. free A-modules.

Proposition 6.1 (i) An A-module chain complex C is dominated by a free
A-module chain complex if and only if C' is chain equivalent to a free A-
module chain complez.

(ii) An A-module chain complex C is finitely dominated if and only if it
is chain equivalent to a finite f.g. projective A-module chain complex

P....—-0—...—0—PFP, —PFP,_1— ... —F.

Proof (i) For any A-module chain maps f : C—D, g : D—C there is
defined in Ranicki [123, Chapter 6] an A[z, z~!]-module chain equivalence

C(z—gf: C[z,zil]—>C[z,z*1]) ~ C(z— fg: D[z,zfl]—>D[z,z*1]) .

(This is an abstract version of the mapping torus trick of M. Mather [91].)

65
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If (D, f,g,h) is a domination of C' and D is a free A-module chain complex
then the left hand side is A-module chain equivalent to C, and the right
hand side is a free A-module chain complex. The converse is trivial.

(ii) A finite f.g. projective chain complex is finitely dominated since it is a
direct summand of a finite f.g. free chain complex. See Ranicki [120] for the
proof of the converse, including the construction from a finite domination
(D, f,g,h) of an explicit f.g. projective chain complex P chain equivalent
to a finitely dominated C. (In fact, by Liick and Ranicki [87] such P can
be constructed from the chain homotopy projection fg: D—D.) i

The projective class of a finitely dominated A-module chain complex C' is
defined by

o0

[C] = > (-)"[P] € Ko(A)

r=0

with P any chain equivalent finite f.g. projective A-module chain complex,
as usual.

Proposition 6.2 (i) The reduced projective class of a finitely dominated
A-module chain complex C

[C] € Ko(A) = coker(Ko(Z)—Ky(A))

is such that [C] = 0 if and only if C is chain homotopy finite.
(ii) If any two chain complexes in a short exact sequence of free A-module
chain complexes

0 —C—D—F—0
are finitely dominated then so is the third, with the projective classes related
by

[C]—[D]+[E] = 0€ Ko(A) . O

A finite structure (D, ¢) on an A-module chain complex C' is a finite chain
complex D of based f.g. free A-modules together with a chain equivalence
¢:C—D. An A-module chain complex C' is chain homotopy finite if and
only if it admits a finite structure.

The torsion of a contractible finite chain complex C' of based f.g. free
A-modules is

T(C) = T(d +I': Codd—>Ceven) S KI(A) y
with I':0 ~ 1: C——C any chain contraction and

Ceven = CO@CQ@C4-'- s Codd = 01@03@05...
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The Whitehead group of A is defined to be

Iﬁv/h(ﬂ) = Ki(Z[r])/{£r} if A= Z|n] is a group ring,

Wh(A) = {Kl(A) = coker(K;(Z)— K;(A)) = Ki(A)/{%1} otherwise.

The torsion of a chain equivalence f:C——D of finite chain complexes of
based f.g. free A-modules is the reduced torsion of the algebraic mapping
cone

7(f) = 7(€(f)) € Wh(A) .

The chain equivalence is simple if 7(f) =0 € Wh(A). A simple chain ho-
motopy type on a chain homotopy finite A-module chain complex C' is an
equivalence class of finite structures (D, ¢: C—D), subject to the equiva-
lence relation

(D,p) ~ (D',¢) if 7(¢'¢™':D—D') = 0€ Wh(A).

Example 6.3 The algebraic mapping cone C(1 —e: C——C') has a canonical
simple chain homotopy type, for any self chain map e: C——C of a finitely
dominated A-module chain complex C. If (D, f,g,h:gf ~ 1¢) is any finite
domination of C' then (€(1 — feg: D—D), ¢) is a finite structure in the
canonical simple chain homotopy type, with

¢ = (f feh) ce(l—e)y = Cr&Cry — C(1—feg), = Dy@Dy_q .

0 f
(This is another application of the algebraic Mather trick cited in the proof
of 6.1 (i).) o

We refer to Milnor [99] and Cohen [30] for accounts of simple homo-
topy theory, and to Rosenberg [136] for algebraic K-theory. See Ranicki
[120, 121, 123] for more detailed accounts of the algebraic theories of finite-
ness obstruction and torsion.

In the applications to topology A = Z[r| is a group ring. Here are some
examples when the algebraic K-groups are known :

Example 6.4 (i) The reduced projective class group of the group ring of
the quaternion group Q(8) = {£1, +i,+j, £k} is

Ko(Z[Q®)]) = Z2,

with generator [P] the projective class of the f.g. projective Z[Q(8)]-module
P = im(p) defined by the image of the projection

1-8N 2IN
p:

3N 8N ) : Z[Q(8)] @ Z[Q(8)] — Z[QB)] & Z[Q(8)]
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with N = Y g € Z[Q(8)] such that N? = 8N (cf. Ranicki [129]).
geQ(8)
(i) The Whitehead group of the cyclic group of order 5 Zs = {t|t°} is

Wh(zs) = Z,

with generator the torsion 7(u) of the unit u =1 — ¢ + t* € Z[Zs]°.
(iii) For many infinite torsion-free groups 7 with finite classifying space
Br

Ko(z[r]) = Wh(r) = 0,

by the algebraic K-theory version of the integral Novikov conjecture. In par-
ticular, this is the case for the fundamental groups of hyperbolic manifolds
(Farrell and Jones [50]). Thus tame ends of high dimensional hyperbolic
manifolds have unique collarings. See Chapter D.3 of Benedetti and Pe-
tronio [6] for an account of the ends of hyperbolic manifolds, including a
geometric proof that certain ends of hyperbolic manifolds can be collared.
See also §12.6 of Ratcliffe [133]. o

The torsion of a homotopy equivalence f : K——L of finite CW complexes
is defined by

7(f) = 7(f: C(K)—C(L)) € Wh(m(L)) .

The homotopy equivalence f is simple if 7(f) = 0, which is the case if and
only if f is homotopic to the composite of a finite sequence of elementary
expansions and collapses.

A finite structure (Y, ¢) on a space X is a finite CW complex Y together
with a homotopy equivalence ¢: X—Y. A topological space is homotopy
finite if it admits a finite structure, i.e. if it is homotopy equivalent to a
finite CW complex. A simple homotopy type on a space X is an equivalence
class of finite structures (Y, ¢) on X, subject to the equivalence relation

(Y,0) ~ (', &) if (66~ 1Y —Y") = 0€ Wh(m(X)) .

The simple homotopy types on a connected CW complex X are in one-to-
one correspondence with the simple chain homotopy types (if any) on the
cellular Z[m1(X)]-module chain complex C'(X) of the universal cover X of
X.

Example 6.5 A compact AN R is homotopy finite (West [168]), and has a
canonical simple homotopy type (Chapman [24]). For a finite CW complex
this is the simple homotopy type determined by the cellular structure. o
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An h-cobordism is a manifold cobordism (W; M, M') such that the inclu-
sions M — W, M'—W are homotopy equivalences, with torsion

T(W;M,M") = 7(M—W) € Wh(m (W)) .
An s-cobordism is an h-cobordism (W; M, M’) with
(Wi M, M) = 0 Wh(m (W)) .
The s-cobordism theorem is given by :

Theorem 6.6 (Barden, Mazur, Stallings) An n-dimensional h-cobordism
(Wi M, M') is an s-cobordism if (and for n > 6 only if) (W;M,M') is
homeomorphic rel M to M x (I;{0},{1}). o

The original h-cobordism theorem of Smale is the special case 71 (W) =
{1}, when every h-cobordism is an s-cobordism, by virtue of Wh({1}) = 0.
Kervaire [83] is the standard account of the s-cobordism theorem.

A domination (Y, f,g,h) of a space X by a space Y is defined by maps
f: X—Y ¢g:Y—X and a homotopy h: gf ~1: X— X, so that X is
a homotopy direct summand of Y. A topological space is finitely dominated
if it is dominated by a finite CW complex.

Proposition 6.7 (i) A topological space X is dominated by a CW complex
if and only if it has the homotopy type of a CW complex.

(ii) A topological space X is finitely dominated if and only if X x S* has
the homotopy type of a finite CW complex.

Proof For any maps f : X—Y, g : Y—X M. Mather [91] defines a
homotopy equivalence T'(gf) ~ T(fg) of the mapping tori (14.2) — see
Chapter 14 below for the definition of the mapping torus.

(i) If (Y, f,g,h) is a domination of a space X by a CW complex Y then
X xSt ~T(gf) ~T(fg) determines a domination of X by the CW complex
T(fg). It follows from the homotopy equivalences X ~ X xR ~ T'(fg) that
X is homotopy equivalent to a CW complex, namely the infinite cyclic cover
T(fg) of T(fg) (as defined in Chapter 14 below). The converse is trivial.

(ii) As for (i), noting that T'(fg) is a finite CW complex for a finite CW
complex Y. o

Let X be a regular cover of a CW complex X, with group of covering
translations 7. If X is finitely dominated then C'(X) is a finitely dominated
Z[r]-module chain complex, and the projective class of X with respect to X
is defined by

[X] = [C(X)] € Ko(Z[r])
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as usual, with simply-connected component the Euler characteristic
oo
X(X) = Z(—)Trank Cr(X)
r=0
o0
= Z(—)TFaHkHT(X)/torsion € Ko(z) = 7.
r=0

The main results of finiteness obstruction theory are summarized in:

Theorem 6.8 (Wall [163]) (i) A connected CW complex X is finitely dom-
inated (resp. homotopy finite) if and only if the fundamental group mi(X)
is finitely presented and the cellular chain complex C(f() of the universal
cover X is a finitely dominated (resp. chain homotopy finite) Z|mi (X)]-
module chain complez.

(ii) The reduced projective class of a finitely dominated CW complex X
with respect to the universal cover X s the finiteness obstruction

[X] € Ko(z[mi(X)]) ,

such that [X] = 0 if and only if X is homotopy finite.
(iii) If w is a finitely presented group and P is a f.g. projective Z[r]-module
there exists a finitely dominated CW complex X with

m(X) = 7, [X] = [P] € Ko(z[r]) .

Idea of proof (i) It is clear that if X is finitely dominated (resp. homotopy
finite) then 71 (X) is finitely presented and C(X) is finitely dominated (resp.
chain homotopy finite), so only the converse has to be verified. The original
proof in [163] was simplified by Hofer [67] using the algebraic theory of
finiteness obstruction of Ranicki [120], as follows. A connected CTW complex
X with finitely presented 71 (X) is homotopy equivalent to a CTW complex
(also denoted by X) with finite 2-skeleton. If D is a based free Z[m1(X)]-
module chain complex with D, = C()N()T forr=20,1,2 and f : D—>C()Z')
is a chain equivalence which is the identity in dimensions < 2 then the
method of attaching cells to kill homotopy classes can be used to realize D
by a CW complex Y with a homotopy equivalence f : Y — X inducing f :
C(Y) = D—C(X). Consider first the case when C'(X) is chain homotopy
finite, so that D can be chosen to be a f.g. free Z[m (X)]-module chain
complex, Y is finite and X is homotopy finite. In the other case C ()~( ) is
chain homotopy finitely dominated, and X x S' is such that the cellular
Z[r][z, z~']-module chain complex of the universal cover (X x S = X xR

C(X xR) = C(X)®z C(R)
is chain homotopy finite, so that X x S! is homotopy finite (by the first
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case) and X is finitely dominated.

(ii) Immediate from (i) and 6.2.

(iii) Let K be a finite CW complex with 71(K) = 7, and let p = p? :
Z[r|"—Z[r]" be a Z[r]-module projection such that P = im(p). For any
N > 2 the finite CW complex

L = (Kx85'Vv\/SY)U_sp1p | JDVH!

has a finitely dominated infinite cyclic cover L with two ends f+, L such

that

m@) = m@" =m@) =,
L] = —[L7] = (-)N[P] € Ko(zln)) .

(See Chapter 13 for an account of infinite cyclic covers. Note that L is
homotopy equivalent to K x S, so that L is homotopy equivalent to K.) o

Proposition 6.9 Let W be a connected CW complex.

(i) If W is a regular cover of W with group of covering translations m
such that the classifying map m (W)—— is a split injection and the cellular
Z[r]-module chain complex C(W) is finitely dominated, then W is finitely
dominated.

(il) If V. C W is a cofinite subcomplex which is finitely dominated then W

is also finitely dominated, such that
W] = w.[V] € Ko(Z[m(W)))
with uy : 1 (V)——m1 (W) the morphism induced by the inclusion u : V—W.
(i) If W is finitely dominated and u : V—W is the inclusion of a cofi-

nite subcomplex V.C W with u, : m(V)—m1(W) a split injection then V
is also finitely dominated, with

V] = rW] e Ko(z[m(V)))
for any surjection r : m (W)——m1 (V) splitting u,, and
W] = w.[V] € im(u, : Ko(Z[m (V)]))— Ko(Z[m (W)]))
= ker(1 — war, : Ro(2lm (W) —Ro(zlm (W) .
Proof (i) Since 71 (W)—— is a split injection the Z[m(W)]-module chain

complex of the universal cover W of W is induced from the Z[r]-module
chain complex of the cover W

C(W) = Z[r1(W)] g C(W) .

Thus C(W) is a finitely dominated Z[r1(W)]-module chain complex by 6.2
(ii), and W is finitely dominated by 6.8 (i). (Remark: W is connected



72 Ends of complexes

if and only if m (W)——7 is a surjection, in which case split injectivity is
equivalent to isomorphism and W = W.)

(ii) Let W Dbe the universal cover of W, and let @ : V—1W be a lift of
u : V—W to the induced cover V of V. The cellular Z[m(W)]-module
chain complex C(V) is finitely dominated, and C(W,V) is finite f.g. free.
It now follows from the short exact sequence

0— OV) — C(W) — C(W,V) — 0

and 6.2 (i) that C(W) is also finitely dominated, so that W is finitely
dominated by (i), with

W] = [C(W)] = [C(V)] = wlV] € Ko(Z[m (W))]) .

(iii) Let W be the cover of W classified by 7 : w1 (W)——m(V), so that
the induced cover V. C W is the universal cover V of V. The cellular
Z[m1(V)]-module chain complex C(W) is finitely dominated, and C(W, V)
is finite f.g. free. It now follows from the short exact sequence

0 — C(V) -2 C(W) — C(F. V) — 0

and 6.2 (ii) that C(V) is also finitely dominated, so that V is finitely dom-
inated by (i), with

V] = [C(V)] = [COW)] = r[W] € Koz[m(V)]) - o

Remark 6.10 A cofinite subcomplex V' C W of a finitely dominated CW
complex W need not be finitely dominated. A fundamental group condition
such as the split injectivity of u, : w1 (V)——m (W) is necessary in 6.9 (iii)
to ensure that V is finitely dominated. Siebenmann [140,8.8] constructed
in every dimension n > 6 a contractible open n-dimensional manifold W
with one end which has stable m; at oo but which is not reverse mi-tame
(in the terminology of Chapter 8), providing explicit examples of cofinite
pairs (W, V C W) such that W is finitely dominated but V' is not finitely
dominated. In 7.19 below it will be shown that a cofinite subcomplex of
a forward tame CW complex W with finitely dominated e(W) is finitely
dominated. O

Example 6.11 (i) A simply-connected CW complex W is finitely domi-
nated if and only if the homology H,.(W) is finitely generated, in which
case W is homotopy finite, and the projective class is the Euler character-
istic
W] = > (=)rank H, (W) = x(W) € Ko(Z) = Z.
r=0
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(ii) A simply-connected cofinite subcomplex V' C W of a finitely domi-
nated CW complex W is homotopy finite. i

The projective class has the following locally finite analogue :

Definition 6.12 Let W be a space with a regular cover W such that
ST (W) is a finitely dominated Z[r]-module chain complex, with 7 the
group of covering translations. The locally finite projective class of W with
respect to W is

W = [SY7(W)] € Ko(z[x)) - o

The locally finite projective class is a proper homotopy invariant, with
simply-connected component the locally finite Euler characteristic:

Example 6.13 The simply-connected component of the locally finite pro-
jective class of a CW complex W with finitely generated HY (W) is

W = i(—)rrankﬂ,{f(vv) = Y W)eKyz) = 7. O
r=0

Example 6.14 (i) The projective classes of RT = [0, 00) and e¢(RT) ~ {pt.}
are given by

[®] = [e(®)] = [z] , RT]Y = 0€Ko(2).
(ii) The projective classes of R and e(R) ~ S are given by
& = [z] , RIY = —[z] , [e(R)] = 2@ Z] € Ko(2) . o

Example 6.15 As in 4.17 let W = Tel(s) be the mapping telescope of
s:S81——S, for some integer s > 2, an infinite CW complex with cellular

Z-module chain complex
(1 - sz)
0 (0 1—=2)

CW) : 0 — Z[z] ———— Z[z| @ Z[7] Z|z] .

The space W is not finitely dominated, since H; (W) = Z[1/s] is not finitely
generated, so that the projective class [W] € Ky(Z) is not defined. The
locally finite cellular chain complex

(1 — sz)

. 0 (0 1—2)
CYW) : 0 — Z[[z]] —— Z[[z]] ® Z[[z]] ——— Z[[Z]]
is contractible, so that the locally finite projective class is defined, with

WY = 0e Ko(z) = 7. O



74 Ends of complexes

Proposition 6.16 If W is a CW complex such that the Z[r|-module chain
complexes S(W), ST (W) are finitely dominated then so is S*(W), with
projective class

[s>(W)] = W]~ W] € Ko(z[r]) . o

Here is a preview of the various projective class invariants we shall be
associating in Chapter 10 to a CW complex W subject to various geometric
hypotheses on the behaviour of W at oco. The fundamental group at oo
(W) (2.23) comes equipped with a morphism 7$°(W)——m(W). The
‘locally finite projective class’ of a ‘forward tame’ W

W] = [$Y7(W)] = [CYT(W)] € Ko(z[m (W)

is defined in Chapter 10. If W is ‘forward and reverse tame’ then W and
e(W) are finitely dominated (Chapter 9), and the finiteness obstruction of
e(W) has image

[e(W)] = (W] = [W]Y € Ko(z[r1 (W) .
The ‘projective class at oo’ of a ‘reverse mi-tame’ W
[Wleo € Ko(Z[x5®(W)])

is defined in Chapter 10, and has image [W] € Ko(Z[x(W)]). The ‘locally
finite projective class at oo’ of a ‘forward tame’ W is also defined in Chapter
10,

WL = [sY7(V)] = [CY7(V)] € Ko(Z[x* (W),

for an appropriate cofinite subcomplex V' C W such that m (V') = n{°(W),
with image [W]Y € Ko(Z[r (W)]). The locally finite projective class at oo
is an obstruction to W being ‘forward collared’, i.e. to the existence of a
cofinite subcomplex V' C W homotopy equivalent to the end space e(W).
If W is both forward and reverse tame then m(e(W)) = n$°(W) and the
finiteness obstruction of e(W) is given by

(V)] = W] — WL € Ko(Z[xy*(W))) -
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Forward tameness

We now recall the definitions of ‘forward tameness’ and ‘forward collaring’,
and derive various consequences. For a forward tame o-compact metric
space W the homology at oo S (W) of Chapter 3 is shown in 7.10 to be
just the homology of e(W),

HX(W) = H.(e(W)),
so that there is defined an exact sequence
. — H(e(W)) — H.(W) — HY (W) — H,_1(e(W)) — ... .

The locally finite homology of a forward tame AN R W is identified in 7.15
with the reduced homology of the one-point compactification W

HY (W) = H(W™,{o0}) .

Definition 7.1 (Quinn [116]) Let W be a locally compact Hausdorff space.
(i) The space W is forward tame if there exists a closed cocompact sub-
space V' C W such that the inclusion V' x {0}—W extends to a proper
map ¢ : V x [0,00)—W.
(ii) The space W is forward collared if there exists a closed cocompact
ANR subspace V' C W such that the identity V' x {0}—V extends to a
proper map ¢q : V x [0,00)—V. w

Forward tameness is a homotopy theoretic version of Siebenmann’s com-
pression axiom [148, 149]. Forward tameness will be interpreted as a homo-
topy pushout property in Chapter 12. In Parts Two and Three we shall be
particularly concerned with forward tameness and collaring for the ends of
infinite cyclic covers of finite CW complexes. In Chapter 13 we shall give
a homotopy theoretic criterion for forward tameness of such an end, and in
Chapter 23 we shall give a homological criterion. The ‘locally finite projec-
tive class at oo’ of a forward tame CW complex constructed in Chapter 10
is an algebraic K-theory obstruction to forward collaring. In Chapter 13 it
will be shown that a forward tame end of an infinite cyclic cover of a finite
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CW complex is forward collared up to infinite simple homotopy (Chapter
11) if and only if this invariant vanishes.

The proper map ¢ in 7.1 (i) is equivalent to a map of compact spaces
7 : (Vx[0,00))>* = V®A[0,00] — W™
such that (g)~!(c0) = oo.

Proposition 7.2 (i) A forward collared ANR space is forward tame.

(i1) If a o-compact metric space W is forward collared and V- C W is
the closed cocompact subspace in 7.1 (ii) then there are defined homotopy
equivalences

e(W) ~ eV) ~ V.

(iii) A o-compact metric space W is forward collared if and only if W is
forward tame and there exists a closed cocompact ANR subspace V.C W
such that the evaluation p : e(V)—V is a homotopy equivalence.

(iv) A locally compact Hausdorff space W is forward collared if and only
if there exists a closed cocompact ANR subspace V. C W such that the
inclusion V—V x [0,00); x—(x,0) is a proper homotopy equivalence.
Proof (i) Take V =W in 7.1 (i).

(ii) See 1.12 for e(W) ~ e(V). The adjoint of the proper map ¢q : V x
[0,00)—V is a map ¢ : V—e(V) which is a homotopy inverse of the
projection p : e(V)—V.

(iii) («=) Let q: V—e(V) be a homotopy inverse for p. Thus, there is
a homotopy h : V x I—V such that hg = idy and hy = pq. Since W is
forward tame, V is also, so there exist a closed cocompact subspace U C V'
and a proper map g : U x [0,00)—V extending the inclusion.

Define
h(x,t ifo<t<l1
r:Vx[O,oo)—>V;(m,t)—>{ (,¢) 1 -,
gz)(t—1) fl<t<oo.

Even though 7 need not be proper (because neither A nor the adjoint of ¢
need be proper), if K C V' is compact, then r|x[o,oc) is proper. Define
G : g = rluxoe) U x[0,00) — V;
(‘Ta t, U,) - g(’l"(l‘, tu)? t(l - u)) :

As with r, G need not be proper. However, if K C U is compact, then
G|K % [0,00) x I is proper.
Choose a closed cocompact subspace Uy C U such that

cd(V\U)NUy = 0
and choose a map ¢ : V——1 such that

o' 0) = Uy , ¢ (1) = c(V\U).
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Finally, define

FVX0,00) — V: (1) — {r(a:,t) if x € c(V\U) ,

G(x,t,0(t)) ifxeU.
Then f is proper and fy = idy .

(=) Let V.C W be a closed cocompact AN R subspace for which there
is a proper map f : V x [0,00)—V such that fo =idy. Then the adjoint
f: V—e(V) is a homotopy inverse for p because pf: idy and fp ~ ide(vy-

(iv) Suppose first that W is forward collared so that there exist a closed
cocompact subspace V' C W and a proper map ¢q : V x[0, 0c0)—V extending
the identity. To show that ¢ is a proper homotopy inverse for the inclusion
V—V x [0,00) define a homotopy

h : identity ~ inclusionogq : V x [0,00) —V X [0,00) ;
(x,s,t)—(q(z, st), (1 —t)s) .

It remains to verify that h is a proper homotopy, for which it suffices to
show that for any compact subspace K C V and N > 0, h™1(K x [0, N])
is compact. Since ¢ is proper there exist a compact subspace K/ C V and
n’ > 0 such that ¢71(K) C K’ x N'. It follows that if

h(z,s,t) = (q(z,st),(1 —t)s) € K x [0,N],
then x € K', st < N’ (1 —t)s < N. In particular, s < N + N’ so that
h Y (K x[0,N])CK' x[0,N+N'|xI.

Conversely, if p : V x [0,00)—V is a proper map with a proper homotopy
g : identity ~ p o inclusion : V—V, then

g(z,t) ifo<t<1,

¢ Vx[0,00) — Vi (@) — {p(x,t—l) ift>1

is a proper map extending the identity. o

Example 7.3 (i) Let (L, K C L) be a pair of compact spaces with K an
ANR, and let

W = LUKX{O}K x [0,00) .
Then W is forward collared, with V' = K x [0,00) C W a closed cocompact

AN R subspace such that the identity V' x {0}—V extends to the proper
map

q : Vx[0,00) —V; ((z,8),t) — (x,s+1)
and

W™ = LUK = LUgy oy K x [0,00]/K x {00} , e(W) ~ K.
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(ii) Let (M,0M) be a compact manifold with boundary. The boundary
is collared (1.8), meaning that the interior

W = int(M) = M\OM

is homeomorphic to M U OM x [0,00), and W is forward collared by (i),
with

W >~ M, W® = M/OM = MUcOM , e(W) ~ OM .

(iii) Let n be a real n-plane vector bundle over a compact space K. The
total space E(n) is forward collared, with E(n) ~ K. The one-point com-
pactification E(n)*> and the end space e(E(n)) are such that

Em™ = T@) , e(E(n) =~ Sh)

with T'(n) the Thom space of n and S(n) the (n — 1)-sphere bundle.
(iv) The special case of (ii) with (M,9M) = (D" S™ 1) (or (iii) with
K = {pt.}) shows that

W = int(M) = R"
is forward collared, with
W™ = 8" | (W) ~ §"1.

(v) The mapping telescope Tel(f;) of a direct system of maps f; : X;—
X1 (2.3) is forward collared: the projection e(Tel(f;))—Tel(f;) is a
homotopy equivalence by 2.5, so that 7.2 (iii) applies with V' = W = Tel( f;).
The one-point compactification Tel(f;)> is contractible.

(vi) If X is a compact subset of the interior of a compact manifold M and
X has an I-regular neighbourhood in M in the sense of Siebenmann [148]
then a result of Ferry and Pedersen [57,p.487] can be used to show that
M\ X is forward tame. In particular, if X is 1-LCC embedded in M, and
has the shape of a CW complex (for example, if X has the homotopy type
of a CW complex) then M\ X is forward tame by [148, p. 56]. o

Remark 7.4 (i) If a space W has finitely many ends, then W is forward
tame (resp. forward collared) if and only if each end of W is forward tame
(forward collared).

(ii) In 11.14 below we shall show that an AN R space W is forward tame
if and only if W x S! is infinite simple homotopy equivalent to a forward
collared AN R space X. O

Proposition 7.5 Let W be a forward tame space and let V- C W be a closed
cocompact subspace for which the_inclusion u : V——W extends to a proper
map q : V x [0,00)—W. Let (W,V) be a cover of (W,V) with group of
covering translations .



7. Forward tameness 79

(i) If W is a o-compact metric space the end space e(W) is dominated by
V.

(ii) The inclusion of locally w-finite singular chain complezes is chain
homotopic to 0,

o~ 0: SYTW) — SHTW)
and there is defined a chain equivalence
ST (W, V) ~ SHTW) @ STV, .

Thus SU™(W) is dominated by the chain complex SY™(W, V) = S(W, V).
(iii) If W is an ANR and V is a closed cocompact ANR subspace with

the property that (W V) is a pair of compact ANR’s, then S(W, ‘7) is

chain equivalent to a f.g. free Z|x)-module chain complex and SU™(W) is

finitely dominated.

Proof (i) The adjoint of ¢ is a map

qg:V-—eW);z— (t—qzt))
such that pywq = u: V—W. The map
Fooe(V)xI —e(W); (w,t) — (s — qw(ts))((1 —1)s))

defines a homotopy F' : gpy ~ e(u) : e(V)—e(W), so there is defined a
homotopy commutative diagram

V—Y% W

By 1.12 e(u) : e(V)—e(W) is a homotopy equivalence. Use a homotopy
inverse to define a map
p = pve(w (W) —V
such that
gp ~ 1 : e(W)—eW),
so that V' dominates e(W).

(ii) For the inclusion u : V—W of any closed cocompact subspace V' C
W the short exact sequence of Z[r]-module chain complexes

0 — SYm(V) - SUT(W) — SHT(W,T) — 0
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has SUT(W, V) = S(W,f/)j free chain complex, so that 3.7 (ii) gives a
chain equivalence €(u) ~ S(W,V'). Now suppose V,q are as in (i). Let
k:V—Vx[0,00); 2 — (z,0) .
The chain homotopy in the proof of 3.15
G:k~0:SHV)— SV x[0,0))
determines a chain homotopy
@G Gk = u ~ 0 : SY™WV)— SYTW) ,
so that there are defined chain equivalences
e(@) ~ SHTW) @ SYT(V)ey ~ S(W,V).
(iii) The quotient space W/V = W /V>° is a compact AN R and
SW,V) ~ S(W/V).

Every compact AN R has the homotopy type of a finite CW complex (West

[168]), so that S(W,V) is chain equivalent to a f.g. free Z[x]-module chain
complex. o

Corollary 7.6 The end space e(W) of a forward tame strongly locally finite
CW complex W has the homotopy type of a CW complex.

Proof Apply 7.5 to a subcomplex V' C W for which there is a proper map
V x [0, 00)—W extending the inclusion V—W. Thus e(WW) is dominated
by a CW complex V, and hence (by 6.7) has the homotopy type of a CW
complex. o

A finitely dominated CW complex W with a proper map W—R" need
not be forward tame:

Example 7.7 Let W be the subspace of R? defined by
W = {(z,z) |z €[0,00)} U{(z,n) |z >n,n=0,1,2,...}.
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The projection onto the positive real axis is a proper map
p: W—1[0,00); (z,y) —

with respect to which W has a bounded CW complex structure. W is
contractible, and hence finitely dominated. The end space e(W) is not
finitely dominated, since my(e(WW)) is (countably) infinite: no two of the
proper paths

wy : [0,00) — Wt — (n+t,n) (n>0)

are proper homotopic. Moreover, since every closed cocompact subspace
V' C W has only finitely many path components, e(W) is not dominated by
any such V. By 7.5 (i), W is not forward tame.

In fact, W is homotopy equivalent to the Hawaiian earring, the subspace
of the plane consisting of circles of radius 1/n and centre (1/n,0) (n =
1,2,3,...), which is well-known not to be homotopy equivalent to a CW
complex. (This can be proved as follows. By definition, a space X is weakly
locally contractible if every point x € X has a neighbourhood U C X which
is contractible in X. Any space homotopy equivalent to X is then also
weakly locally contractible (Dugundji [38,p. 375, Exercise 7]). Every CW
complex is (weakly) locally contractible. The Hawaiian earring is not weakly
locally contractible at 0.)

O

Remark 7.8 A locally compact space W is mowable at the end if for each
cocompact subspace U of W there exists a cocompact subspace V C U of
W such that for each cocompact subspace Z of W there is a homotopy
f:V x I—U such that fy = inclusion : V—U and f(V x {1}) C Z (see
Geoghegan [63]). Movability at the end is a precursor to forward tameness
and originated in shape theory with the notion of movability for compacta
due to Borsuk [7]. End movability has played a role in the theory of ends
of open 3-manifolds (see Brin and Thickstun [11]). Clearly a forward tame
space is movable at the end. The converse does not hold as the space W in
7.7 is movable at the end but not forward tame. o

Remark 7.9 (i) The CW complex W = {(z,n) € R*|z > 0,n € N} is
a forward tame locally finite CW complex with W =~ e(WW) not finitely
dominated. (This example appears again in 12.6.)

(i) If W is forward tame and path-connected at oo, then W is semistable
at 0o (2.23). u]

Proposition 7.10 Let W be a o-compact metric space W which is forward
tame and path-connected at oo, and let W O Wy D Wi D ... be a sequence
of closed cocompact subspaces such that \W; = 0.

J
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(i) W has stable m1 at oo (2.23), and the fundamental group of the end
space e(W) is the fundamental group at oo of W,

m(e(W)) = (W) .
(ii) The homotopy and homology groups of e(W) are such that
m(e(W)) = @W*(Wj) : li;nlw*(Wj) =0,

J J
Hy(e(W)) = HX(W) = linH*(W]) ) @1H*(Wj) = 0.
J J

(iii) The chain map o : S(e(W))—S5(W) of 3.15 is a chain equivalence.
(iv) Iffﬂf is a reqular covering of W with group of covering translations
7w and e(W) is the pullback covering of e(W') then

Ho(e(W)) = HX™(W) = lim H(W;) , lim" H,(W;) = 0,
J J

and the Z[r]-module chain map of 5.3 is a chain equivalence
a: Sle(W)) — S°m(W).

Proof (i)+(ii) Let V' C W be a cocompact subspace for which there is a
proper map ¢ : V X [0,00)—W with ¢(z,0) =z € W (z € V). Choose
path-connected cocompact subspaces of W

V=WyDoWiDWyD...
such that
ﬂcl(Wj) =0, qW;x[0,00) CW;_1 (j=1).
J
The maps
g; = inclusion : W; — W;_1,
pi = pw,; : e(W;) — W;; w— w(0),
g @ Wj — e(Wj1) 5 @ — (t — q(=,1))

fit into a homotopy commutative diagram

G(Wj) M) e(Wj_l)

T

g
Wj ————— W,
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with e(g;) : e(W;)—e(W;_1) a homotopy equivalence by 1.12. Apply 2.21
(iv) to the commutative diagrams

mleW) = ey ) Hey) — ) ewy )
T T
Wr(Wj)Lﬂr(ijl) Hr(Wj)¢>Hr(ijl)

to obtain

J J
Ho(e(W)) = lim H,(W;) , lim' H.(W;) = 0
J J
By 3.16 and lim! H,(W;) =0
A

J

J

so that the chain map S(e(W))—S*°(W) of 3.15 induces isomorphisms in
homology.

(iii) The chain map « : S(e(W))—S>°(W) is a homology equivalence,
since by (ii)

HL(e(W)) = lim HL(W;) = HX(W)
J
The chain complex S(e(W)) is free, and S°°(W) is chain equivalent to a
free chain complex by 7.5 (ii) and 6.1 (i). Any homology equivalence of free
chain complexes is a chain equivalence, so that « is a chain equivalence. (In
fact, it is possible to define a chain homotopy inverse
-1 -~

al s SR(W) Lo SR(V) — S(V) — S(e(W))

with ©~! a chain homotopy inverse to the inclusion u : S (V)——S>(W),
which is a chain equivalence by 3.13.)
(iv) As for (ii), using 5.3. o

Proposition 7.11 (i) The one-point compactification W of a forward
tame ANR W is an ANR.

(ii) The one-point compactification W of a forward tame ANR W is
such that there exists a pointed finite CW complex (X, o) with a homotopy
equivalence

(W® 00) ~ (X,x0) .
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Proof (i) Let V be a closed cocompact subset of W for which there is
a proper map ¢ : V x [0,00)— W extending the inclusion ¢o : V—W.
Suppose that W is a closed subset of some (separable) metric space X.
Then W is closed in X\{oo}, so there exist a neighbourhood N of W in
X\{oc} and a retraction r : N—W. Let U; C X be an open subset
containing co such that

UNnW\V = 0.
Let Uz C X\{oo} be an open subset such that
WClCUCN , (U\r'imnt(V))NTz = {oo}.
Let p: (U; UU2)\{oo}—[0, cc] be a map such that
pH(o0) = U\ (int(V))U{oo}) , p~'(0) = D>
The map 7 : Uy U Us— W™ defined by

00 if z € Uy\r~(int(V)) ,
m(z) = 4 a(r(@),p(z)) ifzer (V),
r(x) if z € Ug\r~1(V)

is a retraction.

(ii) From (i) we know that W is a compact AN R. The result now fol-
lows from some well-known facts. The Triangulation Theorem of Chapman
[23, p. 83] states that every Q-manifold M can be triangulated, i.e. is home-
omorphic to K x @ for a polyhedron K. The ANR Theorem of Edwards
([23,p. 106]) states that if X is an ANR then X x @ is a @-manifold. Ap-
plied to our context we have that there exists a finite CW complex X such
that W x Q = X x @ where @ is the Hilbert cube. If (z¢,q) € X x @ cor-
responds to (oo, 0) under such a homeomorphism, then (W, co) ~ (X, z9).
West [168] originally proved that compact AN R’s have the homotopy type
of finite CW complexes. The argument above is a well-known alternative
proof of West’s theorem (see Chapman [23]). The relevance of this argu-
ment is that it shows that pointed compact AN R’s have the homotopy type
of pointed finite CW complexes. |

Example 7.12 Jacob’s ladder X (2.26) is an AN R whose one-point com-
pactification X is not locally contractible at {oo}. Thus X is not an
ANR and 7.11 (i) implies that X is not forward tame. Similarly for the
space W of 4.14 (which is proper homotopy equivalent to X — in 9.6 below
forward tameness will be shown to be a proper homotopy invariant, in fact
an invariant of the ‘proper homotopy type at co’). o

The one-point compactification of a CW complex does not in general have
the homotopy type of a CW complex.
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Example 7.13 As in 3.18 let N = {0,1,2,...} have the discrete topology,
the only topology compatible with C'W status, so that

m) = Yoz, He = [z
0 0

[e.e)

The countable direct product [[Z is an abelian group which is not free,
0

by a result of Baer (Kaplansky [82,p.48]). The one-point compactification

N>~ ={0,1,2,...,00} is such that the function
N —R;n—1/(n+1), c0o — 0

is an embedding. N*° does not have the homotopy type of a CW complex,
since CW complexes are locally path-connected. Thus N is not forward
tame, by 7.11 (ii). o

Proposition 7.14 Suppose W is a forward tame AN R written as
(o)
w = |JK;
§=0
with K; compact and K; C K1 for j =1,2,3,.... Then the inclusions
(W, {oc}) — (W™, WS\K;)
mduce a chain equivalence
00 = . 0o 0o .
S(W° {o0}) — linS(W ,WR\Kj) .
J

Proof There exist a closed cocompact subset V' C W and a proper map
q:V x[0,00)—W which extends the inclusion

J = dvxqy : V—W.
Extend ¢ to g4 : V™ x I— W by insisting that
q+(V> x{0}) = oo = g4({oo} x[0,00]) .
(Thus ¢4+ is the composition
V> x [0,00] — VA [0,00] — W™

where G is the map mentioned after 7.1.) Without loss of generality assume
that K is so large that

q(W\K1) x [0,00)) S V.

Since W is an ANR (7.11), the homotopy extension property implies that
g+ can be extended to a homotopy g : W x [0, co] — W such that:



86 Ends of complexes

a
gVX[O,oo) =4q,
s

Note that for each j =1,2,3,... we have a map of pairs
EJVOO’ : (Woo’Woo\Kj) - (WOO7{OO}) .
Hence there is an induced chain map

v i lim SV, WS\K,) — S(W™, {oc}) .

)

Let
vt SW {0}) — @S(W“,W“\Kj)
J

denote the chain map induced by inclusion. We shall show that « and v are
chain homotopy inverses. Clearly,

ve @ S(W® {oc}) — S(W, {o0})
is the chain map induced by
Goo = (W, {o0}) — (W™, {0}) .

Since goo is homotopic to idyye rel {oo}, it follows that vt is chain homotopic
to the identity. In order to investigate (v, use the properness of ¢ to define
a sequence 71 < ip < i3 < ... of integers such that i; > j and

G(WS\Ky;) x [0,00]) € WR\K;
for each j =1,2,3,... . It follows that if
Q= q ~ G : S(WOO) E— S(WOO)*+1
is the standard chain homotopy then we may consider ) as a chain homo-
topy
Q . (70 ~ aw . S(WOO,WOO\KZ]) — S(WOO,WOO\Kj)*+1 .

These chain homotopies are compatible with inclusions so that there is a
chain homotopy

Q@0 = G I SW™WS\K,) — L S(W, W\,
J J

from gp = id t0 oo = L. o
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Proposition 7.15 (i) If W is a forward tame ANR then
HY(W) = H(W™,{o0}) .
(ii) If W is a forward tame strongly locally finite CW complex then
HI(W) = H(W*,{}) = H(CT(W)).

Proof (i) follows from Propositions 3.16 (iv), 7.14.
(ii) follows from (i) and Proposition 4.7 (or Proposition A.7). O

We shall need the following properties of forward tameness in Chapter 9
below.

Lemma 7.16 If W is a forward tame space with a proper map p : W—
[0,00), then there exist a closed cocompact subspace V. C W and a proper
map q :V x [0,00)—W such that:

(i) ¢q| : V=V x {0}—W s the inclusion,
(i) pa(V % [, 00)) € [j,00) for j=0,1,2, ..

Proof Let V C W be a closed cocompact subspace for which there exists a
proper map ¢’ : V x [0, 00)—W extending the inclusion V—W. Choose
numbers 0 < Ny < N < ... such that pg’(V x [Nj,00)) C [j,00) for each
j=1,2.3,.... Let p : [0,00)—[0,00) be the PL homeomorphism such
that p( ) NJ, and which is linear on [j —1, j] for each j = 1,2,3,.... The
desired map is

q = Vx[0,00) — W (2,t) — ¢'(z,p(t)) - o

Lemma 7.17 If W is a forward tame metric space with a proper map
p: W—[0,00), then there is a homotopy h : e(W) x I—e(W) such that :

(i) ho =1id : e(W)%e(W ,
(ii) (h1(w))[j,00) € p~t[j,00) for each w € e(W) and j =0,1,2,... .

Proof By 7.16 there exist a closed cocompact subspace V' C W and a proper
map ¢ : V x [0, 00)—W extending the inclusion such that pg(V x [j, 00)) C
[7,00) for j =0,1,2,.... By the proof of 7.5, ¢ is the adjoint of a domination
q: V——e(W) with right inverse s : e(W)——V. A homotopy h : idew) =~ s
satisfies the conclusions of the statement. o
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Proposition 7.18 If W is a forward tame metric space with a proper map
p: W—[0,00) the end space e(W) is homotopy equivalent to the homotopy
inverse limit

e(W) =~ holim W;
J

of the inverse system of inclusions
Witr = p'[j+100) € W; = p~'[j,00) (j=0).
Proof Let f : holim W;——e(W) be the map defined in Proposition 2.14,

and define
X = im(f) Ce(W).

Note that f is a homeomorphism onto X, and that by Lemma 7.17 there
is a homotopy h : e(W) x I—e(W) such that hy = id and h;(e(W)) C X.
By examining the explicit formulas used in defining the homotopy, it can be
seen that hy(X) C X for each t € I, so that f is a homotopy equivalence. O

Proposition 7.19 Let W be a forward tame metric space such that e(W)
is finitely dominated. If U is any cocompact subset of W such that U is an
ANR, then U is finitely dominated.

Proof It suffices to consider the case U = W. Let C be a compact space
which dominates e(W), say by maps f : C—e(W) and ¢ : e(W)—C
with a homotopy h : fg =~ idew). Let K = pw f(C) € W, where py :
e(W)—W is the evaluation. Of course, K is compact. A homotopy d :
Y x I—W such that do(Y) C K and d; = inclusion : Y —W is given by

ds :pthé\Y—>W

Now use the homotopy extension property to define a homotopy d: W x
I—W such that d|yx; = d and d; = idy. Then

do(W) C do(Y) Udo(W\Y)

which is contained in a compact subset of W. o

The end space e(W) of a forward tame CW complex W has the homotopy
type of a CW complex (7.6), but it does not have the homotopy type of a
particular CW complex, so it is not possible to associate a cellular chain
complex to e(W). We shall now show that the cellular chain complex at co
C®(W) = e(C(W)—C(W)).11 is an adequate substitute. We shall also
show that C (W) (and its 7y (W )-equivariant analogue) is finitely domi-
nated, allowing the locally finite projective classes of W to be defined (in
Chapter 10).
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Proposition 7.20 Let W be a forward tame strongly locally finite CW com-
plex, and let W be a regular cover of W with group of covering translations

. Let e(W) be the cover of e(W) induced from W by pullback along the
evaluation map p : e(W)—W.

(i) Let u : V—W be the inclusion of a cofinite subcomplex V-C W. The
inclusion of the locally finite cellular chain complexes

af . ey — CTm(w)
is such that there is defined a Z[r|-module chain equivalence
@) ~ c(w,v) .

The inclusion of cellular chain complexes at oo is a Z|w]-module chain equiv-
alence

~

a® L CT(V) — CO(W) |

(ii) There exists a cofinite subcomplexr V. C W such that @ is chain
homotopic to 0, and there are defined Z|r|-module chain equivalences

CW,V) ~ CY™(V)_y & CHm (W) ,
V) ~ CY™(V) @ Com (W)

with C(W,V) = CY7(W, V) a finite f.g. free Z|x]-module chain complex.
In particular, CY™ (W) is finitely dominated.

(iii) If W is finitely dominated and 71(e(W))——m1 (W) is a split injection
then e(W) is finitely dominated.

(iv) If there exists a cofinite subcomplex V- C W which is finitely domi-
nated with w1 (V') = m1(e(W)) then e(V) ~ e(W) is finitely dominated.

(v) If W and e(W) are finitely dominated then there exist chain equiva-
lences of finitely dominated Z[r]-module chain complexes

CHT(W) ~ SUT(W) . S(e(W)) ~ C®T(W) ~ S<7(W)
and the projective classes are such that
[W]lf _ [le,ﬂ(W)] _ [Slf,ﬂ'(f/‘v/)]’

[e(W)] = [C="(W)] =[S (W)] € Ko(Z[r]) .

Proof (i) As in the proof of 3.13 we have that C(W,V) = CYm(W,V) is
a f.g. free Z[r]-module chain complex. The short exact sequence of Z[r]-
module chain complexes

~  utf — —~ ~
0 — CY™(V) — CH™(W) — C(W,V) — 0

has C(W, V) a finite f.g. free Z[r]-module chain complex. By 3.7 (ii) there
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is a Z[r]-module chain equivalence (@) ~ C(W, V).
Next, consider the short exact sequence of Z[r]-module chain complexes

oo

0 — C®T(V) —— CT (W) — CT(W, V) — 0
with
CoM(W,V) = e(C(W,V)—CY(W,V))us1
a contractible free Z[r]-module chain complex. The inclusion
> (V) — O (W)

is a Z[n]-module chain equivalence by 3.7 (iii).

(ii) Since W is forward tame there exists a cofinite subcomplex V- C W
with an extension of the inclusion V' x {0}—W to a proper map V x
[0,00)—W. Let V C W be the cover of V Correspondlng to the cover W
of W. The inclusion @/ : CU/-7(V)—CM-7(W) admits a chain homotopy
to 0

v ~ 0 CYTWV) — W),

and

CW,V) = CH™(W,V)
~ e@ : (V) — (W)
e(0: CHm(V)—CH (W) = CH™(W) e CH™(V),_q .
The chain map
p i CT(W) = C®T(V) — C(V)
has a left chain homotopy inverse
g : C(V) — C™T(W) 5 x — (u(x), vi(x))

with a chain homotopy direct sum system

p i
ComW) o) = ¢ty
q J

(iii) By 7.10 S (e(NW)) is Z[r]-module chain equivalent to
COT(W) = C(C(W)—CH™(W))up1 -

The Z[r]-module chain complex C(W) is finitely dominated by the finite
domination of W, and C»* (W) is finitely dominated by (iii). By 6.9 the
finite domination of W follows from the finite domination of the Z[r]-module
chain complex S(e (W)), with 7 = m (W) and e(W) the pullback to e(W)
of the universal cover W of W.
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(iv) Apply (iii), with V instead of W, noting that 1.12 gives a homotopy
equivalence e(V') ~ e(W).
(v) The Z[r]-module chain map of 5.3 is a chain equivalence

~

a : Sle(W)) — S°m(W).
By Proposition A.7 in Appendix A there exists a subcomplex
pY¥m = DY) C SHYT(W)
with homology equivalences
pifm = gy | DT = oUW .

The Z[r]-module chain complexes SY™(W), CY™(W) are finitely domi-
nated by 7.5 and (ii), so that they are chain equivalent to free Z[r]-module
chain complexes. Let F be a free Z[r]-module chain complex with a homol-
ogy equivalence F— D! . The composites

F — D7 sifm(w) | F — DY — cUm (W)

are homology equivalences, and hence chain equivalences. Similarly for
the finitely dominated Z[x]-module chain complexes S (W), C° (W),
noting that the subcomplexes

D = DY¥Y"nS(W) = D(W)C S(W),
DT — G(D—>le’7r)*+1 C SOOJT(W)
are equipped with homology equivalences

D — S(W) , D — C(W),

DT —, Soo,ﬂ(W) 7 DT COO,TI'(W) . O
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Reverse tameness

We now formulate the definition of ‘reverse tameness’, which is a general-
ization of the manifold tameness of Siebenmann [140].

Definition 8.1 Let W be a locally compact Hausdorff space.

(i) The space W is reverse tame if for every cocompact subspace U C W
there exists a cocompact subspace V. C W with V C U such that U is
dominated by U\V, by a homotopy h : W x I—W such that :

|(W\U) = inclusion : W\U—W for every t € I,

(ii) The space W is reverse collared if for every cocompact subspace U C
W there exists a cocompact subspace V' C U such that U\V is a strong
deformation retract of U, in which case there exists a homotopy h : W X
I—W as in (i). o

By analogy with 7.2 and 7.3:

Proposition 8.2 A reverse collared space is reverse tame. m]

In Parts Two and Three we shall be particularly concerned with reverse
tameness and collaring for the ends of infinite cyclic covers of finite CW
complexes, and with the connections with forward tameness and collarings.
In Chapter 13 we shall give a homotopy theoretic criterion for reverse tame-
ness of such an end, and in Chapter 23 we shall give a homological criterion.
The ‘projective class at oo’ of a reverse tame C'W complex constructed in
Chapter 10 is an algebraic K-theory obstruction to reverse collaring. In
Chapter 13 it will be shown that a reverse tame end of an infinite cyclic

92
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cover of a finite CW complex is reverse collared if and only if this invariant
vanishes.

Example 8.3 (i) Let (L, K C L) be a pair of compact spaces, and let
W = LUKX{O}K X [0,00) .

Then W is reverse collared: for each cocompact subspace U C W there
exists ¢t > 0 such that V = K x (t,00) C U is a cocompact subspace with
U\V a deformation retract of U.

(ii) Let (M,0M) be a compact manifold with boundary. The boundary
is collared (1.8), so that the interior

int(M) = M\OM = MU8M><{O} OM x [0,00)

is reverse collared by (i). o

Remark 8.4 (i) If a space W has finitely many ends, then W is reverse
tame (resp. reverse collared) if and only if each end of W is reverse tame
(resp. reverse collared).

(ii) In a reverse tame space W every closed cocompact subspace U C W
is dominated by a compact subspace, the closure of U\V in the terminology
of 8.1. In particular, W is dominated by a compact subspace.

(iii) In Chapter 13 below we shall show that a finitely dominated infinite
cyclic cover of a finite CW complex is reverse tame (as well as forward
tame). o

Proposition 8.5 For an ANR space W the following are equivalent :

(i) W is reverse collared,
(ii) there exists a sequence of compact AN R subspaces

oo
KiCKyCKgC...CcW , W = UKjv
j=1

such that the inclusion K;—W is a homotopy equivalence for each
i=1,2,3,....
Proof (i) = (ii) Choose a sequence of cocompact subspaces

W =Vi2VW%2o2V2..., (V) =0,
j=1

such that V;\Vj; is a strong deformation retract of Vj. Let
Kj = W\Vipi = Vi\Vju UK .
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The strong deformation retraction of V; to V;\Vjy1 extends to a strong
deformation retraction of W to K;. Hence, the inclusion K;—W is a
homotopy equivalence. Since K is a retract of W, K; is an ANR.

(ii) = (i) Since the inclusion K;—W is a homotopy equivalence and
W,K; are ANR’s, K; is a strong deformation retract of W for each j =
1,2,3,... . Given a cocompact subspace U C W, there exists j > 1 such
that W\U C Kj. Let V.= W\Kj. A strong deformation retraction of W
to K restricts to a strong deformation retraction of U to U\V. O

Example 8.6 Jacob’s ladder X (2.26) is an ANR with H;(X) = Z[z]
an infinitely generated f.g. free Z-module. A compact ANR is finitely
dominated (and in fact homotopy finite, West [168]), so that its homology
consists of f.g. Z-modules. Thus X is not homotopy equivalent to a compact
ANR and 8.5 implies that X is not reverse tame. Similarly for the space W
of 4.14 (which is proper homotopy equivalent to X — in 9.8 below reverse
tameness will be shown to be a proper homotopy invariant for AN R spaces
such as X, W). o

Proposition 8.7 Suppose W is a space with the property that every cocom-
pact subspace X C W contains an ANR cocompact subspace Y C X which
is closed in W. Then the following conditions are equivalent :

(i) W is reverse tame,
(ii) every closed AN R cocompact subspace X C W is finitely dominated,
(iii) every cocompact subspace X C W contains a finitely dominated
(ANR) cocompact subspace Y C X which is closed in W.

Moreover, if W is also o-compact, then the above conditions are equivalent
to:

(iv) there exists a sequence of finitely dominated (AN R) closed cocompact
subspaces W =Wy 2 W1 2 Wa D ... with NW; = 0.
J

Proof (i) = (ii) X is compactly dominated, by 8.4 (ii). Since X is an
ANR (and hence homotopy equivalent to a CW complex), it follows that
X is finitely dominated.

(ii) = (iii) This follows immediately from the hypothesis.

(iii) = (i) Let U C W be a cocompact subspace. By hypothesis there
exists an AN R cocompact subspace X C U which is closed in W. Now there
exists a finitely dominated cocompact subspace Y C X which is closed in W.
We may assume that Y is disjoint from the frontier Fr(X) of X. Since Y is
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finitely dominated, there exist a compact subspace C' C Y and a homotopy
g:Y x I—Y such that gy = idy and ¢1(Y) C C. Extend g to a homotopy
g: (Fr(X)UY) x I—X by setting gi|m(x) = inclusion : Fr(X)—X for
each t € I. Since Fr(X)UY is a closed subset of the ANR X, the homotopy
extension property implies there exists a homotopy h : X x I— X such that
hy = idx and h|(Fr(X)UY)><I = g. Now extend h to a homotopy h : W x
I—W by setting iLt|(W\X) = inclusion : W\ X —W for each t € I. Since
cl(W\Y) is compact so is hi(cl(W\Y)). Thus V = W\ (h1(cl(W\Y)) U C)
is cocompact and V' C U. Since hi(W) C W\V we have shown that W is
reverse tame.
Finally, it is clear that if W is o-compact, then (iii) and (iv) are equivalent.
O

Remark 8.8 Lemma 4.6 shows that every strongly locally finite CW com-
plex W satisfies the hypothesis of 8.7 (that W contains arbitrarily small
ANR closed cocompact subspaces). It is unclear whether or not every lo-
cally finite CW complex has this property, but this would be the case if
every locally finite CW complex had a strongly locally finite subdivision. It
is apparently unknown if the latter statement is true (cf. Farrell and Wag-
oner [52,p.503]). Note that Hilbert cube manifolds satisfy the hypothesis
of 8.7. Moreover, all Hilbert cube manifolds are o-compact (being locally
compact, separable and metric) and a countable CW complex is o-compact.

O

Proposition 8.9 The following conditions on a strongly locally finite CW
complex W are equivalent :

(i) W is reverse tame,
(i) every cofinite subcomplex V-C W is finitely dominated,
(iii) every cocompact subspace X C W contains a finitely dominated cofi-
nite subcomplez.

Moreover, if W is also countable, then the above conditions are equivalent
to:

(iv) there exists a sequence of finitely dominated cofinite subcomplezes
W = Wo2DW1 DWyD...
with W, = 0.
J

Proof (i) = (ii) This follows from Remark 8.4 (ii).
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(ii) = (iii), (iii) == (i) These follow from 8.7.
Finally, it is clear that if W is countable, then (iii) and (iv) are equivalent.
O

Corollary 8.10 A reverse tame strongly locally finite CW complex W is
finitely dominated. |

Definition 8.11 A space W is reverse m-tame if it is reverse tame and
each end has stable m at oo (2.23). o

Remark 8.12 An open manifold with compact boundary (W, 9W) and one
end is tame in the sense of Siebenmann [140] if:

(i) W is mi-stable at oo, so that there exists a sequence W 2 Wy D W D
Wy D ... of path-connected cocompact subspaces with (\cl(W;) =0
J

such that the sequence of inclusion induced group morphisms
g1

m(Wo) «— m (W) 2 T (Wa) ¢— -+

induces isomorphisms

(W) = im(g1) — im(g2) «— ..., and

(ii) there is a finitely dominated cocompact subspace V' C W such that
%4 Q Wl, 7T1(V) = WfO(W)

These conditions are equivalent to reverse 7-tameness. o

Proposition 8.13 A reverse mi-tame strongly locally finite countable CW
complex W admits a sequence W 2O Wy D W1 D Wy D ... of finitely

dominated cofinite subcomplexes, with \W; = 0 and such that the sequence
J
of inclusion induced morphisms
g1 g2
m(Wo) «— m(Wi) «— m(Wa) «— ...

(with base points and base paths chosen) induces isomorphisms

~

(W) = im(g1) «— im(ga) «— ... . o

1R

Proposition 8.14 For a o-compact metric space W the following conditions
are equivalent :

(i) W is forward and reverse mi-tame,

(ii) W is forward and reverse tame.
Proof By 7.10 a forward tame W has stable m; at oc. o
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Homotopy at infinity

A proper homotopy equivalence at infinity is a proper map which (among
other properties) induces a homotopy equivalence of the end spaces. The
main result of this chapter is that an ANR is both forward and reverse
tame if and only if it is bounded homotopy equivalent at co to a product
with [0, 00).

Definition 9.1 Let X,Y be topological spaces. A proper homotopy equiv-
alence at oo

(f,9,U0, V) : X — Y
is defined by proper maps
f:U—Y  g:V-—5X

defined on closed cocompact subspaces U C X, V C Y, such that there
exist proper homotopies

fg| =~ inclusion : ¢~} (U) — Y,
gf] ~ inclusion : f~1(V) — X . w

We shall usually write (f,g,U,V) as f.

Example 9.2 The inclusion U C X of a closed cocompact subspace defines
a proper homotopy equivalence at oo. o

Example 9.3 Let (Y, X C Y) be a pair of metric spaces with a proper
homotopy h: : Y—Y (t € I) such that:

—~

i) hy(v)=veYforallve X,tel,
(ii) ho(w) =w e Y forallw e Y,

97



98 Ends of complexes

(iii) h1(Y) € X' with X C X’ CY such that X is a cocompact subspace
of X'.

The inclusion X—Y is a proper homotopy equivalence near oo in the
sense of Siebenmann [144, p. 489]. There is also defined a proper homotopy
equivalence at oo (f,g,U,V): X—Y in the sense of 9.1, with

f = inclusion : U = X — Y |
g = hi| :V = (h1)71(X) — X . o

Proposition 9.4 A proper homotopy equivalence at oo (f,g,U, V) : X—Y
of o-compact metric spaces X,Y induces:

(i) a bijection f.: Ex—Ey of the sets of ends if X, Y are locally com-
pact, connected, locally connected,
(ii) a homotopy equivalence of the end spaces e(f) : e(X)—e(Y).

Proof (i) Immediate from 1.22 (ii).
(ii) It follows from 1.12 that inclusions induce homotopy equivalences
i1 e(fTHV)) — e(X) , iy e(V) — e(Y)
iz @ e(U) — e(X) , ig : e(g7HU)) — e(Y).
The composite
ize(fl10) ()7 1 e(X) — e(Y)

is a homotopy equivalence with homotopy inverse (i4) 'e(g] g-1(U)) 13- O

Proposition 9.5 Suppose X and Y are o-compact, connected, locally path-
connected metric spaces which are proper homotopy equivalent at co.

(i) X is semistable at 0o if and only if Y is semistable at oo.

(ii) X has stable w1 at oo if and only if Y has stable m at co.
Proof (i) Propositions 1.22 and 9.4 imply that nx : mo(e(X))—EXx is bijec-
tive if and only if ny : mp(e(Y))—Ey is bijective. Now apply Proposition
2.25 (iii).

(ii) Let (f,g,U,V) : X—Y be a proper homotopy equivalence at co with
homotopies

h : gf| ~ inclusion : f~Y(V) — X |
k : fg| ~ inclusion : g~ Y(U) — Y .
The first step is to construct cocompact subspaces

XDOf V) = X2X;2--- , Y2g '(U) = 2% 2--
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such that

mcl(Xj) = ﬂcl(Y}) =10
J J
and h and k restrict to homotopies
h| : gf] ~ inclusion : X; — X;_ o,
k| : fg| ~ inclusion : Y; — Yj_o

for j > 2. This is done by an elementary induction argument. Write X and
Y as ascending unions of compact subspaces

o0 [e 9]
X =¢ ,v =D
j=0 j=0

with
Co = c(X\Xo) , Dy = cl(Y\Yp) .
Assuming that N > 0 and that Xx, Yy have been defined, set
Cy_1 = projxh ' (l(X\Xn-1)),
Xy = fTHYNMCOn41UCK_y)

and similarly for D\ _;, Yn41.

Now assume that X has stable m; at co. In particular, X is path-connected
at 0o, and we may assume that each X; is path-connected for j > 1. From
2.25 (iv) it follows that mo(e(X)) = 0; therefore, mo(e(Y)) = 0 by 9.4 (ii).
From (i) we know that Y is semistable at co. Another application of 2.25
(iv) gives that Y is path-connected at oo. Therefore, we may also assume
that each Y; is path-connected for j > 1.

It follows from Siebenmann [140, p. 12] that some subsequence of the X
satisfies the stability condition of 2.23 (iii). For simplicity, we assume that
the original sequence satisfies that condition, i.e. the inclusions induce iso-
morphisms

~

im (71 (Xjp3)—m1(Xjp2)) — im(m1(Xjy2) —mi (X)) -

A diagram chase shows that the inclusions also induce isomorphisms

im(m1 (Yje) —m1(Yj43)) — im(m(Yjis)—m(Y;)) ,

so that Y has stable 7 at oco. o

Proposition 9.6 If W, W’ are proper homotopy equivalent at oo then W
is forward tame if and only if W' is forward tame.

Proof Let (f,g9,U,U’") : W—W’ be a proper homotopy equivalence at
oco. If W is forward tame, then there exist a closed cocompact subspace
V C W and a proper map ¢ : V x [0,00)—W which extends the inclusion
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V x {0}—W. The inverse image g~'(V) is a closed cocompact subspace
of W’ and we may assume that ¢(V x [0,00)) C U, so in particular V C U.
Use a proper homotopy

h i fglg—1 () =~ inclusion : g U) — W
to define a proper map

¢ = falg xidje)) Uh :
97 (V x[-1,00)) = g 1 (V x[0,00)) Ug " (V x [-1,0]) — W

such that ¢’| : g71(V) x {~1}——W" is the inclusion. a]

Remark 9.7 The property of being forward collared is not an invariant of
the proper homotopy type at oo — see 11.7 (ii) below. O

Proposition 9.8 Suppose W, W' are ANR’s which have arbitrarily small
closed cocompact subspaces which are ANR’s and that W, W' are proper
homotopy equivalent at oo.

(i) W is reverse tame if and only if W' is reverse tame.

(il) W is reverse my-tame if and only if W' is reverse my-tame.
Proof (i) Let (f,g,U,U’) : W—W' be a proper homotopy equivalence at
oo with a homotopy

h : inclusion ~ fg| : ¢~ (U) — W'.

We may assume that U’ C W’ is a closed cocompact AN R subspace. To
show that W’ is reverse tame it suffices to show that U’ is finitely dominated
(8.7). If W is reverse tame, then there exist a closed cocompact subspace
X C U and a homotopy k : X x [—X with ky = idx and k1(X) C C
for some compact subspace C' C X (8.7). We may assume that f(X) C U’

and h(g~'(X x I)) C U’ so that fk;g(g~' (X)) C U’ for each t € I. The
homotopy

H : inclusion ~ fkig| : ¢ 1(X) — U’
defined by
h(z, 2t) if0<t<

1
2
fk(g(z),2t —1) if:<t<1

H(l‘,t) = {
can be extggded (using the homotopy extension property for ANR’s) to a
homotopy H :idys ~ Hjp such that
H(U') € Hi(c(U"\g™ (X)) U f(C)

which is compact.
(ii) follows from (i) and 9.5 (ii). o
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Remark 9.9 Note that 9.8 applies to strongly locally finite CW complexes
and Hilbert cube manifolds, since they are AN R spaces which have arbi-
trarily small closed cocompact subsets which are ANR’s (8.8). o

Definition 9.10 Let X, Y be topological spaces with maps
p: X —10,00), ¢g:Y —]0,00).
(i) A bounded homotopy equivalence at oo
(fg. X Y) : X —Y
is defined by maps
f: X —Y , 6 g:Y —X
defined on subspaces
X' = pHs00) , Y = ¢7([t,00)
for some s,t > 0, such that for some ¢ > 0
d(p(z),qf(x)) <e , dpg(y),q(y)) <e (v X' yeY’)
and that there exist homotopies
h : fg| ~ inclusion : ¢-'(X') — Y,
k : gf| ~ inclusion : f~}Y’) — X
such that for all z € g~1(X'), y € f~H(Y")
diameter gh({z} x I) < e, diameter pk({y} x I) <e€.
(ii) An e-homotopy equivalence at oo is defined as in (i), but with a par-

ticular € > 0. O

Note that in 9.10 neither p nor g is required to be proper. Thus, the ‘c0’
referred to is not the co in the one-point compactifications of X and Y, but
rather the oo in the one-point compactification of [0, 00).

Proposition 9.11 Let X,Y be Hausdorff spaces with proper maps p : X —
[0,00), ¢ : Y—]0,00).

(i) A bounded homotopy equivalence at oo (f,g, X", Y') : X—Y is a
proper homotopy equivalence at oo.

(i) If (f,9, X', Y') : X—Y s a proper homotopy equivalence at oo with
X' =p1([s,00)), Y = ¢ I([t,0)), then there are proper homotopies p ~
P, q=~q sothat (f,g,X",Y') is a bounded homotopy equivalence at oo with
respect to p',q .

Proof (i) Let € > 0,h and k be as in 9.10 (i). We need to show that f, g, h
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and k are proper. If K CY is compact, then ¢(K) C [0, N] for some N > 0.
Since p is e-close to qf :

f_l(K) Qp_l([O,N—i-e]) )

Thus, f~1(K) is a closed subset of a compact space, hence compact, veri-
fying that f is proper. Likewise,

R Y K) C g ([0,N +€) x T,

verifying that h is proper. The proofs that g and k are proper are analogous.
(ii) Let
h : fg| ~ inclusion : g~ 4X') — Y,
kE : gf| ~ inclusion : f1(Y') — X

be proper homotopies. Let ng = 0 and use the properness of p,q, f, g, h, k
to inductively choose n; > j for j = 0,1,2,... such that:

(a) fpil([ovnj—l]) - qil([ovnj]) 5
gqil([oﬂnj—l]) - pil([ovnj]) y
(b) fp~'([nj,00)) € ¢ ([nj-1,0)) ,
gqil([njv )) - pil([nj—lvoo)) s
(c) gh(qg([0,nj-1]) x I) € ¢~ *([0,n4]) ,
pk(p=1([0,n;1]) x I) € p~ ([0, ny]) ,
(d) gh(g~*([nj,00)) x I) C q 1([”; 1,00)) ,
pk(p~([ny, )) x I) C p~([nj-1,00)) .

These conditions imply that :

(e) fo~(Inj,nj]) € ¢ H([nj—1,m542])
9q  ([nj,n541]) € p~ 1 ([nj—1,m542])
(f) qh(q~([ng,nj41]) X I) € ¢ ([nj-1,n442]) ,
pk(p~'([nj, nj]) x I) € p~H([nj-1,m42]) -

Let 7 : [0, 00)—]0, 00) be the PL homeomorphism such that y(n;) = j for
each j =0,1,2,.... Then p’ = yp and ¢ = ~q satisfy the requirements. ©

Proposition 9.12 Suppose W is a space with a proper map p : W—|0, 00)
such that W is boundedly homotopy equivalent at co to the projection q :
Y % [0,00)—1[0,00) for some space Y .

(i) W is forward tame.

(ii) If W is an ANR, then W is reverse tame.

(iii) If W is a metric space, then Y ~ e(W).
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Proof Let
W= pil([s,oo)) — Y x[0,00) ,
Y =Y x[t,oo) — W,

> Q=

. fg| ~ inclusion : g~ '(W') — Y,
k : gf] ~ inclusion : f (Y’ — W
be as in Definition 9.10, for some € > 0. Let
p1 2 Y x[0,00) — Y | py: Y x[0,00) — [0,00)

be the projections.
(i) Since p is proper, it follows that f~1(Y”) is cocompact in W and k is
a proper homotopy. Then F : f=1(Y") x [0,00)—W defined by

[ k(z,1—u) if0<u<l,
F@””“{gwﬁumumfm» if1<u

gives the required proper map extending the inclusion.
(i) Let U be a given open cocompact subset of W. Choose sy > max{s,t}
such that p~1([sg,00)) C U. Let

V' = p~([s0 + 4€,00))

and note that V/ C W’ and f(V’) CY".
Define a homotopy F : V! x I—W by

F@u>—{kmﬁ_2w {0 < u <
T Vgl f(@), (2 - 2u)paf(x) + (2u—1)(s0 +26) if L <u<

Note that F(V' x I) C U, so we consider F' as a homotopy F : V' x [—U
such that

Fy = inclusion : V' — U, (V') c U\V'.

Since W is an ANR so is U. Thus, we can use the homotopy extension
property to define a homotopy F': U x I—U such that

ﬁ|V/><I = I, F‘0|Uﬂp*1([0,so]) = inclusion .

Finally, extend via the identity to get a homotopy F:WxI — W and let
V = Fi(W). It is easy to see that V is cocompact and that F' gives the
required domination of U by U\V.

(iii) The map f induces a map

fo i eW') — Y w— pi1f(w(0)) .
If ¢ is chosen so large that g(Y’) C W, then g induces the map
g 0 Y — W)y — (u—g(y,t+u) (u=0).

It is clear that h induces a homotopy f.g« ~ 1y. Also, if W is a cocompact
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subset of W’ chosen so that f(W"”) C Y’, then k will induce a homotopy
Gefrleqwrny = Lewry. Since W is a metric space, Proposition 1.12 implies
that the inclusions W/”’——W’——W induce homotopy equivalences on end
spaces and the result follows. o

Proposition 9.13 Suppose W is a forward tame metric space with a proper
map p: W——[0,00). Then there exist a closed cocompact subspace Y C W
and maps

f Y —eW)x[0,00) , g: eW)x[0,00) —Y
together with homotopies
F:igf ~i:Y —W,
G : fg ~id : e(W) x[0,00) — e(W) x [0,00) ,
with i : Y —W the inclusion such that:

(i) p=paof : Y—]0,00) with p2 : e(W) x [0, 00)—[0,00) the projection,
(ii) for every N > 0 there exists M > 0 such that

(pg)~H([0, N]) C e(W) x [0, M] ,

(iii) F: Y x I—W is proper,
(iv) for every N > 0 there exists M > 0 such that

G(e(W) x [M, 00) x I) C e(W) x [N, 00) .

Proof Let Y C W be a closed cocompact subspace for which there exists a
proper map ¢ : Y x [0,00)—W extending the inclusion such that pg(Y x
[M,0)) C [M,00) for M =0,1,2,... (7.16). For the adjoint ¢ : Y —e(WW)
choose a closed cocompact subspace Y’ C 'Y such that ¢(Y') C e(Y). Use @
also to denote the inclusion 7 : Y/—W. It induces a homotopy equivalence
e(i) : e(Y')—e(W), so there is a homotopy inverse j : e(W)—-e(Y’) with
a homotopy
ko:oe(i)j = idewy @ e(W) — e(W).

By using the explicit construction of 1.12, we may assume that for every
weeW),tel, u>0, k(w,t)(u) =w(s) for some s > 0. Define

[ Y —e(W) x[0,00) ; 2 — (q(z),p(x)) .
Define g : e(W) x [0,00)—Y to be the composition

Jgxid pyr Xid
e(W) x [0,00) — e(Y') x [0,00) —— Y’ x [0, 00)

gxid Py

T e(Y) % [0,00) 5 Y
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where py+ and p;i are the evaluation maps. The homotopy F' : igf ~ 7 :
Y —W is given by

F(z,t) = qlkq(z)(0)]((1 = t)p(z)) .
Define
v o e(W) x[0,00) — e(W) 5 (w,t) — qlq(zw)(1)]
where z,, = j(w)(0) € Y. Define a homotopy
G e(W) x[0,00) x I — e(W) x [0,00) ;
(w,t,8) — (v(w, 1), (1 = s)p[q(zn)(t)] + st) -
Note that G}, = fg. We claim there is a homotopy
G" : e(W) x[0,00) x I — e(W)
with Gfj = v and G/ = projection : e(W) x [0,00)—e(W). Contracting
[0,00) to {0} there is defined a homotopy v ~ +" with
V(wt) = qd(z.)(0)] = qlzw) = dpy (jW))) -

The proof of 7.5 (i) shows that gpy: : e(Y')——e(W) is homotopic to the
inclusion, so ' ~ ~” where v"(w,t) = j(w). Since j : e(W)—e(Y’) was
chosen to be a homotopy inverse for the inclusion, the homotopy G” exists
as claimed above. We can now define the homotopy

G :e(W) x[0,00) x I — e(W) x [0,00) ;

G'(w,t,2s) ifo<s<i,
(w7t78) . 1
(G"(w,t,25 —=1),t) if 5 <s<1

Finally we verify the four properties of f, g, F, G :

(i) is obvious.

(ii) Since g(w,t) = q(zw)(t) = q(z,,t), it follows that pg(w,t) > M if
t>Mand M =0,1,2,....

(iii) To verify that F' is proper, let K’ C W be compact and suppose
F(z,t) € K. Since kiq(z)(0) = gq(z, s) for some s > 0, it follows that

F(x,t) = qla(z,9)]((1 = t)p(x)) = qla(z,s), (1 —t)p(z)] .

Thus, [¢(z,s), (1 — t)p(x)] € ¢ 1(K). Since q is proper, ¢~!(K) is compact
as is C C Y, the projection into Y of ¢~!(K). Since ¢(z,s) € C, (z,s) €
q 1(C). Since ¢~1(C) is compact, so is ¢’ C Y, the projection into Y of
¢ 1(C). Since {(1 —t)p(z)|t € I,x € C'} C [0,00) is also compact, it
follows that F~1(K) CY x I is compact.

(iv) Ift > M for M =0,1,2,..., and = € Y’, then

p(q(x)(t)) = plq(z,t)) > M
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(1 = s)pla(z) ()] + st = M .
It follows that

G'(e(W) x [M,00) x I) Ce(W) x [M,00) (M =0,1,2,...) . o

Proposition 9.14 Suppose W is a forward tame metric space with e(W)
finitely dominated and a proper map p : W—[0,00). Then for every e > 0,
p is properly homotopic to a proper map p' : W—[0,00) for which W is
e-homotopy equivalent at oo to the projection pa : (W) x [0,00)—[0, 00).
Proof Let Y, f,g,F,G be as in Proposition 9.13. Since e(W) is finitely
dominated, there exist a compact subspace K C e(WW) and a homotopy
D :e(W) x I—e(W) such that Do(e(W)) C K and D1 = id.y). Define

g :e(W)x[0,00) — Y,
F' igf~i 0 Y — W,
G fg ~id : e(W) x [0,00) — e(W) x [0, 0)

as follows:
/

g = g(DO X 1d[O,oo)) ’

Flo— ig(Das X id[o oo))f Hfo<s< % ,
T Fas ifi<s<1i,
G = GQS(DO X ld[o oo)) ifo<s< % ,
° Das—1 % idg o) if % <s<1.

It follows from 9.13 (ii), (iii) that F” is proper. From 9.13 (iii) it follows that
for every N > 0 there exists M > 0 such that

G'(e(W) x [M,00) x I) C e(W) x [N,0) .

Let ng = 0 and choose n; > j inductively such that:

(1) pE'(p~ ([0, 1)) x 1) € [0, my].
(This uses the properness of p.)
(2) p2G'(e(W) x [0,mj-1] x I) € [0,m;].
(This uses the compactness of K.)
(3) pF'(p~*([nj,00)) x I) C [nj-1,00).
(This uses the properness of p and F’.)
(4) p2G'(e(W) x [nj,00) x I) C [nj_1,00).
(This uses the property of G’ mentioned above.)
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Given € > 0 let

v 1 [0,00) — [0,00)
be the PL homeomorphism such that

Je .
v(n;) = 3 (7=0,1,2,...).

Let p' = vp: W—]0,00). Then
(ideqwy x V) f + Y — e(W) x [0, 00)

is an e-equivalence with inverse g'(id(y X 7. O

Proposition 9.15 Let W be an AN R which has arbitrarily small closed
cocompact subsets which are ANR’s. The following conditions on W are
equivalent :

(i) W is both forward and reverse tame,
(il) W is forward tame and the end space e(W) is finitely dominated,
(iii) there exist a proper map W—[0,00) and a space Y such that W is
bounded homotopy equivalent at oo to the projection Y x [0,00)—
[0, 00).

Moreover, if these conditions are satisfied Y is homotopy equivalent to e(W).
Proof (i) implies (ii) by 7.5 (i) and 8.7.

(ii) implies (iii) by 9.14.

(iii) implies (i) by 9.12 (i), (ii).

If these conditions are satisfied Y ~ e(W) by 9.12 (iii). o

Theorem 9.16 Let W be an ANR which has arbitrarily small closed co-
compact subsets which are ANR’s. The following conditions on W are
equivalent :

(i) W is both forward and reverse tame and e(W') is homotopy equivalent
to a finite CW compler,
(ii) there exist a proper map W—1[0,00) and a finite CW complex K
so that W is bounded homotopy equivalent at oo to the projection
K x [0, 00)—[0,00),
(iii) there exists a finite CW complex K so that W is proper homotopy
equivalent at oo to the projection K x [0, 00)—[0, 00).

Moreover, if these conditions are satisfied K is homotopy equivalent to
e(W).
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Proof (ii) and (iii) are equivalent by 9.11. The rest of the proof follows
from 9.15. O
Example 9.17 Let

X ={(z,y) e®R’|z>0,ye{3,51---,0}} .

<
I
N

<
I
W=

y=0
X

The metric space X is locally compact, forward tame and reverse tame.
However, the end space e(X) has infinitely many components, one for each
element of {%, %, i, ...,0}, so that it is not finitely dominated. Since X
is not locally connected, X is not an ANR and therefore this does not
contradict 9.15. However, this example does contradict Quinn [116, p. 466].

m}

Proposition 9.18 Let W be a forward tame ANR which has arbitrarily
small closed cocompact subsets which are ANR’s (e.g. a strongly locally
finite CW complex or a Hilbert cube manifold). The following conditions
on W are equivalent :

(i) W is reverse tame,
(ii) W is reverse mi-tame,
(iii) the end space e(W) is finitely dominated.

Proof (i) = (ii) W has stable m; at co by 7.11.
The other implications follow from 9.15. o
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Projective class at infinity

We associate to a reverse mi-tame space W the ‘projective class at oo’
Wl]eo € Ko(Z[m°(W)]) (10.1) with image the projective class (= Wall
finiteness obstruction) [W] € Ko(Z[r (W)]). The projective class at oo
is an obstruction to reverse collaring W, which for an open manifold is the
end obstruction of Siebenmann [140]. In 10.13 we prove a form of Poincaré
duality (originally due to Quinn [116]) that a manifold end is forward tame
if and only if it is reverse tame, subject to suitable fundamental group con-
ditions, in which case the locally finite projective class at oo is the Poincaré
dual of the projective class at oo (10.15).

We associate to a forward tame CW complex W the ‘locally finite pro-
jective class’ [W]Y € Ko(Z[r1(W)]) (10.4), and a ‘locally finite projective
class at oo’ [W]Y € Ko(z[m (e(W))]) (10.8), such that [W]/f is the image of
[W]Y. The locally finite projective class at oo is an obstruction to forward
collaring W. If W is both forward and reverse tame then e(W) is finitely
dominated, with finiteness obstruction

[e(W)] = W — [WIE € Ko(z[n])
where m = 71 (e(W)) = 7 (W).

In 10.5 below it will be proved that for an open n-dimensional manifold
with boundary (W, 0W) and a forward and reverse tame end the end space
e(W) of W is a finitely dominated (n — 1)-dimensional Poincaré space with
finiteness obstruction

[e(W)] = [We + (—)" W]
€ Ko(Z[mi(e(W))]) = Ko(Z[x(W))) ,

and that (W;0W, e(W)) is an n-dimensional geometric Poincaré cobordism.

109
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Let W be a space with arbitrarily small closed cocompact AN R subspaces,
e.g. a strongly locally finite CW complex (4.6). If W has stable m; at oo
there exists a sequence Wy O Wy; O Wy DO ... of closed path-connected
cocompact AN R’s such that the induced group morphisms

g1 92 g3

7T1(W0) — 7T1(W1) — 7T1(W2) — ...
induce isomorphisms between images and
(W) = im(g1) = im(g2) = ... .

As in 2.21 (iv) each g; induces a surjection g; : w1 (W;)—im(g;) = nt°(W)
which is a left inverse for the injection p; : 7{°(W) = im(gj41)—m1 (W),
with
gj -m(W;) = 7°(W) x ker(g;)
- WI(W/j—l) = WTO(W) X kel"(Qj—l) ) (muy) - (33, 1) :

If W is o-compact and reverse tame then each W is finitely dominated
by 8.7. In particular, if W is a reverse mj-tame strongly locally finite CW
complex there exists such a sequence Wy 2 W7 O Wy D ... of finitely
dominated cofinite subcomplexes with each g; : w1 (W;)—nP°(W) a split
surjection and

(@0)«[W0] = (0)[W1] = (@2)[W1] = ... € Ko(Z[{>(W)]) .

Definition 10.1 The projective class at oo of a reverse mi-tame space W
with arbitrarily small closed cocompact AN R subspaces is the image of the
Wall finiteness obstruction [V] € Ko(Z[m1(V)])

Wl = ¢.[V] € Ko(Z[r52(W))])

with V' C W any finitely dominated closed cocompact subset such that
the natural morphism p : 7°(W)—m (V) is a split injection (on each
component) with a left inverse q : w1 (V)——n{°(W). o

The morphism Ko (Z[75°(W)])— Ko (Z[r1 (W)]) sends the projective class
at 0o [W]s to the finiteness obstruction [W].

Theorem 10.2 (Siebenmann [140]) (i) Let (W,0W) be an open n-dimen-
sional manifold with a compact boundary OW and a reverse wi-tame end.
The projective class at co

[Wlee € Ko(Z[n{*(W)])

has image the Wall finiteness obstruction [W] € Ko(Z[r1(W)]).
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(ii) The projective class at oo of (W,0W) as in (i) is such that [W]s = 0 if
(and for n > 6 only if ) (W,0W) can be collared, i.e. there exists a compact
n-dimensional cobordism (N;OW, M) with a homeomorphism rel OW
(W,0W) = (N\M, W) .
If n > 6 and W] = 0 any two such cobordisms (N;OW, M), (N'; 0OW, M")
differ by an h-cobordism (L; M, M") such that
(N';0W,M') = (N;0W, M) U (L; M, M’) .
(iii) For any finitely presented group m and any f.g. projective Z[r]-module
P there exists (W,0W) as in (i), with
W) = m(W) =7, Wle = W] = [P] € Ko(z[r]) .
Idea of proof (i)+(ii) The projective class at oo of W is the finiteness
obstruction of a cocompact submanifold V' C W with 71(V) = n{°(W)
Wlee = [V] € Ko(ZIm(V)]) = Ko(Zlxi*(W)]) .
Let U = cl(W\V), so that (U;0W,0V) is a compact cobordism with
(W, 0W) = (U;0W,0V)U (V,0V) .

It is possible to choose V' such that the inclusion 9V —V is a homotopy
equivalence if (and for n > 6 only if) W can be collared. The condition
n > 6 occurs here because of the application of the Whitney trick to modify
the (n — 1)-dimensional manifold OV by codimension 1 surgeries inside V.

The projective class at 0o [W]eo € Ko(Z[r$°(W)]) is the obstruction to the
construction of such V' by handle exchanges on 9V inside W.

(iii) Let P = im(p) for a projection p = p? : Z[r|"—Z[x]". For any n > 5
there exists a closed (n — 1)-dimensional manifold M with 71(M) = 7. As
in [140, Chapter VIII] construct a ‘strange end’

(W,0W) = (M x IU[J2-handles U|_J3-handles, M x {0})
0 0

satisfying the hypothesis of (i), with
(W) = mW) =7, W = [W] = [P].
The 2-handles are attached trivially and the 3-handles are attached non-

trivially, with

COV,0W) : ... — 0 — Z[a]"[2] —= Z[a]"[2] — 0 — 0

such that
Hy(W,0W) = coker(d) = P

(eg. d=1—p+tzporl—zp). O
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Remark 10.3 (i) In 10.5 below it will be shown that if (W,0W) is an n-
dimensional open manifold as in 10.2 (i) then (W;0W,e(W)) is a finitely
dominated n-dimensional Z[m (W)]-coefficient geometric Poincaré cobor-
dism. If n > 6 and [W]s = 0 then (W,0W) can be collared, and (W; 0W,
e(W)) is homotopy equivalent rel W to a compact n-dimensional manifold
cobordism (N;0W, M) as in 10.2 (ii). Any two such collarings (N; 0W, M),
(N'; 0W, M") of (W,0W) are related by an h-cobordism (L; M, M') with

(N'; oW, M') = (N;0W,M)U (L; M, M") |

so that the collarings are classified by the Whitehead group Wh(w°(W)).
(See Example 17.3 below for an account of the connections between h-
cobordism theory and collarings.)

(ii) In the simply-connected case 77°(W) = {1} the projective class at co
vanishes, [W]s = 0 € Ko(Z) = 0, and 10.2 recovers the result of Browder,
Levine and Livesay [14] that for n > 6 it is possible to collar an open
n-dimensional open manifold (W,0W') with finitely generated H.(W) (=
reverse 7j-tameness in the simply-connected case).

(iii) The construction of tame manifold ends in 10.2 (iii) can be generalized
using bands (15.3), as follows. For P = im(p), M as in the proof of 10.2 (iii)
let (L; M x S, N) be the compact (n + 1)-dimensional cobordism with

L = M x 5" x TUlJ2-handles Uy, | J3-handles .
T T

Then 71 (L) = m1(N) = 7 X Z, and the projection 71 (N)——Z is realized by
amap ¢ : N—S! such that (N, c¢) is an n-dimensional manifold band. The

infinite cyclic cover N = ¢*R of N has two ends, and
W,oW) = (N", N"nN")

is an open n-dimensional manifold with compact boundary and a reverse
mi-tame end such that 7{°(W) = m(W) = 7w and [W]w = [W] = [P] €

Ko(Z[x]). It will be shown in Proposition 15.9 below that e(W) ~N. o

The locally finite projective class of a forward tame CW complex W is
defined as in 6.12, using the finite domination of C*/"™ (W) given by 7.20:

Definition 10.4 The locally finite projective class of a forward tame locally
finite CW complex W is the projective class

W)Y = [CY7(W)] € Ko(z[r)) (7 =m1 (W)

of the finitely dominated Z[r]-module chain complex C™(W) | with W the
universal cover of W. O
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Proposition 10.5 (i) If W is a locally finite CW complex which is both
forward and reverse tame the end space e(W) is finitely dominated, with
Z[m1(W)]-coefficient reduced projective class

[e(W)] = W] = WY € Ko(Z[m (W) .

(ii) If (W,0W) is an open n-dimensional geometric Poincaré pair which
1s both forward and reverse tame then

W] = (=)"[W]" € Ko(z[m (W) .

The end space e(W) is a finitely dominated (n — 1)-dimensional Z[m1(W)]-
coefficient Poincaré space and (W; OW, e(W)) is an n-dimensional Z[m (W)]-
coefficient geometric Poincaré cobordism, with

[e(W)] = W] =W = W]+ (=)"'[W]" € Ko(Z[m (W))]) .

Proof Let 7 = m(W).
(i) The finite domination of e(W) is given by 7.20. The projective class
identity follows from the Z[r]-module chain equivalence given by 7.20 (v)

S(e(W)) =~ C¥™(W) = e(C(W)—CH™(W))uy1 .

(ii) The universal cover W of W is such that the Z[r]-module chain com-
plexes C(W), CY™ (W) are finitely dominated. Let [e(W)] € H,_1(e(W))
be the image of the fundamental class

(W] B (W,0W) = Hy(W,0W Le(W)) .
The commutative diagram

Olf,ﬂ'(W)n—* C(W)n—*

W]n—|~ W)n—|~

C(W,oW) CHm (W, 0W)

induces an (n—1)-dimensional Z[r]-coefficient Poincaré duality chain equiv-
alence

[e(W)] M= = S(e(W)"™' 7" = e(C(W)—CYm(W))"~

— S(e(W)) ~ C(C(W,dW)—CH™(W,0W))sp1

so that e(W) is an (n — 1)-dimensional Z[r]-coefficient Poincaré space. In
fact, (W;0W,e(W)) is an n-dimensional Z[r]-coefficient Poincaré cobor-
dism, with a Z[r]-coefficient Poincaré duality chain equivalence

W]n— : CYT(W,0W)"* ~ C(W,0W I e(W))"™ — C(W). o
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S8 .
Example 10.6 The polynomial ring Z[z| consists of the polynomials > a;2"

i=0
with only a finite number of the coefficients a; € Z non-zero. Give RT =
[0,00) the CW structure with one O-cell at each n € N C RT, and 1-cells

[n, n+1], so that the cellular chain complex is the Z[z]-module chain complex

CRY) : Z[2] — 7[2]
with z acting by Rt —R™; 2—x+1. Let Z[[z]] be the ring of formal power
series § a;z* (a; € Z). The differential in the locally finite cellular chain
complé;()

CY®RY) ¢z~ 2]

is an isomorphism, with inverse

00 (%s) 00 k
1=zt = 2" zlz)] — 2zl D e — Y (D),
k=0 Jj=0

k=0 j=0
so that C'f(RT) is contractible and the locally finite projective class is
R = [CY(RT)] = 0€ Ko(z) = Z.
There are defined homology equivalences of Z-module chain complexes
C®R") ~ CRY) ~ z , CY@®R") ~ 0

in accordance with e(R") ~ {pt.}. o

Example 10.7 The Laurent polynomial ring Z[z, z~1] consists of the poly-
0 .
nomials )" a;2" with only a finite number of the coefficients a; € Z non-
1=—00
zero. The cellular chain complex of the universal cover S' = R of the circle
Sl is the Z[z, z~1]-module chain complex

1—=z
[Z’zil] - Z[szil] )

C(R

) Z
identifying Z[r1(S')] = Z[z,271]. The locally finite cellular chain complex
of R is

CU®) : 2z =) 2 2l

with Z[[z,271]] = Z[[r1(S1)]] the Z[z, 2~ 1]-module of formal Laurent poly-

0 .
nomials Y a;2' (a; € Z). The Z-module morphism
1=—00

7 — le(R)l = Z[[z,zfl]] 1 — i 2

i=—00
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defines a homology equivalence Z—sC"(R),1, and the locally finite pro-
jective class of R is

RY = [CYR)] = —[z] = -1€Ky2) = Z.
The Z[z, z~!]-module chain map i : C(R)—C"(R) defined by inclusion is
chain homotopic to 0, with a chain homotopy h : ¢ >~ 0 defined by
h: CR)y = Z[z,27 Y] — CYR), = Z[[z,27Y] ;
00 ) 00 k
Z a;z) — Z ( Z a;)2" .
j=—o00 k=—00 j=—o00
As Z-module chain complexes C(R) ~ C(R),1 ~ Z, and
e(C(R)) = €(i)sp1 ~ CR)®CY(R)uy1 ~ C(e(R)) ~ ZDZ,

in accordance with e(R) =~ S°. The locally Z-finite cellular chain complex
of R is

le’Z(R) _ C(R) . Z[Z,Z_l] : Z[Z,Z‘l]}

so that i : C(R)—C"/7(R) is an isomorphism and
Ce(SY) = €(i: CR)—CH(R))uy1 =~ 0,

in accordance with e(S!) = 0. o

If W is a forward tame strongly locally finite CW complex which is path-
connected at oo there exists a cofinite subcomplex V' C W such that the
inclusion V——W extends to a proper map ¢ : V x [0,00)—W. The locally
finite Z[r]-module chain complex CY7(V) is finitely dominated by 7.20,
with 7 = 71 (e(W)), and V the cover of V induced from the universal cover

e(W) of e(W) by the adjoint map q: V—e(W).

Definition 10.8 The locally finite projective class at oo of a forward tame
strongly locally finite C'W complex W which is path-connected at oo is

W = [CY7(V)] € Ko(zZ[n])

with m = m1(e(W)), V. C W any cofinite subcomplex such that the inclusion
V—W extends to a proper map ¢ : V x [0,00)—W. o

Proposition 10.9 Let W be a forward tame strongly locally finite CW
complex which is path-connected at co, and let m = w1 (e(W)).

(i) If V. C W is a cofinite subcomplex such that w1 (V') = m then the locally
finite Z[r]-module chain complex CY'™ (V) is finitely dominated, and

WL = [CY7(V)] € Ko(z[r))
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with V the universal cover of V.
(ii) If W is both forward and reverse tame then the end space e(W) is
finitely dominated, with finiteness obstruction

[e(W)] = Wl — W] € Ko(Z[n]) -

(iii) If W is forward collared then [W]¥ =0 € Ko(z[x]).
Proof (i) Let V/ C V be a cofinite subcomplex such that the inclusion
V/—W extends to a proper map ¢’ : V' x [0,00)—W. Let V' be the
cover of V' induced from the universal cover e(W') of e(W) by the adjoint
map ¢’ : V'—e(W). We are assuming that identification 71(V) = 7 is
such that

iv = qp : m(V) — m((V) = meW)) = 7,

so that there exists a lift of i to an inclusion 7 : V/—V. Now CM-™ (V') is
a finitely dominated Z[r]-module chain complex such that

W = [CYm(V')] € Ko(zlx) -

The finite domination of C*/7(V) and the identity [CY™ (V)] = [CH7 (V)]
follow from the short exact sequence of Z[r|-module chain complexes

0 — CY™(V) — c¥™(V) — c¥™(V, V') — 0

with CY™(V, V') = C(V, V') a finite f.g. free Z[r]-module chain complex.
(ii) Apply 10.5 (i) to a cofinite subcomplex V' C W such that m; (V) =
m1(e(W)).
(iii) Let U C W be a closed cocompact AN R subspace with an extension
of the identity U x {0}—U to a proper map U x [0,00)—U and let
V C U be a cofinite subcomplex of W. Let © = w1 (e(W)), and let U,V be

the covers of U,V induced from the universal cover e(W) of e(W). By 7.5
S(U,V) = SY™U,V) ~ SY™(U) & ST (V).

with S ((7, 17) chain homotopy finite. The identity chain map S/ 7r((7)—>

S (U) is chain homotopic to 0, so that there are defined Z[r]-module
chain equivalences

SUTU) ~ 0, CY (V) ~ SYT(V) ~ SU,V)ep1
and

WL = [cY™(V)] = ~[SU,V)] = 0 € Ko(z[x]) . o

The locally finite projective class [W]4 € Ko(Z[r1(e(W))]) of a forward
tame C'W complex W is thus an obstruction to W being forward collared.
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For a manifold forward and reverse tameness are Poincaré dual to each
other, as was first established by Quinn [116]. We give a proof in 10.13
below. We begin with a simple geometric way to detect forward tameness
(10.10). This is combined with the Eventual Hurewicz Theorem (10.11) to
give a homological criterion for forward tameness (10.12).

Lemma 10.10 Let W be a o-compact space. If for every cocompact subspace
U C W there exists a cocompact subspace V.= V(U) C U such that for
every cocompact subspace X C V there exists a cocompact subspace Y =
Y(U,X)C X so that V deforms in U to X rel Y (i.e. there is a homotopy
h :V x I—U such that hg = inclusion : V—U, hi(V) C X and hh|Y =
inclusion : Y—U for each t € I), then W is forward tame.

Proof Let W DO Wy 2 Wi D ... be closed cocompact subspaces with
A W; = 0. Define closed cocompact subspaces V; € W, j = 0,1,2,...,
inductively as follows. Let Vp = V(W). Assume j > 0 and that Vj O V; C
.CVipand V; C W, fori=0,1,...,5 — 1. Let V; = V(W; N V;_1). For
each j =0,1,2,... let X; = Vj41 and Y; = Y(V,_1, X;). By hypothesis V;
deforms in W; NV;_1 to X rel Y;. That is, for each j = 0,1,2,... thereis a
homotopy k7 : V; x I—W;NV;_1 such that kY, = inclusion : V;—W,;NV;_1,
hi(V;) € X; = Vjy1 and h]|Y; = inclusion : Y;— W, NV,_; for all t € I.
Define

h: Vox[0,00) — W (,t) — B (W] oh] o+ o hl(x),t - j)
(reVy,j<t<j+1).
To see that h is a proper homotopy let K C W be compact. There exists
i > 0 such that K NV; = (. Thus h=1(K) = (h|(Vo x [0,i + 1])) "1 (K).

Since each h; fixes the cocompact subspace Y; C W, it follows that each h;
is proper and that h|(Vp x [0,7 + 1]) is proper. u]

The following Eventual Hurewicz Theorem is a relative version of a result
from Ferry [54,p.570]. A proof of the relative version, in a more general
context, can be found in Quinn [114, p. 302].

Lemma 10.11 For each integer n > 0 there exists an integer k, > 0
such that the following holds. Let W be an n-dimensional locally finite CW
complex for which there are sequences of cofinite subcomplexes
W2OA DA DA DA3D ... D A,
W2OBy2B12By2B32...2 By,

with B; C Aj for each j. Suppose that Ay has a regular cover Ay with

group of covering translations ™ and that gj, éj denote the reqular covers
of Aj, B; induced by the inclusions Aj— Ay and Bj—Aqg for 0 < j < k,.
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Suppose the inclusions induce 0 morphisms in m;

0: m(4)) — m(4j—1) , 0 : m(Bj) — m(Bj-1)

and 0 morphisms in homology

0 : HT(AVJ‘,EJ‘) — T‘(fz{j—17§j—1) (7‘ S TL) .
Then Ay, deforms in Ao to By rel By, i.e. there is a homotopy h : Ay, %
I— Ay such that hg = inclusion : Ay, — Ag, h1(Ax,) C By and hy| By, =
inclusion : By, — Ao for each t € I. o

Lemma 10.12 Let W be an n-dimensional locally finite CW complex with
stable w1 at co and let W 2 Wy O Wy D ... be a sequence of cofinite
subcomplexes such that \W; = 0 and the inclusion induced morphisms

J

[ f [
7T1(W0) <;0 7T1(W1) <71 7T1(W2) <—2

induce isomorphisms

1R

7 = im(fy) — im(fi) — im(fo) — ... .

Suppose that for every cocompact subspace U C Wy there exists a cocompact
subspace V- C U such that for every cocompact subspace X C 'V there exists
a cocompact subspace Y C X so that the inclusion induces 0 morphisms in
homology

0: H(V,Y) — H,(U,X) (r<n)

with U, V, )~(, Y the reqular covers induced from the universal cover W{] — Wy
by inclusion. Then W is forward tame.
Proof First note that the inclusions induce 0 morphisms

~ 0 —~ 0 —~ 0
{0} = 7T1(W0) A— 7r1(W1) — 7T1(W2) — ...

In order to verify the hypothesis of 10.10, let U C W be an arbitrary cocom-
pact subspace and assume that U C Wj. By assumption and induction there
exists a sequence of cocompact subspaces U D Vo D Vi D VoD ... DV,
(with &, given by 10.11) such that for every cocompact subspace X C V4,
there exists a cocompact subspace Y C X such that the inclusion induces
the 0 morphism in homology

0: H(V;,Y) — H.(U,X) (r<n)

with the covers induced from I/AVB—J/VO by inclusion. Choose integers 79 <
11 < ... <1, such that Wi, €V foreach j =0,1,2,...,k,. Then for every
cocompact subspace X C Wj, ~ there exists a cocompact subspace ¥ C X
such that the inclusion induces 0 morphisms in homology

0 : H,(W;,,Y) — H(U,X) (r<n).
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Let V. =W;, andlet X CV be an arbitrary cocompact subspace. Again by
assumption and induction there exists a sequence of cocompact subspaces

XO2Yy2Y12Y, D ... DY,
such that inclusion induces 0 morphisms in homology
0 : H.(V;,Y;) — H.(U,X) (r<n).

Choose integers ig, < lp < I3 < ... < I, such that W;, CY; for each
7=0,1,2,...,k,. Then inclusion induces 0 morphisms in homology

0 : H.(V,W,) — H.(U,X) (r<n).

Let Y = W, . It follows from 10.11 that V' deforms in U to X rel Y so
that W is forward tame by 10.10. O

Proposition 10.13 Let (W,0W) be an open n-dimensional manifold with
compact boundary. W is forward tame with finitely presented mi(e(W)) if
and only if W is reverse mi-tame.

Proof Suppose first that W is forward tame and 71 (e(W)) is finitely pre-
sented. According to 7.10 (i) W has stable 71 at oo and 71 (e(W)) = #np°(W).
By 7.5 (i) there exists a closed cocompact subspace V' C W such that the
natural morphism

T = m(e(W)) = 77 (W) — m(V)

is split injective. Since it suffices to prove that V is reverse tame, we assume
that m = m1(e(W))——m (W) is split injective. All covers below are induced
from the universal cover W ——W. By 9.18 it suffices to prove that e(W) is
finitely dominated. Since e(W') has the homotopy type of a CW complex
(7.6), it suffices to show that S(e(WV)) is a finitely dominated Z[r]-module
chain complex (6.9 (i)). According to 7.10 (iv) there is defined a Z[r]-module

chain equivalence
S(e(W)) ~ e(S(W)—SY™(W))r1 .

Since S'-7(W) is finitely dominated by 7.5 (iii), it suffices to prove that
S(W) is a finitely dominated Z[r]-module chain complex. The Z[x]-module
chain complex S(W) is finitely dominated if and only if the n-dual Z[r]-
module chain complex S(W)"* = Homg (S (W), Z[x])n— is finitely dom-
inated. Now (W, 0W) is an open n-dimensional Poincaré pair, so there is
a Z[r]-module chain equivalence S(W)"* ~ SU7(W oW). Use 7.5 (iii)
again to conclude that S ’T(W) is finitely dominated, from which it follows
that S7(W,0W) is finitely dominated.

Conversely, suppose W is reverse mi-tame. In order to apply 10.12, let
W D Wy D Wi D...beasin 10.12. Since it suffices to prove that Wy is for-
ward tame, we assume that W = W; and all covers below are induced from
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the universal cover W ——W. Since W is reverse tame, for every cocompact
subspace U C W there exists a cocompact subspace V' C U such that U is
dominated by U \ V, by a homotopy h : W x [—W as in 8.1. For every
cocompact subspace X C V there exists a cocompact subspace Y C X such
that (W \ X) x I) € W\ Y. In particular, the inclusion induced chain
map S(W\ X, W\ U)—S(W \ Y, W \ V) is chain homotopic to 0. Now
Alexander duahty gives a commutative diagram

SW\X, W\U) SW\Y, W\V)

~ ~

S(U, X)"* S(V,Y)"*

Since the top horizontal arrow is chain homotopic to 0, so is the bottom
arrow. Taking n-duals gives that S(V,Y)—S(U, X) is chain homotopic
to 0. Thus for every cocompact subspace U C W there exists a cocompact
subspace V' C U such that for every cocompact subspace X C V' there
exists a cocompact subspace Y C X such that S(V,Y)—S(U, X) is chain
homotopic to 0. That W is forward tame now follows from 10.12, since
the fundamental group of a finitely dominated space is finitely presented
(6.8 (i)). Finally, by 7.5 (i) e(WW) is dominated by a closed AN R cocompact
subspace V. C W. By 8.7 V is finitely dominated. Hence 71 (e(W)) is finitely
presented. ]

Remark 10.14 (i) Quinn gave a proof of 10.13 in [116] but without taking
into account the fundamental group conditions. However, these conditions
are required by Freedman and Quinn [60, p. 214]. The proof of the first half
of 10.13 differs from the proof in [116].

(ii) In Chapter 23 we shall show that for a connected finite CW complex
X with a connected infinite cyclic cover X and 7 = m1(X) the following
conditions are equivalent :

(a) X T is forward tame,

(b) the natural map e(7+)—>y is a homotopy equivalence,

(¢) the locally m-finite cellular Z[r]-module chain complex C7(X *) is
finitely dominated, allowing the definition of the locally finite pro-
jective class

XY = [CY™(X )] € Ko(2[r))

(d) X is reverse tame,
(e) X is finitely dominated,
(f) the cellular Z[r]-module chain complex C(X ~) is finitely dominated,
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allowing the definition of the projective class

[X7] = [C(X7)] € Ko(z[n]) .

If these conditions are satisfied there is defined a Z[r]-module chain equiv-
alence

CH™(X+) ~ (X7, X NX )y

and the projective classes are such that

XMW +[X7] = XTnX ] e Ko(zn]) .

(iii) In Chapter 23 we shall use the infinite simple homotopy theory of
Chapter 11 to also prove that for X, X satisfying the conditions of (ii)
the following conditions are equivalent :

(a) X is infinite simple homotopy equivalent to an infinite cyclic cover W

__of a finite CW complex W with W forward collared, o
(b) X is infinite simple homotopy equivalent to an infinite cyclic cover W

of a finite C/LW complex W with W reverse collared,
(c) [X 11 =0 € Ko(z[n),
(d) [X ] =0 € Ko(z[r]).

(iv) If W is a forward tame strongly locally finite CW complex which is
path-connected at oo there may not exist a cofinite subcomplex V' C W
with 71 (V) = m1(e(W)) as in 10.9 (i) — the CW complex W of Example
13.16 is a counterexample. m|

Corollary 10.15 If (W, 0W) is a reverse w1 -tame open n-dimensional man-
ifold with compact boundary then the locally finite projective class at oo is
the Poincaré dual of the projective class at oo :

WK = (=)' W] € Ko(Zlm (e(W)))) -

Proof W is forward tame, by 10.13. There exists a cocompact closed neigh-
bourhood W/ C W such that (W', dW’) is an open n-dimensional manifold
with compact boundary and

m(W') = m(e(W') = m(e(W)) (= =, say),
W] = W = W , WY = WY = WL € Ko(2Zlx) .

Applying 10.5 (ii) to the forward and reverse tame open n-dimensional ge-
ometric Poincaré pair (W', 0W’) we obtain

WL = W = ("W = (=)' W]k € Ko(z[n]) . o
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Infinite torsion

The ‘infinite Whitehead group’ §(W) of Siebenmann [144] is defined geo-
metrically for any locally finite CW complex W, and is denoted here by
Wh! (W). A proper homotopy equivalence f : V——W of locally finite
CW complexes has an ‘infinite torsion’ 7!/ (f) € WhY (W), which for for-
ward tame V, W has image [W]so — [V]oo € Ko(Z[7°(W)]). The projective
class [W] € Ko(Z[r (W)]) of a finitely dominated space W is a homotopy
invariant, whereas the projective class at 0o [W]e € Ko(Z[x5°(W)]) of a
reverse mi-tame space W is only an infinite simple homotopy invariant. In
11.14 and 11.15 we prove that if a strongly locally finite CW complex W
is forward (resp. reverse) tame, then W x S is infinite simple homotopy
equivalent to a forward (resp. reverse) collared CW complex, analogous to
Siebenmann’s result that if W is a manifold of dimension n > 5 with one
tame end, then the end of W x S! is collared.

For a forward tame W we identify Wh (W) with the algebraically defined
relative Whitehead group in the exact sequence

Wh(m(e(W))) —— Wh(m (W) — WhH (W)

— Ko(Z[m (e(W))]) — Ko(Z[m (W)

with p : e(W)—W the projection (11.6). The infinite torsion 7 (f) €
Whif (W) of a proper homotopy equivalence f : V—W of forward tame
CW complexes has image

()] = WL VI € Ko(Zlm (e(W)))) .

The locally finite projective class [W]4 € Ko(Z[r (W)]) of a forward tame
CW complex W is an invariant of proper homotopy type of W, whereas
the locally finite projective class at oo [W]4 € Ko(Z[m(e(W))]) is only an
infinite simple homotopy invariant.

122



11. Infinite torsion 123

Definition 11.1 (i) The infinite Whitehead group Wh'/ (W) of a locally
finite CW complex W is the geometrically defined group §(W) of Sieben-
mann [144]

Wh (W) = s(W) .

(ii) The infinite torsion of a proper homotopy equivalence f : V—W of
locally finite CW complexes is the element defined in [144]

() e wh(w)

and f is an infinite simple homotopy equivalence if T (f) = 0. i

Remark 11.2 (i) In dealing with infinite torsion, it is necessary to restrict
attention to strongly locally finite CW complexes. The need for this re-
striction is discussed in Chapter 1 of Farrell and Wagoner [52].

(ii) Chapman [22,23] proved that a proper homotopy equivalence f :
V—W of strongly locally finite CW complexes is an infinite simple ho-
motopy equivalence if and only if f x idg : V x Q—W x Q is properly
homotopic to a homeomorphism, with @ the Hilbert cube. Hilbert cube
manifold theory then allows the extension of proper simple homotopy the-
ory to ANR’s: a proper homotopy equivalence f : V—W of ANR’s is
an infinite simple homotopy equivalence if f x idg : V x Q—W x @Q is
properly homotopic to a homeomorphism. This agrees with the theory of
Siebenmann [144] for strongly locally finite CTW complexes. o

Proposition 11.3 (Siebenmann [144], Farrell and Wagoner [52]) (i) A proper
homotopy equivalence f : V—W of locally finite CW complexes is a proper
simple homotopy equivalence if and only if f is properly homotopic to a fi-
nite sequence of proper expansions and collapses.

(ii) The infinite Whitehead group of a strongly locally finite CW complex
W fits into an exact sequence

Wht! (W) — gnffo(Z[m(Wj)]) — Ko(z[m (W)

for a sequence W O Wy D Wy D ... of cofinite subcomplexes such that
AW, = 0. The subgroup
J

Wh (W) = ker(Wh! (W) — lim Ko (Z[m (W))]) € Wh' (W)
J
fits into an exact sequence
lim Wh(my (W) — Wh(m (W) — Why (W)
J
— lim' Wh(m(W;)) — 0.
J
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(iii) The infinite torsion 7 (f) € Wh' (W) of a proper homotopy equiv-

alence f : V—W of locally finite CW complexes has image
[FI(N] = [C(f; : C(V)—C(W;))] € lim Ko(Z[m (W;)])
J

with G(fj) the finitely dominated Z[mi(W;)]-module chain complex defined
by the algebraic mapping cone of the chain map induced by a m (W;)-
equivariant lift f; : V;—W; of fj = f| : V; = f~H{(W;)—W;.

(iv) If f : V—W s a proper homotopy equivalence of reverse mi-tame

CW complezes then it is possible to choose each W; C W and V; = f~H(W})
C V to be finitely dominated, and

()] = W3] = V5] € lim Ko(Z[m (W5)])
J
with image [Wleo — [V]se € Ko(Z[7°(W)]).
(v) (Proper s-cobordism theorem) The infinite torsion of a proper h-
cobordism (W; M, M'") of open n-dimensional manifolds
s MMy = (M —W) e WhH (W)

is such that T (W; M, M') = 0 if (and for n > 6 only if) (W;M,M’) is
homeomorphic rel M to M x (I;{0},{1}). o

Corollary 11.4 The projective class [W] € Ko(Z[m1(W)]) of a reverse -
tame CW complex W is an invariant of the proper homotopy type of W,
whereas the projective class at 0o [Weo € Ko(Z[m°(W)]) is only an invari-
ant of the infinite simple homotopy type. i

Example 11.5 (i) If K is a finite CW complex with 7 (K) = 7 then
e(K x R™) ~ K x S™ 1 and

Ko(zZ[n]) ifm=1,
ker(Ko(2[r x 2])— Ko(2[]))

— K_i(z[x]) & Nil_(z[r]) ® Nil_1(Z[r]) ifm=2,
0 ifm>3

Wh'Y (K xR™) =

as in Siebenmann [144], with K_q, Nil_; the lower K- and ﬁl—groups of
Bass [4] such that

Ko(z[n][z,27])) = Ko(Z[x]) ® K_1(Z[r]) & Nil_(Z[r]) & Nil_, (z[x]) .
(ii) The infinite transfer map

Wh(n x Z) — Wh'(K xR) = Ky(Z[x]) ;

(f: L—K x 8t — 7Y (f: I—K xR) = [f+]
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(with K, 7 as in (i)) is given algebraically by the split surjection of Bass [4]

Wh(r x Z) — Ko(Z[r]) ;

(f: Mz, 21— Mlz,27Y]) — [MT N fNM)] - [MTn2NM]
for any N > 0 so large that f(zV M) C M™. See 11.8 below for the appli-
cation of the calculation Wh'/ (K xR) = Ky(Z[x]) (in the case Ko(Z[r]) # 0)
to the construction of an infinite CW complex W which is proper homo-

topy equivalent to the reverse collared CW complex K x R, such that W is
reverse mi-tame but not reverse collared. o

A group morphism f : 7—p determines a (Z[p], Z[r])-bimodule structure

on the group ring Z[p| by
Zlp] x Zlp] x Z[w] — Z[p] ; (a,x,b) — axf(b) .
This is used to define a functor
[+ {Z[r]-modules} — {Z[p]-modules} ; M — Z[p] @z M
inducing morphisms
feo o Ko(zlx]) — Ko(Zlpl) , f. @ Wh(x) — Wh(p) .

The relative Whitehead group of f : m—p is the abelian group of equivalence
classes of triples (P, @, g) with P a f.g. projective Z[r]-module, @ a based

f.g. free Z[p]-module, and g : Z[p] ®zx P = Q a Z[p]-module isomorphism,
subject to the equivalence relation :

(P,Q,g) ~ (P',Q,¢) if there exists a Z[r]-module isomorphism
h:P®zr]" = P'ezr” withr((¢d @ 1)(1@h)(g® 1)) =0€ Wh(p).
As usual, addition is by

[P1, Q1 91] + [P2; Q2,92] = [PL® P2, Q1@ Q2,01 @ g2] € Wh(S) -

The relative Whitehead group fits into an exact sequence

Whin) 2 Wh(p) — Whif) — Ro(zln]) 1> Ro(zlp)

with
Wh(f) — Ko(Z[x]) ; (P,Q,9) — [P] .
The involution on the group ring
Zlr| — Zlr] ; a = ang —a = ang_l

gem gem

determines an involution

{f.g. projective Z[r]-modules} — {f.g. projective Z[r]-modules} ;

P — P* = Homy (P, Z[r])



126 Ends of complexes
with
Zlr] x P* — P*; (a,u) — (z — u(z)a) .
The corresponding duality involutions on the algebraic K-groups
* 1 Ko(Z[n]) — Ko(z[r)) ; [P] — [P]" = [P7],
* 1 Whr) — Wh(r) ; 7(a) — 7()" = 7(a”)
extend to a duality involution on the relative Whitehead group
« 0 Wh(f) — Wh(f): (P,Q,9) — (P*,Q",(¢")7") .
See Ranicki [123] for the definition of the relative Whitehead invariant
[C, D, ¢] € Wh(f)

of a Z[p]-module chain equivalence ¢ : Z[p] ®7(r C—D for a finitely domi-
nated Z[r]-module chain complex C' and a finite based f.g. free Z[p]-module
chain complex D, with image [C] € K((Z[n]), and such that

[C,D, 4" = [C*,D",(¢")"'] € Wh({) .

Proposition 11.6 (i) The infinite Whitehead group of a forward tame lo-
cally finite CW complex W is the relative Whitehead group

WhI (W) = Wh(p. : m(e(W))—m (W)
which fits into the exact sequence
Whim(e(W))) — Whm (W) — Whi (W)
Px

— Ko(Z[mi(e(W))]) — Ko(Z[ri(W)]) .

(ii) The infinite torsion T (f) € Wh' (W) of a proper homotopy equiva-
lence f: V—W of forward tame locally finite CW complexes has image

[N = WL - VI
€ ker(p. : Ko(Z[m (e(W))])— Ko(Zm (W) -

(iii) If f : V—W is a proper homotopy equivalence of strongly locally
finite CW complexes which are forward and reverse tame then

e(V)] = [Vle — VI
= Wl — [WI = [e(W)] € Ko(Z[r1(e(W))]) ,

and
) = WL =IVIL = W — Ve

€ ker(p. : Ko(Z[m (e(W))])— Ko(Zlm (W) -
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Proof (i) As W is forward tame it is possible to choose a m-stable se-
quence W O W; D Wy D ... in 11.3. By 2.21 (iv) the stable inverse
system {7 (W)} with inverse limit 71 (e(7/)) induces a stable inverse sys-
tem {Wh(m(W;))} with inverse limit Wh(m(e(W))), and similarly for Ko,
so that

m Wh(m (W;)) = Whim(e(W))) ,
én%o(Z[ﬂ'ﬂWj)]) = Ko(z[mi(e(W))]) ,

éﬂ Wh(m (W;)) = 0,

v;hgf(W) = coker(ps : Wh(m(e(W)))—Wh(m (W)))

= ker(Wh' (W)—Ko(Z[x (W)))) .

(ii) Let V,W be the universal covers of V, W, and let f : V—W be

a w1 (W)-equivariant lift of f. The algebraic mapping cone (B(f) is a con-
tractible Z[m (WW')]-module chain complex. Let 7 = m(e(W)), and let e(V),
e(W) be the universal covers of e(V'), e(WW). Choose a cofinite subcomplex
W1 C W such that m (W) =7, let

fi=fl:wv= 1) —w

and let fl : Vlin be a m-equivariant lift of f; with W the universal
cover of Wy, and V1 the pullback cover of Vi. The homotopy equivalence
e(f1) : e(Vi)—e(W7) induces a Z[r]-module chain equivalence

S(e(V)) = C™™(Vy) = e(C(V1)—CP™ (V1)1

— S(e(W)) = C®"(W1) = e(C(W1)—CY™(W1))it
so that the inclusion
C(f, : C(V1)—C(W1)) — e(f, : CYH™(Vy)—CHm(W))

is also a Z[r]-module chain equivalence. The locally finite cellular Z[r]-
module chain complexes CY/7(V1), O™ (W) are finitely dominated (by
7.20), and hence so is €(f; : C(V1)—C(W)). The algebraic mapping
cone C(fy) is a finitely dominated Z[r]-module chain complex such that
there is defined a short exact sequence of Z[m (W')]-module chain complexes

0 — Z[m1(W)] @gpq) €(f1) — €(f) — D — 0
with
D = e(f:C(V, Vi) —C(W, W)
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a finite based f.g. free Z[m;(W)]-module chain complex. The cellular struc-
ture thus determines a finite structure on the chain complex Z[m (W)] @z

e(f,), representing an element 7 (f) € Wh'/ (W) with image
I = [e(F)] = WY = [VIY € Ko(z[n]) -

(iii) The induced map e(f) : e(V)—e(W) is a homotopy equivalence by
9.4. o

Corollary 11.7 (i) The locally finite projective class [W]' € Ko(Z[m (W)])
of a forward tame CW complex W is an invariant of the proper homo-
topy type of W, whereas the locally finite projective class at oo [W]Y €
Ko(Z[r1(e(W))]) is only an invariant of the infinite simple homotopy type.
(ii) The property of being forward collared is not a proper homotopy in-
variant.
Proof (i) If f : V—W is a proper homotopy equivalence then the Wall
finiteness obstruction is preserved,

W] = [V] € Ko(z[m(W)])
so that
WY — [V = (W] = [V] = 0€ Ko(Z[m(W)),

Wl = Ve = WK~ [VI{
= [T € kex(p. : Ko(Z[mi(e(W))])—Ko(Z[m1 (W))]))

is an invariant of the infinite torsion 7 (f) € Wh/ (W).

(ii) If W is forward collared then [W]Y = 0 Ko(Z[x1(e(W))]) by 10.9 (iii).
For every element 7/ € Wh! (W) there exists a proper homotopy equiva-
lence f : V—W with 7!/ (f) = 7!/, so that V is forward tame (9.6) with
VIH = —[71]. If [/] # 0 € Ko(Z[r1(e(W))]) then V cannot be forward
collared. o

Example 11.8 Let K be a connected finite CW complex with a fun-
damental group m(K) = 7 such that Ko(Z[r]) # 0 (e.g. ©™ = Q(8),
as in 6.4 (i)). As in the proof of 6.8 (iii) use a Z[r|-module projection
p = p? : Z[r]"—Z[x]" with P = im(p) such that [P] # 0 € Ko(Z[r]) to
construct for any N > 2 a finite CW complex

L = (KxS'Vv\/SY)U_ppap JDV

such that the projection defines a homotopy equivalence

f:L— Kx&8!
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with torsion
m(f) = ()Vr(=zp+1—p:2n][z, 27 —2[x][z,27']")
= ()N7(=2: Plz, 21— Plz,271))
£ 0 € im(Ko(z[x])) —Wh(r x 7)) .

Asin 11.5 (ii) the lift of f to the infinite cyclic covers is a proper homotopy
equivalence

f: L= f*(KxR)inR
with infinite torsion
M) =L = LN =L =LY
= [P] # 0 Wh'(K xR) = Ky(z[r]) .

The infinite CW complex K xR (with two ends) is both forward and reverse
collared, while the proper homotopy equivalent infinite CW complex L is
both forward and reverse tame but is neither forward nor reverse collared.

O

Proposition 11.9 Let (W,0W) be an open n-dimensional geometric Poin-
caré pair such that W is both forward and reverse tame.
(i) (W,0W) has an infinite torsion

W) = ()W) e W (W) = Whip. : m(e(W))—m1(W))
with image
[T W)] = Wl + (=)™ H(IWIL)*
= WL+ ()" W%
€ ker(p. : Ko(Z[m1 (e(W))]) —Ko(Z[m (W)])) -

(ii) If there exists a Poincaré transverse map (W,0W)—([0,00),{0})
then

(W) € im(Wh(m (W) —Wh (W)
= ker(WhH (W)—Ko(Z[m (e(W))])) ,
W = (2" W]k € Ro(@lm (e(W))]) |

the end space e(W) is a finitely dominated (n — 1)-dimensional geometric
Poincaré space, and (W;0W,e(W)) is a finitely dominated n-dimensional
geometric Poincaré cobordism with

[e(W)] = [W]o — W

o0

= [Wlae + (=)" W] € Ko(Z[mi(e(W))]) .
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Proof (i) Let W be the universal cover of W. The Z[r1(W)]-module chain
complex

C = e(W]n—: YW W ow)**—C(W))

is contractible. Write m = m(e(W)). Let V' C W be a cofinite subcomplex
such that 71 (V) = 7, and let V' be the universal cover of V. Let

oV = VAcd(W\V),
and let
V]e HY (v, 0V) = HY(W,c(W\V))
be the image of [W] € HY (W,0W). The Z[r]-module chain complex
D = ¢([V]n—:CY™V, oV —C(V))

is finitely dominated, and there is defined a short exact sequence of Z[m1 (W)]-
module chain complexes

0 — Z[m(W)] @z D — C — E — 0
with F finite based f.g. free. The corresponding finite structure (F,¢) on
Z[m1(W)] ®zjx) D determines the infinite torsion of W
(W) = (D,F,¢) € Wh (W) = Wh(p.)
with image
W) = D] = V]+ ()" (VY
= Wleo + (=) H(WIE)" € Ko(z[n]) .
(ii) By Poincaré transversality (V,0V) in (i) may be taken to be an open

n-dimensional geometric Poincaré pair, i.e. such that D ~ 0. Apply (i) to
(V,0V), with m (V) = m(e(V)) = 7. o

Example 11.10 A forward and reverse tame open n-dimensional manifold
(W, 0W) with a compact boundary OW is an open n-dimensional geomet-
ric Poincaré pair with a Poincaré transverse map (W, 0W)—(|0, 00), {0}),
such that

W)y =0e Wh (W),
WL = (=)"[W]5 € Ko(Zlmi(e(W))]) (10.15) .

In particular, this applies to the open n-dimensional manifold with compact
boundary and a reverse mi-tame end constructed by Siebenmann [140] with
prescribed fundamental group at oo 7{°(W) and prescribed projective class

at 0o [Wso € Ko(Z[x5°(W)]) (10.2 (iii)). o
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Remark 11.11 (i) Given a locally finite infinite CW complex W let LY4(W)
be the proper surgery obstruction groups of Maumary [92] and Taylor [160],
for surgery on proper normal maps of open manifolds up to proper homotopy
equivalence for ¢ = h (simple for ¢ = s). The proper L-groups are related
to the original surgery obstruction groups Li(Z[r]) (¢ = s,h) of Wall [165]
and the projective L-groups L% (Z[r]) of Novikov [105] and Ranicki [117] by
the L-theory analogues of the gnfli_ml exact sequence for Wh'/ (W) of 11.3,
as related in Pedersen and Ranicki [109]. For forward tame W it is possible
to express Lif’q(W) as relative L-groups of p, : Z[mi(e(W))]—Z[m (W)],
by analogy with 11.6, as follows. Let
II = meW)) , = =m(W).

The *-invariant subgroups

Iy = im(WhH (W)— Ko (z[1]))

— ker(p, : Ko(2IIT])—Ko(Z[r)) € Ko(zm)) ,
J1 = im(ps : Wh(Il)—Wh(n))

)
= ker(Wh(m)—WhY (W)) € Wh(n)
are such that there is defined a short exact sequence

0 — Wh(n)/J, — WhY (W) — Iy — 0.

The groups LY (W) for forward tame W fit into the commutative diagram
with exact rows and columns

— L))~ L (Z[r]) ————— LS(W) ——— L

= Lhozm) —2— L"Z[x]) —— LHP(W) — Lo
= H™(Zo; Iy) — H™(Zo; Wh(z) ) J1) = H*(Zo; WhH (W) = H"H(Z; Ig) > . ..

zm) L L7 (Z[x]) ——— LS (W) ——— Lh_(z[1]) — . ..

n—1

. LP

n—1
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(ii) Let W = K x R™ with K a finite CW complex, so that W is forward
collared with e(K x R™) ~ K x S™~!. The proper surgery obstruction
groups of K x R™ are given by

Ly y(z[x]) ifm=1,

LiP(K xR™) = $ b o(z[x]) ifm=2,
0 ifm>3,
L

fL—I(Z[ﬂ-]) lf m = 1 9
@) itm=2,
ifm>3

LMK x'™) =

)

with 7 = 71 (K). The lower L-groups LY of Ranicki [118] are such that
Lhzflz=7"]) = Dh@ln) @ L, Y (2lx)) |

n—1

and there is defined a Rothenberg-type exact sequence

. — LB(2[n]) — L (2[r]) — H™(Z2; K_1(2[n]))

— Lﬁ_l(Z[W]) — ...
The infinite transfer maps
L(zln)[z,271]) — LPUK xR) = Ly, _y(2[x]) ;

o ((f:0) : M—X) — o ((£.0) : M—X) ((g,;r) = (s, h), (h,p))
are given algebraically by the projections in the splittings of [118]
Li(2[n)[z,27Y) = Li(Z[x]) @ Ly,_y(Z[x]) . o

n—1

We conclude this chapter with the applications of infinite simple homotopy
theory to the detection of reverse and forward collaring. In 11.13 we prove
that a locally finite CW complex W is infinite simple homotopy equivalent
to a reverse collared CW complex if and only if every cofinite subcomplex of
W is homotopy equivalent to a finite CW complex. The proof will require
the following technical result.

Lemma 11.12 Let W be a strongly locally finite CW complex with a cofi-
nite subcomplex V.C W homotopy equivalent to a finite CW complex. Let
A C W be a finite subcomplex with W\V C A. Then there exist a cofi-
nite subcomplex U C V with ANU = 0, a finite subcomplex B C V with
W\(AUU) C B, a finite CW complex B" with BN (AUU) =B Nn(AuUU)
such that B, B' are simple homotopy equivalent rel BN (AUU), and a finite
subcompler K C W' = AUB'UU with A C K C AU B’ such that the
inclusion K—W' is a homotopy equivalence.

Proof Let C = ANV and let L be a finite CW complex homotopy equiv-
alent to V. For some large n, we may assume that L is a subcomplex of
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V' x D™ and that inclusion : L—V x D™ is a homotopy equivalence (i.e.
L is a strong deformation retract of V' x D™). Let r : identity ~ 7 :
V x D"—V x D™ be a cellular homotopy such that (V' x D") C L and
r¢|L = inclusion : L—V x D" for each t € I. Let U C V be a cofinite
subcomplex such that

r(CxD"xI)N(UxD") =0 = LN(UxD").

Let B C W be a finite subcomplex such that ANB = C and W\ (AUU) C B.
The maps

g: C— BxD";z— (z,0),
g : C — BxD"; x— r(x,0)

are homotopic so that the mapping cylinders M(g), M(g') are simple homo-
topy equivalent rel C'U (B x D™). Let B’ = M(¢') with B'N A = C (the
base of M(g)) and B'NU = (BNU) x {0} C B x D™. Since B is simple
homotopy equivalent to M(g) rel BN(AUU), it follows that B, B” are simple
homotopy equivalent rel BN (AUU). The map

J" : C — L; z— ri(z,0)

is such that M(¢"”) Ur, (B x D™) = M(¢'). Thus, the finite subcomplex
K=AUM(¢") of W =AU B UU is such that A C K C AU B’ and the
strong deformation retraction of V' x D" to L induces a strong deformation
retraction of W' to K. o

Proposition 11.13 For a strongly locally finite CW complex W the follow-
ing conditions are equivalent :

(i) W is infinite simple homotopy equivalent to a reverse collared CW
complez.
(ii) Every cofinite subcomplex of W' is infinite simple homotopy equiva-
lent to a reverse collared CW complex.
(iii) Every cofinite subcomplex of W is homotopy equivalent to a finite

CW complex.

Proof (i) = (ii) If W is infinite simple homotopy equivalent to the reverse
collared CW complex W’ and V' C W is a cofinite subcomplex, then V is
infinite simple homotopy equivalent to some cofinite subcomplex V' C W',
Since cofinite subcomplexes of reverse collared C'W complexes are reverse
collared, V' is reverse collared.

(ii) = (iii) Reverse collared CW complexes are homotopy equivalent to
finite CW complexes.

(iii) = (i) We shall use 11.12 to construct:
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(a) a sequence A; C Ay C Az C ... of finite subcomplexes of W with
W= U Aj ’
j=1
(b) a sequence U; D Us D Us D ... of cofinite subcomplexes of W,
(c) a sequence By, By, Bs, ... of finite subcomplexes of W, and
(d) a sequence B, Bh, Bj, ... of finite CW complexes

such that for every i # j we have:

(e) AjﬂUjZ@, W\(AjUUj)gBj , BiﬂBj:(D:BZ/»ﬂB} ,
Bjﬂ(AjUUj) :B}Q(AjUUj) ,
(f) B; and B;- are simple homotopy equivalent rel B; N (A; UU;), and
(2) the strongly locally finite CW complex W; = A; U B} U U; contains a
finite subcomplex K; with 4; C K; C A; U B; so that the inclusion
K;—W; is a homotopy equivalence.

The construction is by induction. Let W =V} D Vo D V3 D ... be a se-

o0
quence of cofinite subcomplexes of W such that (| V; = (. Let A; = (. By
=1
11.12 there exist a cofinite subcomplex U; C Vlf a finite subcomplex B C
W with W\U; C By, a finite CW complex B with By NU; = Bf NU; such
that By, B} are simple homotopy equivalent rel ByNU;, and a finite subcom-
plex K1 C Wy = B{UU; with Ky C Bj such that the inclusion K1—Wj is a
homotopy equivalence. Suppose Ay, ..., Ap,Us,...,Up,B1,...,Bn, By, ...,
B],,Ki,..., K, have been constructed with the properties above and U; C
Vjfor j=1,...,n. Let A,41 € W be a finite subcomplex such that

Ap U By U(W\(Up N Vini1)) € Apys -

Let V' C int(U, N V,,41) be a cofinite subcomplex. By 11.12 there exist a
cofinite subcomplex U, 11 C V with A,11 NU,11 = 0, a finite subcomplex
Byt1 €V with W\(A,41UUp41) € Bpya, a finite CW complex Bj, . ; such
that By41N(Apt1UUn41) = By, 1 N(Apy1UUp41) such that By, By, are
simple homotopy equivalent rel By,11 N (A,+1UU,+1), and a finite subcom-
pleX Kn+1 - Wn+1 = An+1 UB':1+]_UUTL+1 with An+1 c Kn—l—l c An—l—l UB;H_l
such that the inclusion K, 11— W, 1 is a homotopy equivalence. Given
such a construction, let

w = w\{UsB)ulB;.
j=1

J=1

Then W and W’ are infinite simple homotopy equivalent. The finite sub-
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complex of W’
Jj—1 Jj—1
K, = (K;\|J B)u B
i=1 i=1

is such that the inclusion K §—>W’ is a homotopy equivalence. Since K| C
(0]

KiCK,C...CcW , W= U KJ’-, it follows from 8.5 that W’ is reverse
j=1

collared. O

Proposition 11.14 The following conditions on an ANR space W are
equivalent :

(i) W is forward tame,
(i) W x St is infinite simple homotopy equivalent to a forward collared
ANR X,
(iii) W x St is properly dominated by a forward tame space Z.

Proof (i) = (ii) There exist a closed cocompact V' C W and a proper
map ¢ : V x [0,00)—W; (z,t)—q(z) with ¢o : V—W the inclusion.
Inductively select closed cocompact subspaces V =Uy D U; 2 Uz O ... and
non-negative numbers 0 =ty < t; <ty < ... such that:

(a) Ol Ul @ )

i+1) CU; foreacht >0 and i =1,2,3,...,
1,2,3,....

(b) (U
(¢) q:(U;) € Uiyq for each t > t; and i = 1,2, 3,

~

~

Choose a map p : W——[0,00) such that p(U;) > t; for each i = 1,2,3,...,
and use it to define a map

C:V—W;z—qzpx).

Note that if 2 € U; then p(x) > t; so ((z) € Uj+1, and that ¢ is proper
homotopic to the inclusion V—W. The homotopy extension property can
be used to extend { to a proper map, also denoted (, defined on all of W
such that ¢ is proper homotopic to idy . It follows that W x St = T(idy)
and X = T'(¢) are infinite simple homotopy equivalent.

To see that T'(¢) is forward collared, consider

A = T(|U1) € T(C) -
Then A is closed and cocompact and there exists a proper map

g Ax[0,00) — A; ([x,s],t) — [x,s+ 1] .



136 Ends of complexes

(ii) = (iii) Obvious.

(iii) = (i) Let f : W x S'——Z be a proper map such that there exist
a proper map g : Z— W x S! and a proper homotopy h : idyw g1 =~ gf
with Z forward tame. Let A C Z be a closed cocompact subspace for which
there exists a proper map p : A X [0,00)—Z extending the inclusion py.
Choose a closed cocompact subspace V' C W such that V x St C f=1(A).
Define ¢ : V' x [0,00)—W to be the composition

V x[0,00) = V x {pt.} x [0,00) CV x S x [0, 00)
flxid roj.
P A x0,00) 25 4 LWkt P
Then g9 : V—W is proper homotopic to the inclusion so that ¢ can be
adjusted to get a proper map ¢ : V x [0, 00)—W with ¢, the inclusion. o

Proposition 11.15 For a strongly locally finite CW complex W the follow-
ing conditions are equivalent :

(i) W is reverse tame,
(ii) W x S is infinite simple homotopy equivalent to a reverse collared
CW complex,
(iii) W x St is properly dominated by a reverse tame space.

Proof (i) = (ii) If U € W x S! is a cofinite subcomplex, then there
exists a cofinite subcomplex V C W with V x S' C U. By 8.9 V is finitely
dominated. By 6.7 (ii) V x S' is homotopy equivalent to a finite CW
complex. It follows that U is homotopy equivalent to a finite CW complex.
W x S! is infinite simple homotopy equivalent to a reverse collared CW
complex by 11.13.

(ii) = (iii) Obvious.

(iii) = (i) Let Z be a reverse tame space for which there exist proper
maps f : W x S'—Z, g : Z—W x S' and a proper homotopy h :
identity ~ gf : W x S1—W x S'. For V. C W a cofinite subcomplex, it
suffices to show that V is finitely dominated (8.9). Since V is dominated
by V x S, we need to show that V x S is finitely dominated. There exists
a cocompact subspace U C Z such that U C ¢g=1(V x S') and h(f~1(U) x
I) CV xSl Thus gf] : f~4U)—V x S! is homotopic to inclusion :
71 (U)—V x SL. Since Z is reverse tame, U is dominated by a compact
subspace C' C U, i.e. there exists a homotopy k : identity ~ ki : U—U
with k1(U) C C. It follows that there is a homotopy of f~}(U) in V x S1
which deforms f~1(U) into a compact subspace of V' x S!. The homotopy
extension property then implies that V' x S! is finitely dominated. o
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Forward tameness is a homotopy pushout

Following Quinn [116] we shall now obtain a result of the following type:
a o-compact metric space W is forward tame if and only if the homotopy
commutative square

e(W) ——— {0}

"

wWw—t— W
is a homotopy pushout, with ¢ : W——W*® the inclusion in the one-point
compactification W, e(W) the end space and
pw : e(W) — W w— w(0)
the evaluation map. The cofibration sequence
e(W) — W — W
induces the long exact sequence of homology groups of 3.9
i
L — HX(W) — H (W) — HJ (W) — H,1(e(W)) — ...,
using 7.10 and 7.15 to identify
H.(e(W)) = HX(W) , H.(W>,00) = HI(W).
The exact sequence shows that if W is forward tame then
HS(W) = H_y(e(W)) = 0.

There is a corresponding exact sequence for the cohomology of a forward
tame space W

s H{(W) == HY(W) — H(e(W)) — HF\(W) — ...

137
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with H*(e(W)) = HX (W). Thus if W is a locally finite forward tame CW
complex the number of ends of W (1.14) is the number of path components
of the end space e(W).

The standard constructions of mapping cylinders are given by :

Definition 12.1 (i) The mapping cylinder of a map f : X—Y is the
identification space

M(f) = (XxI[[YV)/{(z,1)~ f(z) €Y |z e X}.

(ii) The double mapping cylinder of maps f: X—Y, f': X—Y" is the
identification space

M(ff) = (X< IT[Y TTY")/~

with ~ the equivalence relation on the disjoint union X x IJ[Y J]Y”’ gen-
erated by

(2,0) ~ f(z) €Y |, (2 1)~ f(a")eY (z,2/€X). o

The double mapping cylinder can also be expressed as a union of single
mapping cylinders

M(f, f)) = M(f) Ux M(Sf) -

Proposition 12.2 The double mapping cylinder M(f, f') (12.1) of maps
f: X—Y, f': X—Y" fits into a homotopy commutative square

f

X——Y

1

Vi ———M(f, f)

which is a homotopy pushout, with the universal property that for any ho-
motopy commutative square

f

X ——Y

9

Y —= 7

there is defined a map uniquely up to homotopy

(9,9") + M(f, f) — Z
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which fits into a homotopy commutative square

f

X—Y

1

Y/4)M(faf/) g

, (9,9

We shall also need the following non-standard mapping cylinders, using
the ‘teardrop topology’ of Hughes, Taylor, Weinberger and Williams [76] :

Definition 12.3 (i) The teardrop mapping cylinder cyl(f) of a map f :
X—Y is the topological space defined by the set M(f) with the minimal
topology such that :

(a) the inclusion X x [0,1) — cyl(f) is an open embedding,
(b) the map
() —yts {0 U0 )X 0.
’ y—y ifyeY
is continuous.

(ii) The teardrop double mapping cylinder of f of maps f : X—Y, f/ :
X —Y" is the topological space defined by the set M(f, f’) with the topol-
ogy given by cyl(f, f')

eyl(f, f') = eyl(f) Ux eyl(f') . O

Note that the identity M(f)——cyl(f) is continuous, but not in general
a homeomorphism. For example, M(R—{x}) is not homeomorphic to

cyl(R—{x}).

Proposition 12.4 (i) For any map f: X—Y the identity map M(f)—
cyl(f) is a homotopy equivalence rel Y.

(ii) For any maps f: X—Y, f': X—Y' the identity map M(f, f')—
cyl(f, f) is a homotopy equivalence rel Y UY".
Proof (i) In fact, it is easily seen that Y is a strong deformation retract of
both M(f) and cyl(f).

(ii) The linear map I—1I which takes [0, 1] to {0} and [, 1] to {1} induces
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a map X x I—X x I which in turn induces a map cyl(f, f') — M(f, f’)
which is the identity on Y UY’. This map is a homotopy inverse of the
identity M(f, f') — cyl(f, f') rel Y UY". m

Proposition 12.5 Let W be a o-compact metric space, and let

e(W) —F— {00}

"

w—r 5 Ww®

be the homotopy commutative square given by 1.5.
(i) W is forward tame if and only if there exists a homotopy equivalence
of triads

(W2 Wo{oo}) = (eyl(pw, k); eyl(pw, k)\{oo}, {o0}) -
(ii) If W is forward tame then the induced map
M(pw,k‘) — W

18 a homotopy equivalence rel co. In particular, the square is a homotopy
pushout.

Proof (i) For this proof we replace the I coordinates in the double mapping
cylinder by [—o00, 00| coordinates. That is, write

SUpw, k) = (W Ue(W) x [0, 00] U {o0})/~

with
(x,—00) ~pw(z) e W | (xz,00) ~o0 (z€e(W)).
Let 7 : cyl(pw, k)—[—00, ] be the natural map so that 7=1([0,00]) =
cyl(k) and 77 1([—00,0]) = cyl(pw). Then 771([0,00)) = cyl(k)\{oc}
can be identified with e(WW) x [0,00). Note that cyl(k) has the mini-
mal topology such that e(W) x [0,00)—cyl(k) is an open embedding and
7|cyl(k)—[0, 00] is continuous.
Suppose now that

[ (W W {oo}) — (eyl(pw, k); eyl(pw, k)\{oo}, {oo})
is a homotopy equivalence of triads with inverse g. Let
Y = fTla([0,00))
and note that Y is a closed cocompact subspace of W. The proper map

[0,00) X [0,00) — [0,00) ; (s,t) — s+



12. Forward tameness is a homotopy pushout 141

induces a map
¢ : 7 ([0,00)) x [0,00) — 77([0,00))

which extends the inclusion. Let

g = g9q'(fIY xidjgee)) 1 ¥V x[0,00) — W .
Note that ¢|Y x {0} = ¢f|Y and, hence, is properly homotopic to the
inclusion Y — W . Therefore, if q is proper, then g is properly homotopic to
a proper map Y x [0, 0c0o)—W which extends the inclusion Y — W showing
that W is forward tame. The argument will be completed by showing that
q is proper. To this end let K C W be compact. Since g~} (W\K) is a
neighbourhood of oo, there exists t; > 0 with

g H(K) S 7[00, ta]) -
There also exists to > 0 with
(ql)ilﬂ—il([ovtl]) - Wﬁl([ovtl]) X [Oth] :

Thus ¢ Y(K) C f~1771([0,#1]) x [0,£2]. Observe that f~1m=1([0,#]) is
compact because f~'m~1(¢;,00] is an open neighbourhood of co. Thus
g 1(K) is a closed subset of a compact subspace, hence compact.

Conversely, assume that W is forward tame. Let U C W be a closed
cocompact subspace for which there is a proper map ¢ : U x [0, 00)—W
extending the inclusion. Let p : W ——[—00,00) be a proper map such that
p(W\U) = {—o0} and let Y = p~1(]0,00)). According to 9.13 there exist
maps

f Y —eW)x[0,00) , g: eW)x][0,00) —Y
and homotopies

Fo:igf ~¢:Y —W,

G : fg ~ identity : e(W) x [0,00) — e(W) x [0,00) ,

with ¢ : Y—W the inclusion. The properties of f,g, F,G listed in 9.13
imply that there are continuous extensions

fre (Y*, {oo}) — (eyl(k), {oo})

g" ¢ (eyl(k), {oo}) — (Y™, {o0})

Ft o qtghft ~it . Y® — W™,

GT . ffg" ~ identity : cyl(k) — cyl(k) ,

with ¢t : Y°°— W the inclusion and the homotopies F™, G both rel
{o0}. Extend fT to f: W>®—cyl(pw, k) by

71+ 77 (o0, 0) — exllpw) s = — {W”«’%p(fﬂ i €p™ (—o0 0],

x if z € p~1(—00)
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with ¢ : U——e(W) the adjoint of q. Note from the proof of 9.13 that
g(w,0) = (jw)(0) for each w € e(W) where j : e(W)—e(Y’) is a homotopy
inverse of the inclusion e(7) : e(W)——e(Y”) for a certain subspace Y’ C Y.
Let k : e(i)j ~ identity, ). Extend g* to g : cyl(pw, k)—W by
gl = eyllpw) — W5
r—zxzifzeW,

lw, 1] — {k(w’ —1)(0) if-1<t<0,

w(0) it oo <t<_g @EW)).

In order to extend F'* to a homotopy
F:gf ~id : W® — W>® rel {oo}
note that §f| : p~([—o0, —1])— W is the inclusion and

gfl + pN([=1,0) — W5 2 — k(G(x), —p(2))(0) .
Thus
F| i p Y[~00,0)) x [ — W ;
k(@(z),t —p(x))(0) ift—p(z) <1,
(z,8) — {a: ift —p(x)>1

is a continuous extension of ' (one must use the explicit formula for F in
9.13). In order to extend G to a homotopy

G : fg ~id : cyllpw, k) — cyl(pw, k) rel{oo}
note that
Fal =W = 7 (=00) — eyllpw k) ;

T { (), p(x)] € eyl(pw, k)\{oo} if z € p~i(
o if x € p_l(

7m) J
) .
Thus fg\ : W—cyl(pw, k) is homotopic to the inclusion. Now use the fact
that

—00
— 00

(W Ucyl(k)) x I U (cyl(pw, k) x {0})

is a strong deformation retract of cyl(pw, k) x I in order to extend G™.
(ii) By 12.4 (ii) the identity M (pw, k) —cyl(pw, k) is a homotopy equiva-
lence rel {oco}. By (i) there is a homotopy equivalence g : cyl(pw, k) — W
rel {oo}. The composition M (pw, k)— W is homotopic rel {oo} to the
induced map. o

The following example shows that it is necessary to be careful about the
topology on the mapping cylinders in Proposition 12.5.
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Example 12.6 Let

W = {(z,j) eR*[z >0} (j=0,1,2,...),
and define

W = HW]‘CR2.
j=0

Wy

W3

Wo

W

Wo

w

Then W is a forward tame o-compact metric space. However, the tri-
ads (W, W, {o0}) and (M(pw, k); M(pw, k)\{oo}, {oo}) are not homotopy
equivalent. For suppose

[ (W W, {oo}) — (M(pw, k); M(pw, k)\{oo}, {o0})

is a homotopy equivalence. The end space of W is the disjoint union
[o¢]
e(W) = H e(Wj) .
j=0

Let M; = M(pw;, k|) so that M(pw, k) = UM;. The identification topology
insures that no sequence of points from distinct M;’s converges to oo €
M(pw, k). Let z; = (0,5) € W; € W so that ; — oo € W™, Since f
restricts to a homotopy equivalence W —M(pyw, k)\{oo}, for each i there
exists a unique j(i) such that f(W;) C M;@;. It follows that the sequence
{f(z:)} € M(pw, k) does not converge to co € M(pw, k), a contradiction. o

Remark 12.7 The characterization of forward tameness in terms of homo-
topy pushouts was first obtained by Quinn [116] — the use of the teardrop
mapping cylinder in 12.5 corrects certain technical deficiencies in the state-
ment of [116]. o

Example 12.8 (i) As in 7.3 (i) let
W = LUK x [0,00)
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for a pair (L, K C L) of compact spaces, so that W is forward collared,
W ~ L, W = LU cK is the mapping cone of the inclusion K—L, and
e(W) ~ K. The homotopy pushout square of 12.5 is given up to homotopy
equivalence by

K ———— {00}

|

L—LUcK

(ii) As in 7.3 (ii) let (M,0M) be a compact manifold with boundary, so
that

W = int(M) = M\oM
is forward collared. The homotopy pushout square of 12.5 is given by

e(W)K oM {o‘o}
W~ M W = M/OM

(iii) As in 7.3 (iii) let n be a real n-plane vector bundle over a compact
space K, so that the total space W = E(n) is forward collared. The homo-
topy pushout square of 12.5 is given by

e(W) == 5(n) {oo}

| |

WeK—— W™ =T()

Example 12.9 As in 1.13 and 3.10 (iii) let W = K x R™ (n > 1) for a
compact space K. Then W = E(e") is the total space of the trivial n-plane
bundle €” over K, so that 7.3 (iii) applies to show that W is forward collared
with

W>® = T(") = (K xD")/(K xS") = $"K>

e(W) ~ S(e") = Kx 8" 1.
The homotopy pushout square of 12.5 is given by

eW)~K xS —— {00}

WeKxD'— W ="K 5
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Example 12.10 (i) Let X be a locally compact polyhedron. For any z € X
there exists a locally finite triangulation of X with x a vertex, and such that

(Y,Z) = (star(z),link(x))

is a compact polyhedral pair with Y = x % Z a cone on Z (as in 1.8). The
open star

W = Y\Z
is contractible and forward collared with
we =Y/Z |, e(W) ~ Z,
Ho(e(W)) = H.(Z) = HL,(W) = Hon(Y,2) = He(X, X\{z}) .
The homotopy pushout square of 12.2 gives a homotopy equivalence
Ye(W) ~ W,

which corresponds to ¥Z ~Y/Z.

(ii) If X is a homology (resp. combinatorial) n-manifold and Y, Z, W are
as in (i) then (Y, Z) is homology (resp. homotopy) equivalent to (D", S"~1),
e(W) is a homology (resp. homotopy) (n—1)-sphere and W is a homology
(resp. homotopy) n-sphere.

(iii) If X is a compact polyhedron and z, Z are as in (i) then V = X\{z}
is forward collared with

Ve =X , eV) ~ Z , HY (V) = H.(X,{z}) . O

Remark 12.11 The homotopy link of a subspace Y C X is defined by
Quinn [116] to be

holink(X,Y) = {we X! |w[0,1) e X\Y,w(l) €Y} .

(See Appendix B for historical background on the homotopy link.) The
evaluation maps

holink(X,Y) — X\Y ; w — w(0) ,
holink(X,Y) — Y ; w — w(1)
fit into a homotopy commutative square

holink(X,Y) —— Y

|

X\Y X

which is a homotopy pushout in many situations of geometric interest. In
particular, this is the case if (X,Y") is a CW pair with X = E(v)Ug(, Z for
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a (D*, S*=1)-fibration (E(v), S(v)) over Y, with Y C E(v) the zero section
and Z = cl(X\E(v)), and with homotopy equivalences

Z ~ X\Y , S(v) ~ holink(X,Y) .

Thus if X is a closed n-dimensional manifold and Y C X is a closed (n — k)-
dimensional submanifold with a normal topological k-block bundle v =
vycx @ Y—BTOP(k) then holink(X,Y’) is homotopy equivalent to the
total space S(v) of the corresponding (k — 1)-sphere bundle over Y.

We shall be mainly concerned with the situation in which (X,Y C X) is a
pair of spaces such that X is compact, Y C X is closed and the complement

W = X\Y CX

is a dense open subset of X — thus X is a compactification of W and Y =
X\W is the ‘space at oo’. Here are some special cases:

(i) For any space W the homotopy link of (X,Y) = (W, {o0}) is the
end space of Chapter 1

holink(W*, {oc0}) = e(W),
with a homotopy commutative square

e(W) ——— {0}

|

W—— W=

which is a homotopy pushout if W forward tame (12.5).

(ii) If W is a space with a finite number k of forward tame ends and
(X,Y) = (W* {1,2,...,k}) with W* the Freudenthal compactification of
W (1.23). In fact, (i) with W forward tame is just the case k = 1.

(ili) W is an n-dimensional Hadamard manifold (= a simply-connected
complete Riemannian manifold of nonpositive curvature), ¥ = 90X is the
boundary of a compact n-dimensional manifold with boundary (X,0X),
such that up to homeomorphism

W=R', X=D", 90X =Y =X\lW = g8"!

with 0X = S ! the sphere at co — see Ballmann, Gromov and Schroeder
[3, pp. 15-22]. In this case W is forward and reverse collared, and there are
defined homotopy equivalences

holink(X,Y) ~ e(W) ~ Y = §"! | W ~ X = D". O



Part Two: Topology over the real line

13

Infinite cyclic covers

The non-compact spaces of greatest interest to us are equipped with a proper
map to R. In this chapter we shall be particularly concerned with the infinite
cyclic cover W of a compact space W classified by a map ¢ : W—S!, which
lifts to a proper map ¢: W = ¢*R—R. We prove (!) that if W and W are
connected and W is sufficiently nice (such as a compact AN R) then W has
two ends with (closed) neighbourhoods

W' =zc¢0,00) , W =2l (-000CcW
such that
W =wruw"
with W N W~ =21(0) compact.

=l

The main result of this chapter is a geometric duality between forward
and reverse tameness for the ends of an infinite cyclic cover W of a compact
ANR W : in 13.13 it is shown that W © is forward tame if and only if W
is reverse tame.

In Chapter 15 we shall study ‘bands’ (W, ¢), which are compact spaces W
with a map ¢ : W——S"! such that the infinite cyclic cover W = ¢*R of W
is finitely dominated. It will be shown there that for an ANR band (W, ¢)
the end spaces are such that

eW) ~ WHW , e(W') ~ e(W ) ~ W.

147
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In Chapter 17 it will be shown that a manifold end V' which is both forward
and reverse tame has an open neighbourhood W C V' which is the infinite
cyclic cover of a manifold band (W, ¢), with e(V) ~ W.

Every infinite cyclic cover p : W——W is induced from p : R—S! by a
map ¢: W—S8t =1T1/(0 =1), with

W = {(z,t) e W xR c(z) = [t] € S}
and generating covering translation
C: W —W; (z,t) — (z,t+1) .

Proposition 13.1 The number of path components in an infinite cyclic
cover W of a path-connected space W is the index of the subgroup im(c, :
1 (W) ——m1(S1)) in m(Sh) = Z. u]

In particular, W is path-connected if and only if ¢, : w1 (W)—m1(S1) is
onto.

The following result is a slight generalization of a result of Hopf [68].

Proposition 13.2 If W is a connected infinite cyclic cover of a compact,
path-connected, locally path-connected Hausdorff space W, then W has ex-
actly two ends e, e~. Fach end is path-connected at oo, with closed con-
nected neighbourhoods W, W~ C W such that W UW = W with
W nW™ compact.

Proof Let ¢ : W——S! be a classifying map for W (which is surjective on
m1), with a lift to a Z-equivariant proper map ¢ : W——R. Let p: W—W
be the covering map. Let ¢ : W ——W be the generating covering translation
corresponding to +1 € Z = 71 (S'). We need to verify the following :

Claim There exists an integer N > 0 such that for all x € ¢71(0), there
exists a path a, in W from z to (*x with the image of o, in [N, N] C R.
Proof For each y € ¢ ~!(1) choose a loop 3, based at y such that c.[3,] =
+1 € 71(S1,1) and choose a path-connected open subspace U, € W such
that y € Uy and ¢(U,) # S*. Choose finitely many v1,y2,...,yn € ¢ (1)
such that {Uy,}?; covers ¢ ~'(1). Let U; = Uy,. Let z; = p~(y;) Nc~1(0)
fori=1,2,...,n. Let o; be a lift of 3, from z; to Cla; fori=1,2,...,n.
For any other z € ¢7%(0), choose i(x) € {1,2,...,n} such that p(z) € U
and choose a path v, in Uj(,) from p(x) to y;). Then let

Qp = g * Q(z) * Clﬁx_l

where 7, is a lift of 7, from = to z;,). O
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Returning to the proof of 13.2, define for each z € €71(0) a proper map

wy ¢ [0,00) — Wi t — Clag(t—i) ((<t<i+]1)

where o is the path constructed in the claim above. Clearly, w, shows that
W has an end at 4+o0o. A similar construction shows that W has an end at
—00, so that W has at least two ends.

To see that W has exactly two ends suppose that C' is an unbounded
component of W\e ~!([—k, k]) for some k € ZT and assume without loss of
generality that C C €7 1(k,00). Fix 29 € ¢71(0) and let wy = w,, be as
defined in the previous paragraph. We shall show that C is the unbounded
component determined by wp. The latter component contains ("xq for all
n > k. Choose z1 € ¢~ 1(0) such that for some m > N +k, ("™x; € C. Then

wiﬁ([m? OO)) - W\E_l([_kvk]) ) wxl([ma OO)) - C )

and so (Pxy € C for each p > m. Choose a path 3 in W from zg to ("
for some n € Z (which is obtained by lifting a path in W from p(zg) to
p(z1)). Choose | € Z* such that the image of ('3 lies in ¢~ !(k,00). If
L = max{l,m}, then (¥4 is a path in ¢ 71(k, 00) from ¢Fzg to (¥+"xy € C.

To see that the end of W at +o0o (for example) is path connected at oo,
let k € Z T, choose z¢ € ¢71(0) and let wy = w,, : [0, 1)—W be the proper
map constructed above. There exists an integer n > 0 such that w([n, c0)) C
¢! (k,00). Let V be the component of ¢ ~!(k, 0o) which contains w([n, 00)).
It follows that V' is path-connected and is the unique unbounded component
of 271(k,00). That is, V is a path-connected neighbourhood of the end of
W at +oo, and W' = cl(V) is a connected closed neighbourhood of the
end. o

Corollary 13.3 A connected infinite cyclic cover W of a connected finite
CW complex W has two ends e, €. o

Definition 13.4 A fundamental domain (V;U,CU) for an infinite cyclic
cover W of a space W is a subspace V C W such that

¢'vnvney =0, |J dv =W,

j=—00
with ¢ : W——W the covering translation and

U=VnClvecw.
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G- GV Ity

Cj’lU CjU <j+1U <j+2U

=

The subspaces defined by

e’} -1
wht=U¢v, W = |JdVvew
§=0 j=—00
are then such that
U=WnW ,V=WnnW ,W=Wuw .
If W is a CW complex and ¢ : W——W is cellular, then a CW fundamental
domain is a fundamental domain (V; U, (U) such that V, U, (U are subcom-

plexes of W. Similarly, if W is an ANR then an ANR fundamental domain
is a fundamental domain (V; U, (U) such that V,U, (U are ANR’s. O

Example 13.5 Let W be a space with a decomposition of the form
W =UxIUV

such that
(UxI)NnV = Ux{0,1}
and such that there is given a map
c: W— 8" =1/(0=1)
with
UxI = c¢'0,1/2] , V = ¢ 1/2,1]

and

clu,t) = t/2 (0<t<1,uelU).
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The map ¢ : W——8"! classifies an infinite cyclic cover W = ¢*R of W
with fundamental domain (V;U x {0},U x {1}). The construction of W
by cutting W along U and glueing together Z copies of the fundamental
domain generalizes the construction of the canonical infinite cyclic cover of
a knot complement by cutting along a Seifert surface. o

Proposition 13.6 (i) If (V;U,(U) is a fundamental domain for an infinite
cyclic cover W of a compact space W then U and V' are compact.
(ii) If a connected infinite cyclic cover W of an ANR W admits a funda-

mental domain (V; U, CU) with U,V connected then the subspaces W+,W_
C W are neighbourhoods of the two ends € T, ¢ ™. O

Definition 13.7 The mapping coequalizer of maps f*, f~ : U—V is the
identification space

Wt f7) = UxIUpp-V
= (UxITOV)/{(z,0) = f~(x),(x,1) = fH(z) |z €U} .



152 Ends of complexes

W, f7)

Given a commutative diagram of maps

let (g,h) : W(fT, f7)—W(f", f/~) be the induced map of identification
spaces. o

A map f : U—V is the inclusion of a collared subspace (1.6) if it extends
to an open embedding f : L x [0,00)— K.

Proposition 13.8 If the maps f+, f~ : U—V are inclusions of disjoint
collared subspaces, with extensions to disjoint embeddings

7+,?_ : Ux[0,00) — V

the mapping coequalizer W(f, f~) is such that there is defined a homeo-
morphism

W f7) =2 VA (@) =f ()2 e U},

and W(f*, f~) has a canonical infinite cyclic cover
S

W FT) = 2xVAG S (@) =(+1f () ]zeU,jez}



13. Infinite cyclic covers 153
with generating covering translation
C : W(f+7f7)—>W(f+’fi>; []7$]—>[]+17$]

and fundamental domain (V; fH(U), f~(U)).
(,U) )
N NN/
( ) (7, V) ( )

Remark 13.9 (i) The hypothesis of 13.8 is satisfied if V' is replaced by the
mapping cylinder of f*U f~:U x {0,1}—V.

(i) If (V;U,CU) is a fundamental domain for an infinite cyclic cover W
of a space W and the maps

fr:U0—V;,z—uzx,
fmrU—=Viy—Q
satisfy the hypothesis of 13.8 then
W= W f7), W=wW/r). o

G+ 1,U

j—-1LV Jj+1LV

Definition 13.10 A 7, -fundamental domain (V; U, CU) for an infinite cyclic
cover W of a space W is a fundamental domain such that the inclusions
U—V, (U—V induce isomorphisms

m(U) =2m(V) , mU)=m((V)

(on each component) in which case the inclusion V—W induces an iso-

morphism 71 (V) = 71 (W) and m (W) = m (W) %, Z with
Gm(W) 2 m(V) 2 mU) &2 mU) 2 m(V) mW). o

Proposition 13.11 (i) An infinite cyclic cover W of a compact manifold
W' admits a manifold 71 -fundamental domain (V;U,(U).

(ii) For any finite CW complex W with an infinite cyclic cover W there
exists a simple homotopy equivalence W ~ W' to a finite CW complex
W' such that the induced infinite cyclic cover w of W' admits a CW -
fundamental domain (V';U’,{'U").

Proof (i) It is possible to make a classifying map ¢ : W——S! transverse
regular at a point * € S', such that the codimension 1 submanifold

U=clxcw
has an open regular neighbourhood N(U) = U x (—1,1) C W. Surgery on
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U inside W ensures that 71 (U) = m(W). The effect of cutting W along U
is a codimension 0 submanifold

V = W\N{U)CW

with boundary 0V = U U (U, such that the inclusion V' C W lifts to an
embedding V' C W defining a manifold 71-fundamental domain (V;U,(U)
as in 13.5.

(ii) Embed W as a subcomplex of S (N large), and apply (i) to a closed
regular neighbourhood W'. Alternatively, proceed combinatorially as in
Ranicki [124, 8.16], as follows. Replacing W by a simple homotopy equiv-
alent finite CW complex (if necessary), it is possible to choose a finite
subcomplex V C W such that

[e.9]

U@V =W, macv)=m(v)=mm)

and the maps

ff:U=vn¢cWV —VxI;z— (z,0),

fmU =Vn¢CW —VxI;z— ((x,1)
are the inclusions of disjoint subcomplexes inducing 7i-isomorphisms, and
such that the mapping coequalizer is a finite CW complex

W= W)
The projection
W — W/( = W; (z,t) — [z]

has contractible point inverses, so that it is a simple homotopy equivalence.
The induced cyclic cover of W’ is the canonical infinite cyclic cover W' =

W(fT,f~) of the mapping coequalizer W(f*, f~) with CW fundamental
domain (V' x I;U x {0},CU x {1}). o

Remark 13.12 In Example 13.16 below we shall construct a finite CW
complex W with an infinite cyclic cover W which does not admit a ;-
fundamental domain, showing the necessity of passing to an infinite simple
homotopy equivalent CW complex in 13.11 (ii). O

Proposition 13.13 Let W be a connected compact AN R with a connected
infinite cyclic cover W which admits an ANR fundamental domain. The
following conditions are equivalent :

(i) W is forward tame,
(i) W is reverse tame,
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(iii) there is a compactly supported homotopy
h: WxI— W; (z,t) — h(z)
such that
: T ~ Tt
ho = idy , (W) C (W,

(iv) the composite

p:e(W+)—>W — W

is a homotopy equivalence.

Proof Let
W= Wuw
with W' N~ compact, connected and such that
W rcw® | W cw”
with ¢ : W——W a generating covering translation.
(i) = (iii) There exist a closed cocompact subspace V C W and a

proper map ¢q : V x [0, c>o)—>WJr with g9 = inclusion : V—W. Choose
n, N > 1 so large that

WSV, gn(V)CHW T
Set

so that
oW W,
Since ¢ is a proper homotopy there exists k > 1 so large that
7_’_ —_— —_—
g (C"WT) S WA\CW

for each t. Since W\(W ~ is an ANR, the homotopy extension property
can be used to get a homotopy

G W —W (0<t<N)
such that g is compactly supported and

Gl s = 9 o G SN

Then we still have
N C W
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Finally, use the homotopy extension property again to extend g to a com-
pactly supported homotopy defined on all of W and reparametrize [0, N] to
get the required homotopy h.

(iii) = (i) We have to find a closed cocompact subspace V C W such

that the inclusion V' x {O}—>WJr extends to a proper map
qg : V x]0,00) W
Choose n > 1 so large that /”L(WJr x I) C C*”WJF, let V= C"W+ and
define a map ¢ : V x [0, oo)—>W+; (x,t)—qi(z) as follows. First set
@ = ("olyo(™ V—W' (0<t<1).
Then assuming k > 1 and qly »|o ) has been defined, set
g = "Fohpgol " Fog, VW (k<t<k+1).
Of course
qgo = inclusion : V — w ,
S0 it remains to verify that ¢ is proper. One can verify inductively that
G (V) COTWT L q(V) W (k<t<k+1).

From this it follows that if C C W is compact, then there exists N > 1
so large that ¢(V)NC = @ for t > N. Thus ¢ }(C) C V x [0, N]. Since
qlvxo,n) is clearly proper, ¢ 1(C) is compact as required.

(ii) = (iii) By reverse tameness there exist a cocompact V' C W and
a homotopy g : W~ x I—W  such that

go = idp- . gi(W ) CW \V
and
¢| = inclusion : W NW ' — W~

for each ¢. It follows that g extends via the identity to a homotopy g :
W x I—W.
Choose n > 1 so large that

C—n-i—lW_ C V.
Define i/ : W x I—W; (x,t)—hj(z) by
hy = ("ogio¢ ™ W — W,
Then
M) = ("ogio¢ W CCNWAV) SCW

Since g is the identity on C”WJr, it follows that A’ is compactly supported.
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Finally, use the homotopy extension property to extend h' to a compactly
supported homotopy h: W x I—W.
(iii) = (ii) For each k =1,2,3, ... define a homotopy

Y Wx T — W (x,t) — h¥(x)
by
W = ¢ Fohgolt - W —W (0<t<1).

The formulas which follow are designed to make sense of the infinite right
concatenation

M h? s h3 ... .
For k=1,2,3,... let
X, = d(TFWINCFIWT)

and define p : W —[1,00) to be such that p~1([k,k + 1]) = Xj. For
r € X}, and t € I define

v, (@) Y )~k
vt (52) “’(S;S e
k(g to(z) — olx . plx) —k ple) —k+1
(@) = h¥(x,tp(x) — p(z) + k) if e <t< rey
Wz, tp(x) — pla) +1) if p(x)_];(;(k_l) <t<1

This defines a homotopy
g : W xI—W; (x,t) — g(x)
such that
go = inclusion : W~ — W , (W )CW ",
and there exists n > 1 so large that

gt|an+ = inclusion : C"W+ — W (tel).

If U CW is cocompact, choose N > 1 so large that
W \UC N

Then ¢~ 0 g; 0 (" is a homotopy establishing the reverse tameness of W .
(i) = (iv) By (iii) and forward tameness there exist a closed cocompact

subset V C W with CW+ C V and a proper map ¢q : V x |0, oo)—>W+
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such that q; = inclusion and a homotopy h : W x I—W with hy = id,
hy(W) C (W and h|V' = inclusion for each ¢t € I. Define

~

h _
g:W—1>Vi>e(W+),

where ¢ is the adjoint of ¢. We claim that g is a homotopy inverse of p. To
see this, first note that

pg = hy ~1: W —W.
The existence of a homotopy
gp =1 :e(W') —eW")

follows from the homotopy commutativity of the diagram

(W) P (W)

pW+ /

—+ N

[
1‘ hlJ
+
) e(
in which the unnamed arrows are inclusions.

W' —v
(iv) = (iii) Suppose that p : e(W+)—>W is a homotopy equivalence
with homotopy inverse g : W—>6(W+) and homotopy F : W x [—W

such that Fp = idy; and Fy = pg. Elements in e(W+) are considered as

1
1

e(CW

1

V)

proper maps [0, oo)—>W+. Define

- o F(z,1) ifo<t<1,
G2 Wx[0,00) — W5 (1) — {g(x)(t—l) if1<t<oo.
Let

D =W ncWw)
(with C(W+) - W+). There exists an integer & > 0 such that F({(D) x
1) C R (W), Let
kE+1 L o
A= o) =Windemw),
=0
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and define
é i Ax [07 OO) - W ; (IL',t) - CkG(C_k(x)7t) :

Note that Go = inclusion and G(¢¥+1(D) x [0, 00)) € (W ™.
There exists an integer N > 0 such that G(A x {N}) C C(W+). Since

C(W™) is an ANR we can extend G|A x [0, N] to a homotopy H : W x
[0, N]— W such that:

(a) H|A X [0,N] =G,
(b) Hy = inclusion,

(c) H(CH (W) x [0, N]) € (W),

(d) Hy|¢*2(W ™) = inclusion for each t € [0, N].

Now use the fact that W is an AN R to extend H to a compactly supported
homotopy h : W x [0, N]—W. Since h\WJr x [0, N] = H it follows that
h N(W+) c¢ (W+) After reparametrizing [0, N| by I, we have a homotopy
satisfying (iii). u]

Proposition 13.14 The following conditions on a connected infinite cyclic
cover W of a compact ANR W are equivalent :

(i) W is forward collared,
(i) W is reverse collared,

(iii) there exist a closed cocompact ANR subspace Y C W™ and an in-
teger M > 1 such that CYY is a strong deformation retract of Y for
every integer £ > M .

Proof (i) = (iii) According to 7.2 (iii) there exists a closed cocompact
ANR subspace Y C W such that the evaluation map e(Y)—Y is a homo-
topy equivalence. Choose a positive integer M so large that (‘Y C Y for
every £ > M. Then there is a commutative diagram

e(CtY) ————e(Y)

]

Yy —— Y

where the vertical arrows are evaluation maps and the horizontal ones are
inclusions. The evaluation map e(Y)—Y is a homotopy equivalence, and



160 Ends of complexes

hence so is e(¢‘Y)—¢*Y. The inclusion e(¢YY)——e(Y) is a homotopy
equivalence by 1.12. Thus, the inclusion (‘Y —Y is also a homotopy equiv-
alence. Since Y is an AN R it follows that (‘Y is a strong deformation retract
of Y.

(iii) = (i) Assume M is so large that (‘Y C Y for every £ > M and there
exists a homotopy h : Y x I—Y such that hg = idy, h¢|¢MY =inclusion
for each ¢t € I, and hy(Y) = ¢MY. Define a proper map

f Y x[0,00) — Y ; (y,t) — fi(y)

by induction as follows. Let f; = h; for 0 < ¢t < 1. Assume k > 1 and
fIY x [0, k] has been defined. For k <t <k + 1, set

fo=CMohygol™Mofy 1 Y — Y.

Note that f(Y) C ¢*MY.

(i) = (ii) Let U C W be a cocompact subspace. By the proof above we
may assume that condition (iii) holds. Thus, there exists a closed cocompact
ANR subspace Y C W' and an integer M > 1 such that ¢‘Y is a strong
deformation retract of Y for each integer ¢ > M. Choose a positive integer
k so large that W \U C ¢~*Y. Since W™ is forward tame, 13.13 implies
that W is reverse tame so that there exist a cocompact subspace V.C W
with V'€ W \¢*Y and a homotopy h: W x I—W _ such that:

(1) hp = idwf )

(2) bW N = inclusion for each t € I,
(3) he(W \ ’“Y) CW \¢*Y foreach t €1,
(4) (W ) CW \V.

Choose an integer N > k so large that W \("M(Y)CV and N —k > M.
It follows that (7Y is a strong deformation retract of ¢~V (Y), so let
g: CN(Y) x I—¢N(Y) be a homotopy such that gy = id, g|¢CFY =
inclusion for each t € I and ¢g1(¢"™(Y)) C (7*Y. Then the concatenation
of g and h shows that U\(W ~\¢7*Y) is a strong deformation retract of U
and, hence, W is reverse collared.

(i) = (iii) Since W~ is reverse collared there exists a cocompact sub-
space V. C W such that W \V is a strong deformation retract of W
Let X = (W \V) UW " so that X is a strong deformation retract of W and
there is a homotopy g : W x I—W such that gy = idy, g¢|X = inclusion
for each t € I and g1 (W) C X.

Choose an integer M > 1 so large that if £ > M then ¢!X C X and
g1¢tX C ¢X. Tt will to suffice to show that if ¢ > M then X is a strong
deformation retract of (~*X. Define a homotopy h : (~*X x I—W by
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h(z,t) = hy(x), with

hy = ¢ togioctog : (X — W (tel).

It can be verified that hg = inclusion, hy(¢7*X) C ¢!X for each t € I, and
hi(¢TfX) C X. o

We now specialize to the case of an infinite cyclic cover W of a finite CW
complex W.

Proposition 13.15 Let W be a connected finite CW complex, and let W
be a connected infinite cyclic cover of W which admits a m-fundamental

domain. Let W be the universal cover of W, and let m = w1 (W), so that
W=W/x.
(i) The following conditions are equivalent :

is forward tame,
s reverse tame,

o
~
~
=
9
3
<.
)
<)
<
S
S
D
E
~—
.
v
s
=
S
3
S
~
S
S
<
)
=
I
<.
<
N
~
)
S
=)
o

(ii) If the conditions of (i) are satisfied and W = W UW ™ then

CWT) ~ COW)e CY™ (W),
CWHNnW™) ~ c(W ) e W),
W = —[W] € Ko(zl[r))

wz@ﬁ/i C W the cover of W* c W induced from w regarded as a cover
of W.
(iii) The following conditions are equivalent :

(a) W is infinite simple homotopy equivalent to an infinite cyclic cover X
of a finite CW complex X with x* forward collared,

(b) W is infinite simple homotopy equivalent to an infinite cyclic cover X
of a finite CW complex X with X  reverse collared,

(c) W is forward tame and [Wﬂlf =0e Ko(z[n)),

(d) W is reverse tame and [W ] =0 € Ko(Z[r]),
(e) W is homotopy equivalent to a finite CW complez.
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Proof (i) (a) <= (b) < (c) by 13.13.

(b) = (d) By 8.7.

(d) = (b) By 8.7, since

W o'W oW o...
is a sequence of cofinite subcomplexes isomorphic to W~ with (W~ =
J

0.

(ii) If the conditions of (i) are satisfied then by 7.20 (v) there is defined a
chain equivalence of finitely dominated Z[r]-module chain complexes

Se(Wh) =~ c=m"(WH).

Also, the homotopy equivalence e(W+) ~ W induces a chain equivalence

Se(W™)) = S(W),
so that the composite chain map
fiCOTWT) = (CWH)—CHT (W) — CWH) — C(W)
is a chain equivalence. The algebraic mapping cone of the chain map
g : COWH) — (W) e Y™ (W)

defined by inclusion on each component is also the algebraic mapping cone
of f, €(g) = €(f), so that g is also a chain equivalence. The inclusion

eCW T NW 7)—C(W ")) — e(C(WF)—C(W))
is a chain equivalence (excision), so that the chain map
CWHINW™) — C(W )& ChHm (W)
defined by inclusion on each component is also a chain equivalence.

(iii) (a) <= (b) by 13.14.

(¢) <= (d) by (ii).

(a) = (c) W™ is forward tame by 7.2 (i) and 9.6, and [WJr]lf =
W4 =0 by 13.13 (iv), 11.7 (i) and 10.9 (iii).

(d) = (e) The reduced projective class [W ] € Ko(Z[r]) is the finiteness
obstruction of W .

() = (d) W is finitely dominated, so that W is reverse tame by
(i). Moreover, [W | = 0 since W is homotopy equivalent to a finite CTW
complex.

(e) => (b) Let W be homotopy equivalent to a finite CW complex K.
By replacing W by W x D" for some large n, we may assume that K is a
subcomplex of W and K is a strong deformation retract of W . Let
— W

r:ldW__m:W
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be a cellular homotopy with 7| K = inclusion : K—W ~ for each t € I and
ri (W )= K. Let ( : W—W be the (+1)-generating covering translation

and (V;U,CU) a fundamental domain for W. There is an integer N < —1
such that
~1
r(¢CC'VxI)CKu | dVv = Z.
j=N

In particular, K C Z and the maps
g = inclusion : 7'V — 7,
g =mnl:¢V—2Z

are homotopic. Hence M(g), M(¢') are simple homotopy equivalent rel
WU Z. Let

X = M(g) xz)/~
where ~ identifies (7!'V x {i} in the base of M(g’) x {i} with ¢(NV x {i +1}
in the top of M(g’) x {i + 1} for each i € Z : (x,0,i) ~ ((NTlz,i+ 1) for
(2,0) € ¢7'V x {0} S M(¢) and (N Hla € ¢(NV C Z C M(g'). Similarly let
Y = (M(g) xZ)/~

where ~ identifies ™'V x {i} in the base of M(g) x {i} with ¢"V x {i+ 1}
in the top of M(g) x {i+1}. Clearly Y and W are infinite simple homotopy
equivalent. The simple homotopy equivalence of mapping cylinders M(g’),
M(g) induces an infinite simple homotopy equivalence of X and Y. Define
a generating covering translation

¢+ X —X; (z,i) — (x,i+1)
so that X = X /(’ is a finite CW complex. Let
v = ) U 2) x {0}

v
so that V' contains two natural copies of Z, firstly
U = 7% {1} x {0} € M(g)) x {0}

which is the top of M(g’), and secondly ¢'U’ which intersects M(g’) x {0} in
the bottom. Then (V';U’,'U’) is a fundamental domain for X. It remains
to show that X ~ is reverse collared. For each k < 0, (¢)¥(X ™) is infi-
nite simple homotopy equivalent to (VW ™ rel (¢')*(U”) = ¢NIFZ. Since
¢V ™ strong deformation retracts to ¢INIFK C ¢INFZ it follows that
_ k+1 .
X~ strong deformation retracts to U (¢')V' U (¢)V¥(M(ry : (TIV—K)).
=0

Thus X  is reverse collared. O
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The following example is a CW complex with bad local properties at
infinity, such as a nasty two-point compactification :

Example 13.16 Let SV S5 be the wedge of two k-spheres with {po} = S¥n
Sk, Let D*1 be a (k+1)-disk with S5 = 9D¥! so that S¥v.Ss C SFv Dk,
Represent D**! by [—1,1]**! where py = (—1,0,0,...,0) € D**1. Define
the k-cell

Y = {(z1,22,...,7441) € D21 <0, 2341 = 0}
and let ¢ : Y —S¥ be a surjective map such that ¢(pg) = po. Define also
X = (Sfv DM/~

where ~ is generated by y ~ ¢(y) for each y € Y. Thus X is a CW complex
with subcomplex S¥ v S§¥. Note that :

i) S¥ is not contractible in X,
(ii) S% is contractible in X,
(iii) S5 is not contractible in X\{xz} for any = € S¥,
(iv) X is simple homotopy equivalent to S¥ v D**! rel S¥ v Sk

Let
W = (X x2)/~

where ~ homeomorphically identifies S¥ x {n + 1} with S§ x {n}, n € Z.
Then

¢C: W—W; [z,n] — [z,n+2]
is a covering translation and
W = W/

is a finite CTW complex. The simple homotopy equivalence X ~ S¥Fv DF+1
induces an infinite simple homotopy equivalence

W ~ ...vDFlvDFLy
= {(w1, 29, wpp1) €RM (@1 — i) + 23+ 4 a2fy, <1/4
for some 1 € Z} .

Thus W is infinite simple homotopy equivalent to R. In fact, W is simple
homotopy equivalent to St. There is a fundamental domain (V;U,(U) for
¢ : W—W with

V = X x{0}uD*! x {1} ~ 5%,
U = SFx{0} = Skx{-1}=8k,
(U = SFx {2} = Shx {1} =5~
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The inclusion U—V is a homotopy equivalence, but (U is contractible in
V. There are infinite simple homotopy equivalences

WoerR, WH SFV[0,00) , W~ =~ [0,00) .

For k = 1 the one-point compactification C' of W is the compact metric
space described in Hocking and Young [66, page 350 and Figure 8-9(b)]. The
space C is locally simply-connected at the point at infinity, but that point
does not have arbitrarily small simply-connected open neighbourhoods in
C. Fork>1

mU) = mV) = m(W") = m(W) = m(W) = {1
so that the conventions of this chapter are satisfied.

Claim The infinite cyclic cover W is such that:

(i) W is both forward and reverse tame,

(ii) the end spaces e(W+), e(W ) are contractible,
W is not forward collared,

W ™ is not reverse collared,
W is reverse collared,

(vi) W is forward collared,

T =W =0¢€ Ko(z) = {0}.

=

Proof (i) follows from 9.6 and 9.8 since W is proper homotopy equivalent
to R.

(ii) follows from 9.4 (ii).

(iii) First observe that if b € S¥ C X and b # pg, then X\{b} ~ S* v S*
with one of the k-spheres given by S%. It follows that if b € St x {ng} C W
and b & {po} x Z, then W\{b} ~ S*¥ v S¥ with one of the k-spheres given
by SF x {ng +1} = S5 x {ng}. Now for any closed cocompact subspace
ZCW™, letng € {—1,0,1,...} be the largest integer such that S¥ x {ng} =
Sk x {ng — 1} € Z so that S¥ x {ng + 1} = S5 x {ng} € Z. Choose
b e SFx{ngy CW with b & {po} x Z and b ¢ Z. It follows from the
observation above that SF x {ng + 1} = S§ x {ng} is not contractible in
W\{b} and also not contractible in Z. Thus m;(Z) is not trivial so that
W is not forward collared by (ii) and 7.2 (ii).

(iv) follows from (iii) and 13.14.

(v) and (vi) follow from 13.14 since ( ~'W ~ is a strong deformation retract
of W .

(vii) is obvious. O
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Remark 13.17 Example 13.16 shows that neither the property of being
forward collared nor that of being reverse collared is an invariant of infinite
simple homotopy type (cf. 9.7, 11.7 (ii), 11.8). Moreover, this example
shows the necessity of passing to an infinite simple homotopy equivalent
CW complex in 13.15 (iii). The CW complex P obtained from W by
filling in U = S* with a (k + 1)-cell is forward collared, showing that a
cofinite subcomplex of a forward collared CW complex need not be forward
collared. O

The following result will be used in Chapters 14,19:
Proposition 13.18 For any cellular maps of CW complexes
it K— X, i : K—Y |,

jt . L—Y |, j7 : L—X

the CW complexes W(f(i,J)*, f(i,5)7), W(g(3,5)", g(3,5)") determined by
the maps

fa,nHt K i X — XUurY,
fl,5)” « K . Y — XUuLY,
g(i,5)T : L i Y — XUgY,
g(i,j)~ : L L X — XUgY
are related by a canonical homotopy equivalence
W(f(i,0) " f@5)7) = Wig(i,4) ", 9(i,5)7)
which is stmple if K, L, X,Y are finite CW complezes.

Proof Replacing X,Y by mapping cylinders (if necessary) it may be as-
sumed that 7,77, 5%, i~ are embeddings of subcomplexes such that

iT(K)Nj (L) = 0cX , i (K)Nnj" (L) = 0cCY.
The CW complex
Z = (XUY)/{H(K) = i (K),75(L) = 5~ (L)}

can be cut open along either K or L, so that both W(f(4,)", f(i,7)”) and
W(g(i,7)", g(i, 7)) are homotopy equivalent to Z.
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14

The mapping torus

The mapping torus of a self map is a space with a canonical infinite cyclic
cover.

Definition 14.1 The mapping torus of a map h : X — X is the identifica-
tion space

T(h) = X x I/{(z,1) = (h(z),0) |z € X} . o

In the terminology of 13.7 the mapping torus is the mapping coequalizer
Th) = W1: X—X,h: X—X) .

The canonical infinite cyclic cover T'(h) of T'(h) is given by 13.8, as described
in detail in 14.6 below.

A homotopy h ~ h' : X—X determines a homotopy equivalence
T(h) ~ T() .

Proposition 14.2 (M. Mather [91], Ferry [55], Ranicki [123]) For any maps
f: X—Y,  g:Y—X the map

T(gf: X—X) — T(fg:Y—Y); (x,t) — (f(x),t) .

is a homotopy equivalence. If X,Y are finite CW complezes it is a simple
homotopy equivalence. ]

Definition 14.3 Let X be a finitely dominated space, and let h : X —X
be a map. The canonical simple homotopy type on the mapping torus T'(h)
is represented by (T'(fhg : Y—Y),e) for any domination of X

Y, f: X—Y,g:Y—X,gf ~1: X—X)
by a finite CW complex Y, with
e : T(h) ~ T(hgf) ~ T(fhg) = finite CW complex . u]

168
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Remark 14.4 (i) For a finite CW complex X the canonical simple homo-
topy type on T'(h : X —X) is just the simple homotopy type given by the
finite CW structure of T'(h).

(ii) For maps f : X—Y, g : Y —X of finitely dominated CW complexes
the homotopy equivalence T'(gf) ~ T'(fg) of 14.2 is simple,

T(T(9f) =T (fg)) = 0€ Wh(m(T(9f))) ,

giving T'(gf), T(fg) the canonical simple homotopy types. This is a special
case of the simple homotopy equivalence

W(f(i,5)5 £(i,5)7) =~ W(g(d,5)", 9(i,5)7)
of 13.18, with

1 =

it =

Example 14.5 For any finitely dominated space X

XxS' = 7T1: X—X)

is homotopy finite (Mather [91]), with a canonical simple homotopy type. O

The canonical infinite cyclic cover T(h) of T'(h) (13.8) has the following
properties:

Proposition 14.6 (i) A mapping torus T(h : X—X) has a canonical
projection
c: Th)— S' = 1/(0=1); (x,t) — t

which classifies the canonical infinite cyclic cover

oo

T(h) = 'R :( 1T (Xx]x{j}))/(x,l,j):(h(x),O,j—i—l)

j=—00
with generating covering translation
¢ T(h) — T(h) 5 (wt,5) — (,6,5+1)
and fundamental domain
(M(h: X—X); X x {0}, X x{1}) .

(i1) If X is connected with fundamental group 7 (X) =7 and h : X—X
induces hy, = a : m—7 then T'(h) is connected with fundamental group

T (T(h)) = T4qZ = mx{2}/{ax =22z |z €n} .
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The canonical infinite cyclic cover T(h) of T(h) is classified by the projection
Txqg 2 — Z;m—1, 2 — 2

and

m(T(h)) = (im(m)) = ker(mw %o Z—Z)

is the mormal subgroup gemerated by im(w) in 7 %o Z. The natural map
T——T %o Z 1S an injection if and only if o : 7——7 is an injection.

(iii) If X is a finite connected CW complex and h : X— X is a cellular
map then T'(h) is a finite CW complex, such that the infinite cyclic cover
T(h) has ezxactly two ends (15.2).

(iv) If h : X—X 1is a homotopy equivalence then

X — T(h) — S*

is a homotopy fibration, and the inclusion X —T (h); z—(x,0,0) is a ho-
motopy equivalence such that

Gy = P T(h) =~ X —T(h) ~ X .
(v) If h : X—X is a homeomorphism then X —T(h)—S" is a fibre
bundle, with a homeomorphism
T(h) — X xzR; [r,5,j] — [h77(2),s+]]
where the action of Z on X X R is by
Zx (X XR) — (X xR) ; (i,(x,5)) — (h7%z),i+7) .

(vi) If p : W—W s the covering projection of an infinite cyclic cover
with generating covering translation ( : W—W there is defined a homotopy
equivalence

T() = WxzR— W = W/Z; (2,t) — p(z) ,
where the action of Z on W x R is by
Zx (W xR) — (WxR); (i,(z,5)) — ('(2),i+7) -
(vii) The subspaces of T'(h) defined by

TH(h) = Tel(h) = (ﬁxux {j})/(;p,m):(h(x),o,jﬂ) ,
i=0

are such that the inclusions
T ) — T (W) UT (h) = T(h),
T NT (h) = X — T (h)
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are homotopy equivalences (although not in general proper homotopy equiv-
alences), and

_ h h
T+(h) ~ hocolm(X — X — X — ...).

If X is compact then

_ h h
e(T (h)) ~ holim (X «— X «— X «— ...),
2om

the one-point compactification T+(h)°° is contractible, T+(h) is forward
collared with locally finite projective class

T (n)Y = 0e Ko(z[m(T " (h)]),

and the evaluation map Pr+ gy e(T+(h))—>T+(h) is a homotopy equiva-

)

lence.
(viii) If X is a finitely dominated CW complex then T (h) is finitely
dominated for any map h : X— X, with projective class

[T (h)] = [X] € Ko(Z[m (X)]) -
If X is finite then T~ (h) is reverse collared, with [T (k)] =[X]=0. o
Remark 14.7 It will follow from 23.22 that the following conditions are

equivalent for the mapping torus 7'(h) of a map h : X— X of a finite CW
complex X with hy =1:m(X)—m(X):

+
T (h) is forward tame,

T " (h) is reverse tame,
T(h) is finitely dominated,

in which case
e(T (h) ~ eT (h) ~ T (h) ~ T(h),
(T (h) = 7T (b)) = m(

=
=z
Il
3
>

and the projective classes are such that

e (h)] = [eT (h)] = [T (h)] = [T(h)],

T~ (W) = [X] = [T(h)] € Ko(Z[m (X)) - .

—_—

In general, the infinite cyclic cover T(h) of the mapping torus T'(h) of a
map h : X— X of a finite CW complex X is not finitely dominated, T+(h)
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is not reverse tame, and T (h) is not forward tame — see 23.25 below for
an explicit example.

Proposition 14.8 (i) Let ¢ : X—X be a self map which fits into a com-
mutative square

R— R

with ¢ : X—R some map and R—R; s— s+ 1. The mapping torus T'(¢)
is such that there is defined a homeomorphism

T¢) =2 X/(xXR

with X/( the quotient of X by the equivalence relation ~ generated by x ~
(x) (z € X). _

(ii) Let W = ¢*R be the infinite cyclic cover W of a space W classified by
a map ¢ : W——St. The mapping torus of a generating covering translation
¢ : W—=W s such that there is defined a homeomorphism T({) = W x R.
Proof (i) Let p : X— X/( be the projection, and define a homeomorphism

T(C) — X/CxXR; (x,5) — (p(x),q(x) +5) .
(ii) Apply (i) with
X =W = {(w,s) €W xR|c(w) =[s] € S' =R/Z} ,
¢: X —X; (ws) — (w,s+1),

qg: X —R; (w,s) —s. o



15

Geometric ribbons and bands

A band is a compact space W with a finitely dominated infinite cyclic cover
W. The main result (15.10) of this chapter is that an infinite cyclic cover
W of a finite CW complex W is finitely dominated if and only if W is both

forward and reverse tame, in which case the end space e(W) is homotopy
equivalent to the disjoint union of two copies of W.

Ribbons are non-compact spaces with the homotopy theoretic and ho-
mological end properties of the infinite cyclic covers of bands. In Chapters
1520 we shall use engulfing and homotopy theory to prove that ribbons are
in fact proper homotopy equivalent to the infinite cyclic covers of bands.

Definition 15.1 A ribbon (X, d) is a non-compact space X with a proper
map d : X—R such that the subspaces

Xt = d7'0,00) , X° = d ' (~00,0]C X

satisfy :

(i) the inclusions
XtnX — X", XThX —X Xt —-X,X —X

induce bijections between the path components and induce isomor-
phisms

m(XTNX") = m(XE) = 7XY)

12

7T1(X)

on each component,
(ii) the composites

e(XT) — Xt — X | (X)) — X — X

are homotopy equivalences,

173
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(iii) inclusions (on each component) induce Z|r]-module isomorphisms
H.(XH) = BUS(XH @ H(R) , H(X) = HI7 (X )@ Ha(X)

with 7 = 71 (X) and X, X*, X~ the universal covers of X, Xt X~

e(X )~ X X~ X+ e(Xt)~ X

Definition 15.2 (i) A CW ribbon is a ribbon (X, d) such that X is a CW
complex, and the subspaces X, X~ XTN X~ are subcomplexes. Similarly
for an ANR ribbon.

(ii) An n-dimensional manifold ribbon is a ribbon (X, d) such that X is
an n-dimensional manifold and d : X —R is transverse regular at 0 € R, so
that

Xt = d7'0,00) , X~ = d'(-00,0]C X
are codimension 0 submanifolds with
OXT = 90X = X"TnX" =d'0)cXx

a compact (n — 1)-dimensional submanifold.

(iii) An n-dimensional geometric Poincaré ribbon (X,d) is a CW ribbon
which is an open n-dimensional geometric Poincaré complex, i.e. equipped
with a locally finite homology class [X] € HY (X) such that the cap products
define Z[r|-module isomorphisms

XIn— : H(X) — HI™(X) (x = m(X)). o

In particular, manifold ribbons are geometric Poincaré ribbons.

It is not required in 15.2 (iii) that d : X—R be geometric Poincaré
transverse at 0 € R, so that X N X~ need not be an (n — 1)-dimensional
geometric Poincaré complex (as is the case in 15.2 (ii)).

Manifolds with tame ends arise in the obstruction theory of Farrell [46,47]
and Siebenmann [145] for fibring manifolds over S1, as finitely dominated
infinite cyclic covers of compact manifolds. These are particular cases of
‘bands’:
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Definition 15.3 (Siebenmann [143]) A band (W, ¢) is a compact space W
with a map ¢ : W——S" such that the pullback infinite cyclic cover W = ¢*R
of W is finitely dominated, and such that the covering projection W ——W
determines a bijection between the path components of W and those of W.

O

Similarly for ANR band, CW band, geometric Poincaré band and mani-
fold band.

In Chapter 15 we shall be mainly concerned with bands (W, ¢ : W——S81),
particularly ones for which the infinite cyclic cover (W,¢ : W——R) is a
ribbon. In 15.9 below it will be shown that if (W, c) is a ANR band with
a mi-fundamental domain (e.g. a manifold band) then (W,¢) is an ANR
ribbon. However, in general the infinite cyclic cover (W,¢) of a band (W, c)
is mot a ribbon, since the mi-conditions of 15.1 may fail :

Example 15.4 The infinite cyclic cover (W,¢) of the CW band (W,c)
constructed in Example 13.16 for £ = 1 is not a ribbon, since w1 (W) = {1}
O

and 71(Z) # {1} for any closed cocompact Z C w.

In Chapter 19 we shall develop the ‘wrapping up’ construction of bands
from ribbons, tying the two ends of a ribbon (X, d) to obtain a band (W, ¢) =
()? , @ with an infinite simple proper homotopy equivalence (W,¢) ~ (X, d).
In particular, the infinite cyclic cover of the band (S*,1) is the ribbon
(gl,T) = (R,1), and the wrapping up of the ribbon (R,1) is the band
(R, 1) = (S, 1).

Wrapping up will be used in Chapters 17-20 to prove that :

(i) if W is a finite CW complex with a map ¢ : W——S81 then (W,¢) is a
band (i.e. the infinite cyclic cover W = ¢*R is finitely dominated) with a
m1-fundamental domain for the infinite cyclic cover W = ¢*R of W if and
only if (W,¢: W——R) is a ribbon,

(i) if X is an infinite CW complex with a proper map d : X —R then
(X,d) is infinite simple homotopy equivalent to a CW ribbon if and only
if (X,d) is infinite simple homotopy equivalent to the infinite cyclic cover
(W,¢) of a CW band (W, ¢), if and only if d : X —R is proper homotopic
to a bounded fibration, in which case X, X~ are both forward and reverse
tame, and HY™(X) = H,_1(X),

(iii) if (X, d) is an n-dimensional geometric Poincaré ribbon then X is a
finitely dominated (n — 1)-dimensional geometric Poincaré complex,

(iv) if X is an open manifold of dimension n > 5 with a proper map
d : X—R then (X,d) is a ribbon if and only if (X, d) is homeomorphic to
the infinite cyclic cover (W,¢) of an n-dimensional manifold band (W, ¢), if
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and only if d : X —R is proper homotopic to an approximate fibration.
(Some of these results can be proved directly.)

Remark 15.5 (i) By 13.1 the condition on path components in 15.3 is
equivalent to the surjectivity of ¢, : my (W;)—m1(S?) for each path compo-
nent W; of W.

(ii) For the mapping torus T'(f) of a map f : K— K of a compact space
K the condition on path components in 15.3 is equivalent to f preserving
the path components of K.

(iii) In dealing with CW (resp. ANR) bands (W, c) we shall always as-
sume that the infinite cyclic cover W admits a compact CW (resp. ANR)
fundamental domain. |

Example 15.6 (i) Let fi, fo : S°——S° be the maps defined by

fi = identity : S* — S§Y; +1 — +1,
fo =flip:S°—98%: +1— F1.

The mapping torus T'(f1) is a band, with
c1 = proj. : T(f1) = xSt — St | T(f;) = S"xR,

since p; : T(f1)—T(f1) induces a bijection between the path components.
The mapping torus T'(f2) is not a band, with

co =2 :T(fs) = S'— S | T(fs) = xR,

since Py : T(fo)—T(f2) does not induce a bijection between the path com-
ponents.

(ii) If K is compact and f : K—K is a homotopy equivalence then
T(f) ~ K is homotopy finite, and T'(f) is a band if and only if f preserves
path components.

(iii) The mapping torus T'(h) of a homeomorphism h : F—F of a com-
pact (n — 1)-dimensional manifold F' which preserves path components is

an n-dimensional manifold band T'(h) with
Gy * T(h) = FxR—T(h) = FxR; (z,t) — (h(2),t+1).

(iv) A compact n-dimensional manifold band (M,c) is a fibre bundle
over S if and only if M is homeomorphic to the mapping torus T'(h) of
a homeomorphism h : F—F of a compact (n — 1)-dimensional manifold
F which preserves path components, such that ¢ is homotopic to M =2
T(h)—S1, so that the homeomorphism M 2 T'(h) lifts to a Z-equivariant
homeomorphism M = T(h) = F x R. o
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Remark 15.7 (i) If (W, c) is a connected AN R band, then W = ¢*R has

exactly two ends W+, W~ which will be shown in 15.9 to be both forward
and reverse tame, with

eW) = e(W7) ~ W.

The one-point compactification W™ is homotopy equivalent to the reduced
suspension of W, = W U {pt.}

S(Wy) = (WxI)/(Wx{0,1})
so that for a CW band (W, c)
HI™(W) = H1(W)

with W any regular cover of W with group of covering translations .
(ii) Let W be a connected finite CW complex with a map ¢ : W—S"!
such that the infinite cyclic cover W = ¢*R of W is connected. By 13.13

W is forward tame if and only if W is reverse tame, with
W = m(W") = m(W) = «.

In 15.10 it will be proved that (W, c) is a band if and only if W™ is both
forward and reverse tame. In Chapter 23 it will be proved that wtis
reverse (resp. forward) tame if and only if the cellular Z[r]-module chain
complex C(W 1) (resp. the m-locally finite cellular Z[x]-module chain com-
plex CH-m (W +)) is finitely dominated, with W * the universal cover of W +.
It follows that if W is a finite n-dimensional geometric Poincaré complex
the end W ' is forward tame if and only if W is reverse tame, if and only if
(W, ¢) is a band, in which case W is a finitely dominated (n—1)-dimensional
geometric Poincaré complex and cap product with the fundamental class

(W] e B (W) = Hyr(W)

defines Poincaré duality isomorphisms

Win—- : H" (W) — HY(W) = H,_,(W) .

(iii) Let (V,0V) be an open n-dimensional manifold with a compact
boundary 0V and one end which is both reverse and forward tame, so
that (V;0V,e(V)) is a finitely dominated n-dimensional geometric Poincaré
cobordism. In Chapter 17 it will be shown that for n > 5 there exists an
open neighbourhood of the end W C V which is the infinite cyclic cover of a
compact n-dimensional manifold band (W, ¢) (the ‘wrapping up’ of V') such
that there exists a compact (n+ 1)-dimensional cobordism (M;dV x S*, W)
with homotopy equivalences

(V;0V,e(V)) x 8t ~ (M;0V x SLW) | e(V) ~ W



178 Ends of complexes
and homeomorphisms

(M\W,0V x SY) = (V,oV)x S' | WxR = W xS!. O

Recall from Chapter 13 that a fundamental domain (V;U,(U) for the
infinite cyclic cover W = ¢*R of a band (W, ¢ : W——S1) is ‘m;-fundamental’
if the inclusions induce isomorphisms m (U) = 71(V), m1(¢CU) = w1 (V).

Definition 15.8 A 71-band is a band (W, ¢) which admits a 7;-fundamental
domain. O

Recall from 13.11,13.12 that there exist CW bands which are not -
bands, but that every CW band is simple homotopy equivalent to a -
band.

Proposition 15.9 Let (W,¢) be a compact ANR band.

(i) The spaces W+,W_ are forward and reverse mi-tame.
(ii) The end spaces are such that there are defined homotopy equivalences

W) ~ WIHW , e(W') ~ W ~ (W ).
(iii) If (W,¢) is a m-band

o

In particular, (W ,¢) is an ANR ribbon.
(iv) If W is a CW m1-band

W =W, W = WY,

W] = W+ W] - nWw],

W = W -] = W nW |-[W ],

W = W -[W] = W nW |- [W"] € Kozn]) .

Proof (i) The finite domination of W implies that there exists a homotopy
frWRT T () — file)
such that
fo=1:W-—W , AW)Ce '[~kKk
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for some integer k£ > 0. Use the homotopy extension property to construct
a homotopy

F:WxI—W; (x,t) — Fy(x)
such that
Fob=1:W-—W, BE(W)Ce [k 0) ,
Fi| = inclusion : ¢ '[k4+1,00) — W (teI).

The generating covering translation ¢ : W——W can be used to construct
for each integer m > 0 a homotopy

h(m) : Wx T —W; (x,t) — R ()
such that
h(m)y = 1 : W — W , h(m)y(W) C¢ '[m,o0),
h(m);| = inclusion : e '2k+m +1,00) — W (te€l).
Define a sequence of positive integers mi, mao, ... by setting
my =1, my =2k+mi—1+1 (i>1).

Then the homotopies h(m;) for i = 1,2,... can be concatenated to define
a proper homotopy W x [0,1)—W extending the inclusion. Reversing

the role of the two ends of W similarly gives a proper homotopy W x
[0,1)— W extending the inclusion. Let N > 0 be an integer so large that

¢V W is disjoint from W . The subspace

V=>"NWruw cw
is cocompact, and such that there exists a proper homotopy V x [0,1)—W
extending the inclusion, so that W is forward tame, and hence W+, W are
forward tame. The spaces W+,W_ are reverse tame by 13.13, and have

stable 7 at oo by 7.11, so that they are reverse mi-tame.
(ii) The composite

p e(W+) pW—+> W —W
is a homotopy equivalence by 13.13. Reversing the role of the two ends of
W similarly gives that the composite e(W )—W ——W is a homotopy
equivalence.
(iii) The homology identities are given as in 13.15 (ii).
(iv) These identities follow from (i), (ii) and W = wWruw". o
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Proposition 15.10 Let W be a connected finite CW complex with a map
c: W—S* such that c, : 1 (W)—m1(SY) = Z is onto, and such that the
infinite cyclic cover W = c*R of W is connected. The following conditions
on (W, c) are equivalent :

(i) (W,c) is a CW band,

(i) W

(iii) W' and W~ are forward tame,
) W
) W

_l’_ _—
and W are reverse tame,

T s forward and reverse tame,
T and W are finitely dominated.

(iv

(v

If these conditions are satisfied

W = W], WY = —[W7] e Ko(2z[r)

where ™ = 11 (W) = ker(c, : m (W)—m1(S1)).

Proof By 13.11 (ii) (W, ¢) is simple homotopy equivalent to a CW mi-band
(W',¢). By 9.6 and 9.8 the conditions (i)—(v) hold for (W,c¢) if and only
if they hold for (W' ¢’). So there is no loss of generality in assuming that
(W, ¢) is itself a mi-band, with

mnWinW™) =a (W) = (W) = 7.
(i) <= (v) Let W, W T, W ~ be the universal covers of W,WJF,W*, SO
that
W =WHruw-

with W+ N W ~ the universal cover of the finite CW complex W' NW .
The cellular Z[r]-module chain complexes fit into a short exact sequence

0—CWTNW™) — CWHaCW™) — C(W) — 0
with C(W *NW ™) f.g. free. Thus C(W) is finitely dominated if and only

if C(W*) and C(W ~) are finitely dominated. The space W is finitely
dominated if and only if the Z[r]-module chain complex C(W) is finitely
dominated (6.8), and similarly for W+,W_.

(i) <= (iii) <= (iv) <= (v) by 13.15.

The finiteness obstruction identities are given by 15.9. O

Definition 15.11 The geometric fibring obstructions of an ANR band
(W, ¢) with respect to a choice of generating covering translation ¢ : W—W
are the torsions

oT(W,e) = 7(T()—W),
e~ (W,e) = 7(T(¢H)—W) € Wh(m (W))
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of the homotopy equivalences

T(C) — W ; (.T,t) - p(l’) ’

T — W (2,t) — p(2)
with p : W——W the covering projection, using the canonical simple homo-

topy types on W (6.5) and T'(¢) and T'((~!) (14.3) to define the torsions.

m}

Remark 15.12 (i) A CW band (W, ¢) is simple homotopy equivalent to
the mapping torus T'(h) of a simple self homotopy equivalence h : F—F
of a finite CW complex F' if and only if

Ot (W,e) = &~ (W,c) = 0€ Wh(m (W))
by Ranicki [124, Chapter 20]. For any CW band (W, c)
SHW x S e(pri)) = & (W x S, c(pr1)) = 0 € Whim (W) x 81)

with W x S! simple homotopy equivalent to the mapping torus T'(h) of the
simple self homotopy equivalence h : F'—F' defined for any finite structure
(F,¢p: W x S'—F) on W x S' by

h=o¢(Cx)p?t: Fo WxS —WxS ~ F.

(ii) The torsion of an n-dimensional geometric Poincaré complex W is

(W) = (W] —: C(W)"*—C(W)) € Wh(m (W) ,

and W is simple if 7(W) = 0. The fibring obstructions of an n-dimensional
geometric Poincaré band (W, ¢) determine the torsion

T(W) = @Y (W,c) + (—)"® (W, e)* € Wh(m (W)) .

Thus for a simple geometric Poincaré band (W, c) (e.g. a manifold band)
the fibring obstructions are related by the duality

eF(W,e) = (=)' 10" (W,e)* € Wh(m (W) ,

and ®T(W,c) = 0 if and only if ®~(W,¢) = 0. In the manifold case
® (W, c) is the fibring obstruction of Farrell [47] and Siebenmann [145],
such that ®+(W, ¢) = 0 if (and for n > 6 only if) ¢ : W——S! is homotopic
to the projection of a fibre bundle, i.e. if and only if W is homeomorphic
to the mapping torus 7'(h) of a self homeomorphism h : F—F of a codi-
mension 1 submanifold F' C W. See Remark 24.17 below for the geometric
interpretation of ®*(W,c) = ®~ (W, ¢) = 0 for an ANR band (W, c). |
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Proposition 15.13 Let (W,c) be an ANR band. For any fundamental
domain (V;U,CU) for W let

%) -1
wr=ydv , w = |J dv.
=0

j=—00
Nt S
(i) There exists an integer N* > 0 such that \J ¢?V dominates W rel
§=0
U. .
(ii) There exists an integer N~ > 0 such that |J ¢V dominates (W
j==N-
rel CU.

Proof (i) By 13.13 there exist a homotopy
h : WxI—W; (x,t) — hy(2)

and an integer N > 0 such that :

(a) hi(z) =z for x € W,

(b) he(y) =y fory e CN'W™ = U ¢V, tel,
() ho(W ) U V.
j==N*
The maps
N+
FowWh— oV — MNho¢™N (@),
j=0
N+
g = inclusion : U €A% N
j=0

are such that there is defined a rel U homotopy
NN L gf 21 W — W

Nt 7
so that |J ¢V dominates W rel U.
§=0

(ii) As for (i), with the role of W', W™ reversed. o

Definition 15.14 Let (W, ¢) be a band.
(i) The band (W,c) is positively relazed if there exists a fundamental

domain (V;U, CU) for W such that V' dominates W™ rel U.
(ii) The band (W, c) is negatively relaxed if there exists a fundamental
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domain (V; U, CU) for W such that 7'V dominates W rel U.

(iii) The band (W, ¢) is relazed if there exists a fundamental domain (V; U,
CU) for W which is both positively and negatively relaxed, i.e. if Nt =
N~ =0in 15.13. o

Example 15.15 (i) The mapping torus T'(h) of a self homotopy equivalence
h: F—F of a finite CW complex F is a relaxed CW band; in this case
the infinite cyclic cover T'(h) has a fundamental domain

(V;U,CU) ~ F x (1;{0},{1})

such that the inclusions V—T(h)", (7'V——T(h)~ are homotopy equiv-
alences rel U.

(ii) In 16.15 it is proved that if W is a finite CW complex with a map
¢ : W—S" such that ¢, : m (W)—m1(S?) is onto, and which is homotopic
to an approximate fibration, then (W, c) is a relaxed CW band. O

How do manifold bands arise? The obvious sources are:
(a) fibre bundles over S', e.g. complements of fibred knots,
(b) manifold tame ends, since these have open neighbourhoods which are
infinite cyclic covers of manifold bands.
Here is another source:
(c) surgery theory.

Example 15.16 Surgery theory can be used to construct manifold bands
(W, ¢) in dimensions n > 5 with prescribed fundamental group, as follows.
For the sake of simplicity we shall only consider the untwisted case, with
¢, = projection : m (W) = m x Z— Z for some finitely presented group 7.
Let A = Z[r], with Laurent polynomial extension A[z,271] = Z[r x Z]. As
in Ranicki [128,130] define a square matrix w = (wjj)1<; j<r with entries
wij € Alz,271] to be Fredholm if the Az, z~!]-module morphism

w : Az, 27 — Alz, 27 YR

K k k
(a1, a2,...,a) — (O awin, Y awiz, ..., Y Giwik)
i=1 i=1 i=1

is injective and the cokernel is a f.g. projective A-module, or equivalently
if w becomes invertible over the Novikov rings A((z)) and A((z1)) (cf.
23.1 and 23.2 below). Let € be the set of Fredholm matrices in Az, 271,
and let A = Q71 A[z, z71] be the (noncommutative) localization of Az, 27!
inverting ). This type of localization is a generalization of the single-element
inversion of 2.28 (i). The injection A[z,27!]—A is a ring morphism with
the universal property that a finite f.g. free A[z, 2~ !]-module chain complex
C is A-finitely dominated if and only if H.(A ®4, ,-1) C) = 0, by Ranicki
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[126]. For a connected finite CW complex X with m1(X) = 7© X Z we
have Z[m(X)] = Alz,27!] and Hy(X;A) = Ho(A ® 4, ,-1) C(X)), with
X the universal cover of X. The infinite cyclic cover X = X/m of X is
finitely dominated if and only if H,.(X;A) = 0. The realization theorems of
Chapters 5 and 6 of Wall [165] for the L-groups have A-homology surgery
versions for the I'-groups of Cappell and Shaneson [20]. It is thus possible
to realize every element z € L, 1(A) = [yi1(Alz,271]—A) as the A-
coefficient surgery obstruction = = 0. (f,b) of an (n+1)-dimensional normal
map

(f,0) = (LsM x 8", N) — M x S' x (I;{0},{1})
with M a closed (n — 1)-dimensional manifold such that m (M) =,
(f,b)] =1 : MxS"— MxS!
and with the restriction
(e,a) = (f,b)] : N — M x S*

a normal map inducing isomorphisms

~

ex @ m(N) — m(M xS = 7x27,
ex © H(N;A) — H.(M xS A) = 0.
Then (N, ¢) is an n-dimensional manifold band, with

¢c: N - Mxst 2% gl
inducing ¢, = projection : 71 (N) = 7 xZ — 71 (S') = Z. (The construction
of manifold ands in 10.3 (iii) is a special case). See [128] for a more detailed
account, including the identification Lo (A) = W(A) with W(A) the Witt
group of nonsingular asymmetric forms over A of Quinn [113], and the
computation La.y1(A) = 0 (implicit in [113]). o

We shall be more concerned with the geometric construction of bands.
In Chapters 18-20 we shall relate the geometric and homotopy theoretic
properties of ribbons and bands, using elementary versions of the geometric
twist glueing of Siebenmann [145] :

Definition 15.17 Let X be a locally compact Hausdorff space with a proper
map d : X —R and an end-preserving homeomorphism h : X—X. Sup-
pose there exist homeomorphisms fi : Ur— X with ULr C X open sub-
spaces, U_ N U, = (), for which there exist m > n > 0 such that

d_l(_oo7 —TL) - U- ) d_l(na OO) - U+ )
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and such that the restrictions
fo| : dY(=o0,—m] — X , fil:d 7 lm,00) — X

are the inclusions. The Siebenmann twist glueing of X relative to h is the
identification space

Wi(f-, f+) = X/~

with ~ the equivalence relation generated by x ~ f;lh f-(z)forzeU_. o

Note that W}, (f—, f+) is homotopy equivalent to the mapping torus T'(h).

Siebenmann [145, p. 19] proved the following uniqueness result by an ele-
mentary method.

Proposition 15.18 Let X be a locally compact Hausdorff space with a
proper map d : X —R. If the two ends of X have arbitrarily small neigh-
bourhoods Uy with homeomorphisms fi : Ur—X as above, then any
two twist glueings Wi(f—, f+), Wi (fL, fL.) with respect to the same end-
preserving homeomorphism h : X — X are homeomorphic. |

We shall be particularly concerned with the Siebenmann twist glueing
construction in two special cases:

(i) Given a manifold ribbon (X,d) with d : X—R a ‘manifold approx-
imate fibration’ (Chapter 16) we construct in Chapter 17 the ‘geometric
wrapping up’ (M, c) = ()A( ,¢), a manifold band with infinite cyclic cover
(M,¢) = (X,d). The construction in Chapter 17 uses elementary proper-
ties of approximate fibrations. In 18.6 M is identified with the Siebenmann
twist glueing of X relative to 1 : X—X.

(ii) The ‘relaxation’ of a manifold band (M, ¢) is constructed in Chapter
18 to be an h-cobordant manifold band (M’,¢') with ¢/ : M’—S! a mani-
fold approximate fibration. The construction in Chapter 18 uses elementary
properties of ‘bounded fibrations’ (Chapter 16). In 18.7 M’ is identified with
the Siebenmann twist glueing of the infinite cyclic cover M of M relative
to a generating covering translation ¢ : M —M.

Definition 15.19 Let (X, d), (X’,d’) denote spaces X, X' with maps d :
X—R, d' : X’—R (but not necessarily ribbons).

(i) A homotopy equivalence f : (X,d)—(X’,d’) is a homotopy equiva-
lence f: X—X'.

(ii) Suppose that the maps d,d" are proper. A proper homotopy equiva-
lence f : (X,d)—(X',d’) is a proper homotopy equivalence f : X — X’
with a proper homotopy d'f ~ d : X —R. o
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In Chapter 19 we shall develop a CW analogue of the Siebenmann twist
glueing : given a connected CW ribbon (X, d) and a homotopy equivalence
h : (X,d)—(X,d) we use h to tie the two ends of X together to obtain
a CW complex X (h) with a map d(h) : X(h)—S! and with homotopy
equivalences (X,d) ~ (X (h),d(h)), X(h) =~ T(h). In the special case when
h : (X,d)—(X,d) is a proper homotopy equivalence with h a covering
translation or the identity we obtain a relaxed CW band (X [h], d[h]) with
a proper homotopy equivalence (X,d) ~ (X|[h],d[h]) which is simple in
the sense of the infinite simple homotopy theory of Siebenmann [144]. In
Chapter 20 the ‘wrapping up’ of a CW ribbon (X, d)

(X,d) = (X[1],d[1])

will be used to prove that d : X—R is proper homotopic to a proper
bounded fibration. The ‘relaxation’ of a CW mj-band (W, ¢) is defined in
Chapter 20 to be the relaxed C'W band

W',y = (W[cl,e[¢])

in the homotopy type of (W,¢). In Chapters 24,25 below we shall apply
the homotopy theoretic twist glueing to study the fibring obstructions of
relaxed CW bands (which are distinguished by the property that the Nil-
components vanish).
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Approximate fibrations

We characterize forward and reverse tameness for open manifolds in terms
of approximate lifting properties; the main result (16.13) is that an open
manifold W of dimension n > 5 is forward tame and reverse tame if and
only if there exists an open cocompact X C W with a manifold approximate
fibration d : X—R. In Chapter 17 it will then be shown that an open
manifold X of dimension n > 5 is the total space of a manifold approximate
fibration d : X —R if and only if it is the infinite cyclic cover X = M of
an n-dimensional manifold band (M, ¢).

Definition 16.1 Let B be a metric space.

(i) Let € > 0, and let X,Y be spaces equipped with maps p : X—B,
q:Y—B. Amap f: X—Y is an e-homotopy equivalence over B if there
exists a map g : Y —X together with homotopies

h:9f 21 : X —X,k: fg~1:Y—>Y
such that for all x € X,y € Y

d(p(x), qf(x)) < e, dlpg(y),q(y)) <e,
diameter ph({z} x I) < € , diameter gk({y} x I) <€ .

(ii) A bounded homotopy equivalence of spaces with maps to B is a homo-
topy equivalence which is an e-homotopy equivalence over B for some € > 0.
O

Definition 16.2 Let B be a metric space.
(i) Let € > 0. An e-fibration is a map p : X — B such that for any space
W and maps f: W—X, F: W x I— B satisfying

F(z,0) = pf(z) (x€W)
there exists a map F : W x I—X such that
F(2,0) = f(z), dpF(2,1), F(z,1) < e (zeW,teT).

187
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W 0y — . x

| 7k

wxli—2*t B

(ii) If U C B then p : X— B is an e-fibration over U if the image of the
homotopy F' above is in U.

(iii) A bounded fibration is a map p : X — B which is an e-fibration for
some € > 0. m

Proposition 16.3 A map p: X—R from a metric space X is a bounded
fibration if and only if it is bounded homotopy equivalent to the projection
Y x R—R for some space Y.

Proof Let p; denote the projection onto the i coordinate space (i = 1,2).
Assume first that X is bounded homotopy equivalent to Y x R over R so
that there exist maps f: X—Y xR and g: Y x R— X as in 16.1 (i) for
some € > 0. Suppose we are given a lifting problem F : W x [—R and
h : W—X such that F(z,0) = ph(x) for each € W. Convert this to a
lifting problem in Y x R by defining

G: WxI—R; (z,t) — F(x,t) — F(2,0) + pafh(z)
with solution
G: WxI—YxR; (z,t) — (p1fh(z),G(z,1)) .

Note that G is e-close to F' and pgé is 2e-close to F.
Let H:1~gf: X—X be a homotopy such that for all z € X

diameter pH ({z} x ) < € .
Define

gG(x,1) fo<t<1i,

F' o Wx[-1,1] — X ; (z,t) — .
H(h(z),1+t) if —1<t<0.

Assume for the moment that W is paracompact. Then there exists a map
a: W—(0,1] such that for all z € W
diameter pF'({z} x [-1,a(z)]) < €
(see Dugundji [38, page 179]). Define
(z,t) if a(z) <t <

Y

1
J:Wx[—>W><[—1,1];(x,t)—>{ 1) i0<t<a(a).

.
a(x)
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Then F = F'J has the property that F(x,0) = h(z) and pF is 3e-close to
F'. To avoid the paracompactness assumption, let

E(p) = {(z,)) € X xR [p(z) = A0)} .

Then E(p) is a metric space (hence, paracompact) and, in the standard
way, a universal lifting problem can be given in terms of E(p), the bounded
solution of which implies that p is a bounded fibration.

Conversely, assume that p is a bounded fibration. Define

f:X—XxR;z— (z,p(x)) .

Note that p = paf. We shall show that f is a bounded homotopy equiv-
alence. In order to get an inverse, consider the following lifting problem.
Let

h = projection : X xR — X |
F : XXRxI—R; (z,y,t) — (1 —t)p(z) + ty .

Then there exists a map F: X xR x —X such that

F(z,y,0) = = ((z,y) € X XR)

and pﬁ is e-close to I for some € > 0. We claim that Fy X xR—Xisa
bounded homotopy inverse for f. First note that Fif : 1~ Fif: X— X is
a 2e-homotopy over R. The map

G : XXRXI%XXR; (x7yat) - (ﬁ(l’,y,t),(1—t)y+tp2fﬁ($,y,l))
is a 2e-homotopy over R

G:1~fF : XxR— X xR. O

Corollary 16.4 If p : X—R is a proper bounded fibration such that
p~10,00) and p~1(—o0,0] are ANR’s, then X is forward tame and reverse
tame.

Proof Apply 16.3 and 9.12. o

The following result says that the existence of a bounded fibration to R
is a proper homotopy invariant.

Proposition 16.5 If X is a metric space, f : X—Y is a proper homo-
topy equivalence and p : Y —R is a bounded fibration then pf : X —R is
properly homotopic to a bounded fibration d : X —TR.

Proof Let g : Y— X be a proper homotopy inverse for f and let G : idx ~
gf be a proper homotopy. Let ng = 0 and use the properness of p, f, g, and
G to inductively choose n; >4 (i =0,1,2,...) so that:
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1) pfg(p_l[_nifhn’ifl]) - [_ni7n’i]7

(ii) pfg(p~*[Ens, £00)) C [Eni—1, +00),

(iii) pfGe((pf)~—ni—1,ni-1]) C [~ns,n4] for each ¢,
(iv) pfGi((pf)~t[£n;, £00)) C [dn;_1,d0o0) for each t.

Let v : R—R be the PL homeomorphism such that
v(£n;) = +i (i=0,1,2,...).

Then pf is properly homotopic to d = vpf : X—R. One may check that
~p is 3-close to ypfg and that ypfG : X x [—R is a 3-homotopy. In order
to show that d is a bounded fibration, consider a lifting problem h : Z—X
and H : Z x —R such that

dh(z) = H(2,0) (z€2).

It follows from standard arguments that we may assume that Z is paracom-
pact (see the proof of 16.3). This lifting problem induces a lifting problem
fh:Z—Y and H : Z x —R for vp : Y —R. Suppose that p: Y —R
is a b-fibration. Since 7 is distance nonincreasing, vp is also a d-fibration.
There is a solution H : Z x I—Y such that

—~

fh(z) = H(z,0) (z€ 2)

and vpl/LI\ is b-close to H. Use the paracompactness of Z to define a map
¢ : Z—(0,1] such that H(z,0) is 1-close to H(z,t) if t < ¢(z). Define

Gh(2),t/¢(z)) f0<t<1/2,

H:ZxI— X5 (2t — {gﬁ(z,t/d)(z)—l) if1/2<t<1.

Then

h(z) = H(z,0) (z€ Z)

and dH is max{4,3 + b}-close to H. Hence d is a bounded fibration. m

Note that the proof above just requires X to be properly dominated by a
bounded fibration, rather than proper homotopy equivalent to one.

We shall be mainly concerned with bounded fibrations p : X — B with p
a proper map.

Definition 16.6 (i) An approzimate fibration p : X — B is a map which is
an e-fibration for every € > 0.

(i1) A manifold approzimate fibration p : W— B is an approximate fibra-
tion such that W and B are manifolds (either finite dimensional without
boundary or Hilbert cube manifolds), and such that p is a proper map. O
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Proposition 16.7 A map p : X—R from a metric space X is an approx-
imate fibration if and only if for every e > 0 it is e-equivalent over R to the
projection Y X R—R for some space Y .

Proof The proof of 16.3 shows that a space which is e-equivalent over R
to a product with R is a 3e-fibration. And conversely, an e-fibration is
2e-equivalent over R to a product with R. o

More general versions of 16.3 and 16.7 are given in Hughes, Taylor and
Williams [77, p. 47].

Proposition 16.8 Let X be a metric space with a map p : X—|0,00)
which is e-homotopy equivalent at oo to the projection Y x [0, 00)—[0, c0)
for some space Y and some € > 0. Then there exists u > 0 such that p is
an 3e-fibration over (u,o0).

Proof Let (f,g,X",Y") : X—Y x [0,00) be an e-equivalence at oo with
X' = p~Y([s,0)) and Y' = Y x [t,00). For u much larger than s,t, the
proof of 16.3 shows that p is a 3e-fibration over (u, c0). o

We shall use the sucking principle of Chapman [25, 26| to gain the control
necessary to pass from bounded fibrations to approximate fibrations. This
says that, for manifolds, there is essentially no difference between proper
approximate fibrations and proper e-fibrations for sufficiently small € > 0.
At its simplest, the sucking principle takes on the following form.

Theorem 16.9 (Chapman) For every n > 5 and € > 0 there exists 6 > 0
such that if W is an open n-dimensional manifold or a Hilbert cube manifold
and p : W—R is a proper d-fibration, then p is e-homotopic to a manifold
approzimate fibration p' : W—R. i

The proof of 16.9 uses controlled engulfing.

Corollary 16.10 If W is an open manifold of dimension > 5 or a Hilbert
cube manifold and p : W—R is a proper bounded fibration, then p is bound-
edly homotopic to a manifold approximate fibration.

Proof Suppose p is an e-fibration for some € > 0. Choose § > 0 by Theorem
16.9 so that any proper d-fibration from an n-manifold to R is 1-homotopic
to a manifold approximate fibration. Choose L > 0 so large that ¢/L < ¢
and define

vy:R—R;z— z/L.

Then vp : M—R is an (e¢/L)-fibration and is 1-homotopic to a manifold
approximate fibration p’ : M —R. It follows that p is L-homotopic to vy~ !p’
which is a manifold approximate fibration. O
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Proposition 16.11 For every n > 5 there exists € > 0 such that if (W,0W)
18 an open n-dimensional manifold with compact boundary or a Hilbert cube
manifold, and p : W—[0,00) is a proper e-fibration over (a,o0) for some
a > 0, then p is properly homotopic to a map p' such that

Pl (@) Ha+1,00) — (a+1,00)

is a manifold approximation fibration.
Proof The proof follows from Chapman’s proof of 16.9 in [25, 26]. O

The next example shows that this version of Chapman’s sucking principle
fails for ANR’s.

Example 16.12 We construct a non-manifold 2-dimensional CW band
(W, c) such that ¢ : W——R is not properly homotopic to an approximate
fibration even though ¢ is a proper bounded fibration.

Let D be the topologist’s dunce cap, the space obtained from the standard
2-simplex o by identifying its three edges, two with the same orientation
and one with the opposite orientation. So D is a CW complex with one
0-cell, one 1-cell, and one 2-cell. Let x be the 0-cell and let y be a point in
the interior of the 2-cell.

Let W be the space obtained from D by identifying x and y. Clearly, W
can be given the structure of a finite 2-dimensional CW complex. (If D is
obtained from the standard 2-simplex ¢ by identifying edges, and y is the
barycentre of ¢, the subdivision of ¢ obtained by starring from y induces
a C'W structure on D which in turn induces a CW structure on W. This
CW structure on W has one 0-cell, four 1-cells, and three 2-cells.)

Fix a classifying map ¢ : W——S! such that ¢ (1) = {z = y}. A Z-
equivariant lift ¢ : W——R is a bounded fibration. This is because there
is a strong deformation retraction of D to an arc in D joining z and y.
This strong deformation retraction induces a bounded strong deformation
retraction of W to a copy L of R such that €|z, : L—R is a homeomorphism.
It also follows from 17.14 below that ¢ is a bounded fibration.

Write

[e.e]
w= U D
1=—0Q
where D; is a fundamental domain homeomorphic to D with vertices z; € D;
such that ¢(z;) = ¢ and D; N Diy1 = {zi41}-

Assume by way of contradiction that ¢ is properly homotopic to an ap-
proximate fibration d : W——R. Since W and R are contractible, so is the
homotopy fibre of d. This in turn implies that d is a cell-like map (Ferry
[53,p.337]). It can also be verified directly that d is a cell-like map. Since d
is proper, there exists an integer ¢ such that d(z;) < d(z;+1). Choose t such
that d(z;) <t < d(zi+1).
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Claim 1 d~!(t) C D;.

Proof Suppose on the contrary that there exists u € d~!(t) such that u ¢

D;. Assume without loss of generality that v € |J D;. By the connectivity
j<t

of D;, there exists v € D; such that d(v) = t. Since z; ¢ d~'(t), d~1(¢) has

at least two components: one containing u, and another containing v. This

contradicts the cell-likeness of d~1(t). O

Identify D; with D and assume ¢ = 0. Thus, we have a map d : D—1
such that d(z) = 0, d(y) = 1, and d~'(¢) is cell-like for each t € (0,1). It
follows that d~!(1) is a cell-like subset of D which separates = from y. The
following claim provides a contradiction.

Claim 2 If Z C D is a cell-like set and x ¢ Z, then Z does not separate D.
Proof Let m : 0——D denote the quotient map. The proof is based on the
following five items:

(i) Every proper 2-dimensional subpolyhedron P of D contains a free
1-dimensional face. For let @) be the subpolyhedron of o which is the
union of all 2-simplexes in 7~ (P). It suffices to observe that that Q
has a free 1-dimensional face not in Jdo.

(ii) Every subpolyhedron P of D is aspherical. If P = D this is true. On
the other hand if P is proper, then (i) implies that P collapses to a
1-dimensional subpolyhedron which of course is aspherical. It also
follows from Papakyriakopoulos [107, p. 19] that any subpolyhedron
of D is aspherical.

(iii) If P € @ C D\{x} are subpolyhedra, P contracts to a point in @
and @ contracts to a point in D\{x}, then there exists a contractible
subpolyhedron P’ of D such that P C P’ C Q. By (ii) it suffices
to find a simply-connected subpolyhedron P’ with P C P’ C Q.
This would follow from standard plane topology if @ C D\m(d0)
(by adding appropriate complementary domains of P). In the more
general case, pass to the universal cover U of D\V where V is the
interior of a small regular neighbourhood of x. Lift P and @ to
subpolyhedra P, @ of U. The fundamental domain F' for U is home-
omorphic to a 2-cell so plane topology can be used in U to build P’.
The idea is to work inductively starting at the outermost translates
of F' which meet P and add appropriate complementary domains in
that translate to P.

(iv) If P € @ C D are subpolyhedra such that @ collapses to P across
2-simplexes and @ separates D, then P separates D. This can be
verified by pulling P and @ back to ¢ and examining the several
possible cases.
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(v) No contractible 1-dimensional subpolyhedron P of D separates D.
Since P collapses to a point and D is not separated by a point, a
1-dimensional analogue of (iv) is needed. As in (iv) this is verified
by pulling back to ¢ and examining the several possible cases.

Given these five items we can finish the proof of Claim 5. It follows from
(iii) that we can write

zZ =%
i=1

where Z;+1 C Z; and Z; is a contractible proper subpolyhedron of D. If
Z separates D, then we may assume that each Z; separates D. It follows
from (i) and (iv) that Z; collapses to a 1-dimensional subpolyhedron P
which does not separate D. Since Z; is contractible, so is P, which is a
contradiction to (v). o

Theorem 16.13 Let W be an open manifold of dimension > 5 with compact
boundary or a Hilbert cube manifold. The following conditions on W are
equivalent :

(i) W is both forward and reverse tame,
(il) W is forward tame and the end space e(W) is finitely dominated,
(iii) there exist an open cocompact X C W and a manifold approximate
fibration X —R.

Proof (i) <= (ii) follows from 9.15.
(i) = (iii) follows from 9.14, 16.8 and 16.11.
(iii) = (i) follows from 16.7 and 9.12. o

Theorem 16.13 is the existence part of the Teardrop Structure Theorem
of Hughes, Taylor, Weinberger and Williams [76] in the simplest case (two
strata, the lower stratum being a point). The next example shows that one
cannot hope for a true analogue of 16.13 for AN R’s, even if one only wants
a proper bounded fibration.

Example 16.14 For the CW complex W of 16.12 the result of adding a
point at —oo (thereby compactifying W~) is an ANR X = W U {—o0}
which satisfies all the hypotheses of 16.13, yet no open cocompact subset of
X admits a proper approximate fibration to R. o
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Proposition 16.15 If W is a connected finite CW complex with a map
c : W——=S' which is homotopic to an approzimate fibration, and c, :
7 (W)—m1(SY) is onto, then (W, c) is a relazed CW band.

Proof We have to show that there exists a fundamental domain (V; U, CU)
for W = ¢*R such that V dominates W ' rel U and ¢~ 'V dominates W~
rel U. Assume first that ¢ is an approximate fibration and consider the
induced proper approximate fibration ¢ : W——R. Choose a fundamen-
tal domain (V;U,(U) such that U C @-1(0,1/2). Define a homotopy
F :[1/2,00) x I—[1/2,00) such that F(s,0) = s,F(1/2,t) = 1/2, and
F(s,1) = 1/2 for all s,t € [1/2,00) x I. Use the regular approximate ho-
motopy lifting property of Coram and Duvall [36] to construct a homotopy
F:e711/2,00) x I—¢1[1/2,00) such that F(z,0) = z, F(y,t) = y and
F(z,1) € ¢ 11/2,1] for all (z,t) € ¢ '[1/2,00) x I and y € ¢ '(1/2).
Then F extends to a homotopy, also denoted F , defined on all of WJr,
by setting F(z,t) = (x,t) for all z € w Ne~10,1/2] and t € I. Thus,
F W' x I—W" satisfies Fo = 1W+, ﬁt|U = inclusion : U——W © for
each t € I, and ﬁ'l(W+) C V, showing that V dominates W rel U. A

similar construction shows that (~'V dominates W rel U.

If ¢ is merely homotopic to an approximate fibration ¢’ : W——S!, then the
associated infinite cyclic cover W' = ¢*R of W has a fundamental domain
(V';U',¢'U") with the required domination properties. Moreover, there is
an isomorphism A : W' —W of covering spaces so that ¢ = h¢’h™1. Tt fol-
lows that (hV;hU,ChU) is a fundamental domain for W with the required
domination properties. ]

Proposition 16.16 If d : W—R is a proper approximate fibration then
the composite

p:eWh) —WH — W

is a homotopy equivalence, with W+ = d=1[0, 00).

Proof W is forward tame by 16.4, and there exists a closed cocompact
V C W™ with a proper map ¢ : V x [0,00)— W™ extending the inclusion.
Chose n > 0 so large that d='[n + 1, 00) C U. Define a homotopy

h:RxI—R; (z,t) — (1 —t)z + tmax{N,z} .

This homotopy can be approximately lifted to obtain a homotopy h:W x
I—R with hg = idy and dh; 1-close to hd for each t € I. In particular,
hi(W) C U. Define

f W —eWh);z— (t — qlhi(z),t)).

Then f is a homotopy inverse for p. O
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Corollary 16.17 A manifold approxzimate fibration d : W —R is a ribbon.
Proof The transversality conditions (i) in the definition of a ribbon (15.1)
are given by manifold transversality. The homotopy conditions (ii) are given
by 16.16. The homology conditions (iii) follow from the forward tameness
of W (16.4) and 13.15 (ii). o

In Chapter 17 we shall prove that a manifold approximate fibration d :
W—R of dimension > 6 is proper homotopic to a lift ¢ : M ——R of the
classifying map ¢ : M——S?' of a manifold band (M, ¢) such that W = M.



17

Geometric wrapping up

Wrapping up is a geometric compactification procedure which for n > 5 as-
sociates to an n-dimensional manifold approximate fibration (X, d : X —R)
a relaxed n-dimensional manifold band (M, ¢) = (X, d : X —S') with infi-
nite cyclic cover M = X, such that ¢ : X—R is an approximate fibration
properly homotopic to d, with X x S' homeomorphic to M x R. By 16.13
an open n-dimensional manifold W which is both forward and reverse tame
has an open cocompact X C W with a manifold approximate fibration
d: X—R, and the wrapping up provides a canonical collaring of the open
(n + 1)-dimensional manifold W x S with boundary M = X (17.10).

We shall use wrapping up to prove that an AN R space X admits a proper
bounded fibration d : X —R if and only if it is infinite simple homotopy
equivalent to the infinite cyclic cover M of a CW band (M, c) (17.16). We
also prove that an open manifold X admits a manifold approximate fibration
d : X—R if and only if X is the infinite cyclic cover M of a manifold band
(M, c) (17.18).

We begin in 17.1 with the wrapping up construction of a manifold band
from a manifold approximate fibration over R. Then in 17.11 we give some
elementary consequences of the sucking principle (16.9). After observing
in 17.12 that total spaces of proper bounded fibrations over R are finitely
dominated, we present the main characterizations (17.16 and 17.18).

The next result of this chapter concerns bands. We know that finitely
dominated infinite cyclic covers of ANR bands admit proper bounded fi-
brations to R (17.14), but might not admit any proper approximate fibration
to R (16.12,16.14). However, in 17.20 we show that if the ANR band is
allowed to vary up to simple homotopy type, then it will have a finitely dom-
inated infinite cyclic cover which admits a proper approximate fibration to
R.

197
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The final part of this chapter is concerned with the homotopy theoretic
analogues of the main characterizations; namely, when is a C'W complex
homotopy equivalent to a C'W complex which admits a proper bounded
fibration to R, and when is an AN R (resp. manifold) homotopy equivalent
to an ANR (resp. manifold) which admits an approximate fibration to R?

Theorem 17.1 (Wrapping up) Let d : X—R be an n-dimensional mani-
fold approzimate fibration, withn > 5 or n = oo (= Hilbert cube manifold).
Then there exists an n-dimensional relaxed manifold band

(M,c¢) = (X,d: X—5")
with infinite cyclic cover M = X such that :

(i) the classifying map ¢ : M——S* is a manifold approzimate fibration,
such that the lift ¢ : M—R is a manifold approzimate fibration
properly homotopic to d R

(i) the generating covering translation ¢ : X — X for the infinite cyclic
cover is isotopic to idy ,

(iii) the mapping torus T(C) is homeomorphic to X xR,
(iv) X x S is homeomorphic to X x R. u]

Remark 17.2 (i) In general, X is mot in the canonical simple homotopy
type of X x S': the fibring obstructions of the wrapping up (X d) are
computed in 26.7 below to be

~ ~

¢H(X,d) = ~[X7] , ¢ (X, d) = [X7]
€ Ko(z[r]) CWh(r x Z) (7 =m (X)),
so that the homeomorphism in 17.1 (iv) has torsion
T(XxS'2X xR) = & (X,d)— D (X x S*, pg1)
= [XT] € Ko(Z[r]) C Wh(x X Z) .

This does not contradict the topological invariance of Whitehead torsion, by
which homeomorphisms of compact AN R’s are simple. Nor does it contra-
dict the fact that the infinite torsion of a homeomorphism of non-compact
ANR’s is zero.

(i) Suppose that n < oo, so that

(X7) = ()" X € Ko(zln))

and [X~] = 0if and only if [X*] = 0. Thus ®*(X,d) = ® (X,d) = 0 if and
only if [X*] =0, and for n > 6 d : X—S" is homotopic to a fibre bundle
projection if and only if X can be collared. More precisely, d is homotopic
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to a fibre bundle projection with fibre a closed (n — 1)-dimensional manifold
F if and only if X can be collared with boundary F', in which case

(X,d) = (FxR,pg) , (X,d) = (FxS'pg). o

Example 17.3 (i) A manifold cobordism (V;U,U’) is invertible if there
exists a manifold cobordism (V';U’,U) with rel @ homeomorphisms

(V;U, U u (ViU U) = U x (1;{0},{1})

(VLU U)u (V;U,U") =2 U x (I;{0},{1}) .
Stallings [155] used the collarings of U and U’ and the infinite repetition
trick to construct rel @ homeomorphisms

U x ([0,00),{0}) = (V;U, U YU (VU ,U)U(V;UU)U...

(V\U'.U) ,
vhu,uyu(v;u,UYu (VUL U UL ..
(V\U,U")

I

I

U" % ([0,00),{0})

as well as homeomorphisms
UxR = .. u(V;UUYuWViU U)u(V;0U0)U...
~ U'xR.
The s-cobordism theorem (6.6) shows that for n > 6 every n-dimensional
manifold h-cobordism (V;U,U’) is invertible, with inverse (V/;U’,U) any
h-cobordism with torsion
(VU U) = —7(V;U,U") € Wh(m (V)) .

Connell [32] proved that for n > 5 an invertible n-dimensional manifold
cobordism (V;U,U’) is necessarily an h-cobordism. The product of an n-
dimensional h-cobordism (V;U,U’) with S* is an (n + 1)-dimensional s-
cobordism (V x St U x S1,U" x S'), so that for n > 5 there exists a
homeomorphism rel U x S*

(V x SHU x SN U x 81 = U x 8" x (I; {0}, {1}) ,
as first observed by de Rham (Kervaire [83, p.41]). Siebenmann [142, Thm.
III] gave an explicit construction of a particular such homeomorphism, us-
ing only the existence of an inverse (V/; U,U") for (V;U,U’) and the infinite
repetition trick. This was a direct precursor of wrapping up: the homeo-
morphism of open manifolds
X = UxR 2 X' = U xR
was wrapped up to a homeomorphism of bands

X = UxS' =2 X' = U x8'.
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In fact, for n > 5 the following conditions on closed n-dimensional manifolds
U,U’ are equivalent :

(a) U, U’ are h-cobordant,
(b) U x R, U’ x R are homeomorphic,
(c) U x S, U’ x S are homeomorphic.

(ii) Farrell and Hsiang [49] and Siebenmann [145] showed that for n >
6 the following conditions on an n-dimensional manifold band (W, ¢) are
equivalent :

(a) the infinite cyclic cover W = ¢*R of W admits a fundamental domain
(V;U,CU) such that there exists a homeomorphism rel U
U x ([0,00),{0}) = (W",U),

(b) W admits a fundamental domain (V;U,¢U) such that the inclusion
U =U x {0}—W extends to a homeomorphism

UxR = W,
(c) W] =0 € Ko(z[m (W))).

(In order for (W, ¢) to admit a fundamental domain (V; U, (U) which is an h-

cobordism it is necessary and sufficient that in addition the Nil-components
of the fibring obstructions vanish — see 24.16 below.) If (W, ¢) satisfies these
conditions the manifold ribbon defined by the infinite cyclic cover

(X,d) = (W,0)

is such that there exists a homeomorphism (X,d) = (U x R,pg). In par-
ticular, d : X——R is an approximate fibration, such that the wrapping
up of (X,d) given by 17.1 is the n-dimensional manifold band (X,d) =
(U x S',pg1). The self homotopy equivalence

— ¢
h:U>~W —W ~U

is such that the product
hxl: X =UxS"' — X =Ux§S!
is homotopic to a self homeomorphism E : X—X with a homeomorphism
W xS =~ T(: X—X) .
The (n + 1)-dimensional manifold band

(W,e) x ST = (W x ST, W x SL 2w -5 gh
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fibres, with fibre X and monodromy E . (This fact is well-known to the
experts, cf. Ferry and Pedersen [57, p. 492].) O

The plan of the proof of 17.1 is as follows. The manifold X is constructed
using a variation of Chapman’s wrapping up construction (which in turn is a
variation of Siebenmann twist glueing (15.17); see Hughes and Prassidis [75]
for the precise relation between the two constructions). The input needed is
the approximate isotopy covering property for manifold approximate fibra-
tions due to Hughes, allowing the standard shift map R—R;s—s + 1 to
be lifted to a covering translation ¢ : X — X isotopic to the identity. Note
that 17.1 (iv) is a direct consequence of (ii) and (iii).

In dealing with isotopies
G: XxI— X; (z,8) — Gg(x)

we always assume that Gy =id. : X—X.

Theorem 17.4 (Approximate Isotopy Covering) Let p : M— B be a man-
ifold approximate fibration where M is a manifold without boundary of di-
mension n > 5 or a Hilbert cube manifold (n = oo). Let « be an open cover
of B, and let g : B x I—B be an isotopy. Then there exists an isotopy
G: M x I—M such that pGy is a-close to gip for each t € 1. o

Comments on Proof. Note that ‘Approximate Isotopy Covering’ theo-
rems are not well documented in the literature. However, the ‘Controlled
Isotopy Covering Theorem’ in Hughes, Taylor and Williams [79] is derived
from ‘Controlled Straightening’ in Hughes, Taylor and Williams [77], which
in turn is derived from ‘Approximate Straightening’. Now ‘Approximate
Straightening’ is just the ‘Approximation Theorem’ of Hughes [72]. The
point of all of this is that the Approximate Isotopy Covering Theorem fol-
lows easily from the Approximation Theorem of [72]. O

Proposition 17.5 Let a1, az,az > 0 be real numbers such that a3 > a1 +as.
Let d : X—R be a proper map, and let ¢ : X—X be a homeomorphism
with d¢ as-close to d. Also, let

g: R—R; 2 — x+a3

and let G : X—X be a homeomorphism such that dG is ay-close to gd.
Then

(G: X —X
is a covering translation of an infinite cyclic cover of X/EG, with

U=d'0), V = (Gd (00,0l Nd 10, )
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such that (V;U,CGU) is a fundamental domain.
Proof We shall show by induction on n € Z; that for each x € X

d(CQ)"x > dx +nlas — ay — as) .
A similar argument would show
d((G) "z < dz — n(as — ay — as)

and from these two inequalities it follows immediately that the orbit
{(¢G)"x|n € Z} is closed and discrete in X (the fact that d is proper
must be invoked here), so that the action

ZxX — X ; (n,z) — (CQ)"x

is properly discontinuous. R
Note that the estimates imply that d¢G is (a1 + az)-close to gd. It follows
that

dEGx>gdac—a1 —ay = dr+asz—az—ay,
establishing the inequality for n = 1. Assuming n > 1 and that
d(Q)" 'z >dx+ (n—1)(as —az —a1) ,
note that
d((G)"z = dG(G)" a
> dg(ZG)"_la: —a1—ay = d(ZG)"_laz + a3z —as — a;
>

dr+ (n—1)(az —as —a1) + az —as — ay

dx +n(az — a2 —ay) .
In order to establish the second statement, we need to verify that

x = Jeorv.

NeEZ

Let # € X and m = min{n € Z|0 < d(CG)"z}. This minimum exists
because the inequalities above show first of all that

{(nez|0<dl@)"z}£0,
and second that
{nez|0<dlG) s <k}

is finite for each k > 0. It follows that d(CG)™ 'z < 0 so that (CG)™z € V.
o
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Proposition 17.6 Let aj,a2,a3 > 0 be such that az > 17(a1 + a2), let
d : X—R be a manifold approzimate fibration with dim(X) > 5, and let

E: X—X be a homeomorphism such that dE 18 as-close to d. Also, let
gs : R— R;t—t+azs (0<s<1),

and let G : X——X be an isotopy such that dG is ai-close to gid. Then d
is properly homotopic to a manifold approzimate fibration d : X —R such
that there is defined a commutative diagram

(G,

X —X

Jl lg

g1

R————R

Proof Define a homotopy
h :d~ gldGﬁE*l : X —R
by
(1 —2t)d(x) + 2td¢ Y (2z) if0 <
ht(x) = dG*l =1 if 1 <
g(2t—1) (Qtfl)g (SE) s>

Since d is ag-close to dz_l and gsd is aj-close to dGy for each s, it follows
that h is a (2a; + az)-homotopy.
Let w: X——1 be a map such that

w(0) = d Y (—o0, i(a3 —ay —ay)],
u (1) = d ' [3(az — az — ay),00) .

Note that u(d~1(0)) = 0 and u((G1d~1(0)) = 1. (The first equality is
obvious; the second follows from the facts that dGy is aj-close to gid and
d( is ag-close to d.) The map

d'": X — R & — hy(z)
is such that

() = {d(m) ) if 2 € (00, §(ag — az — a1)] ,
qdGTIC () ifx e [£(az — a2 — a1),00) .

Since h is a bounded homotopy, d’ is a bounded fibration. Moreover, d’ is
a manifold approximate fibration over

(=00, §(ag — az — a1)] U [L(as — az — a1),0) .
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It follows from a relative version of the sucking principle 16.9 (see [26]) that
d’ is boundedly homotopic rel

(—o0, 1—16((13 —az—ap)]U H—g(ag —ay —ay),o0)
to a manifold approximate fibration d” : X —R. Let
V = (Gid ™ (—00,0] N d7[0,00) .
It follows from Proposition 17.5 that
x = Jee)v.

nez
Define d : X —R by
d|((G)"V = g od" o ((G)™".

Then d is a manifold approximate fibration boundedly close to d such that
dCGl = gld. O

Proof of 17.1 Let d : X—R be a manifold approximate fibration as in
the statement of 17.1. The isotopy

g RxI—R; (s,t) — s+t

is such that g1 : R—R;s—s + 1 is a generating covering translation of
the universal covering R—S!. Choose a; > 0 such that 17a; < 1. Apply
17.4 (Approximate Isotopy Covering) to get an isotopy G : X x [— X such
that dGs is aj-close to gsd. Apply 17.5 (with Z: idx, as = 1, and as as
small as needed) to conclude that G; acts properly discontinuously on X
with fundamental domain (V;U, G1U) where

U=4d0), V = Gid(—o0,0]nd[0,00) .

Definition 17.7 The wrapping up of a manifold approximate fibration d :
X —R is the manifold band

(X,C/l\) = (X/GlaX/Gl—)*Sd)
with d : X/G1—S! classifying IR = X. O

Lemma 17.8 The manifold approrimate fibration d : X —R is homotopic
to a Z-equivariant proper approzimate fibration d : X —R.

Proof Apply 17.6 (with ¢ = idx) to get a manifold approximate fibration
d: X—R such that dG, = glg. Then d induces a manifold approximate
fibration ¢ : X —S? classifying X — X. (That c is a manifold approximate
fibration follows from the fact that it is one locally (Coram [35]).) O
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We now return to the proof of 17.1. It follows from 14.8 (i) that X x
R = T(Gp). On the other hand, since G; is isotopic to idx there is a
homeomorphism 7'(G1) = X x S!. This completes the proof of 17.1. i

Remark 17.9 The wrapping up construction above is very similar to Chap-
man’s original construction [25, 26]. However, our construction is technically
easier and more conceptual because we make use of the Approximate Iso-
topy Covering Theorem 17.4. Chapman only had the technology to approx-
imately cover compactly supported isotopies and the shift map ¢; : R—R
is far from compactly supported. Chapman had to truncate the shift map to
get a compactly supported isotopy which he then approximately covered by
a compactly supported isotopy on X. The upshot is that he constructed the

fundamental domain V above, but the infinite cyclic cover X of X was given
as a proper open subset of X rather than equal to X. Using Chapman’s
approach it is far from obvious that the generating covering translation ( is
isotopic to the identity, but it is immediate in our approach. o

Theorem 17.10 Let (W, 0W) be an open n-dimensional manifold with com-
pact boundary and one end, withn > 5 orn = oo (= Hilbert cube manifold).
If W is forward tame and reverse tame then the end space e(W') is homo-
topy equivalent to an open cocompact submanifold X C W with a proper
map d : X —R such that

(X,d) = (M,¢)

is the finitely dominated infinite cyclic cover of a relazed n-dimensional
manifold band (M, c) = (X,d) with X x S homeomorphic to M x R, and
with a rel O homeomorphism

(W,0W) x St = (N\M,oW x S1)

for a compact (n + 1)-dimensional manifold cobordism (N;O0W x S, M).
Proof Combine 16.13 and 17.1. o

Let @ denote the Hilbert cube. Edwards proved that X x @ is a Hilbert
cube manifold for any ANR X. (Recall our global assumption at the be-
ginning of Chapter 1 that only locally compact, separable AN R’s are to be
considered.)

Proposition 17.11 (i) For any ANR X, the following are equivalent :

(a) there exists a proper bounded fibration d : X —R,,
(b) for every e > 0 there exists a proper e-fibration d : X —R,
(c) there exists a proper approximate fibration d : X x Q—R.
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(ii) For an open manifold X of dimension > 5 or a Hilbert cube manifold,
the conditions in (i) are equivalent to :

(d) there exists a manifold approximate fibration d : X —R .

Proof (a) = (b) By the usual method of shrinking R.

(b) = (c¢) Let d : X—R be a proper e-fibration for some € > 0. Then
prod: X x Q—R is also a proper e-fibration. Since X x @ is a Hilbert
cube manifold, if € is sufficiently small, then Chapman’s sucking principle
implies that p is close to a proper approximate fibration.

(¢) = (a) Since X and X x @ are proper homotopy equivalent, Propo-
sition 16.5 can be applied.

(ii) (d) <= (a) by 16.10. o

Proposition 17.12 If d : X—R s a proper bounded fibration, then X is
dominated by a compact space. Hence, if X has the homotopy type of a CW
complex, then X is finitely dominated.

Proof An e-lift of a contraction of R to 0 gives a homotopy K : X x [—X
such that Ky = idy and K1(X) C d~![—¢, €. a]

We now turn to the problem of deciding when there is a bounded or
approximate fibration from a space to R.

Lemma 17.13 (Sliding domination) Let (W,c) be an ANR band, and let
¢: W—=R be a Z-equivariant lift of ¢ : W—S1. There exist a homotopy

Ks : WxR—WxR (0<s<1)

and a constant N > 1 such that:

(i) Ko = idyy,
(ii) K is fibre-preserving over R (i.e. paKs = pa where ps : W x R—R
is the projection) for each s,
(iii) Kg(x,t) = (x,t) if ¢(x) = t for each s (so that K4|['(¢) is the
inclusion, where I'(¢) denotes the graph of ¢),
(iv) K1(W xR) C {(z,t) |t — N <¢(z) <t+ N}.

Proof Let ¢ : W—W denote the (41)-generating covering translation. It
follows from 15.10 that W is reverse tame. Hence there exist a homotopy

h : WxI—W; (x,t) — hy(z)

and a constant mj > 1 such that:
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) ho =
(i) h¢e— [—1 00) is the inclusion for each ¢,
(iii) hye ! (=00, —1) C & (o0, —1) for each ¢,
(iv) MW C e H—my,00).

Compactness implies that there is a constant mgy > m such that for each ¢
hie " H—my —1,00) C & H—mg,0) .
Define a homotopy
H: WxRxI— W xR; (z,8,t) — Hg(z,t)
by
Hy(z,t) = (" hymyC  hal  hygnirnC " (), )
for n <t <n+ 1. One can verify that:

=
=
K
~
S~—

¢(z) <t} C{(x,t)|c(x) <t} for each s,

)

)

ii) Hs(z,t) = (z,t) if t <¢(x) for each s,
) |

v) Hi(W xR) C {(z,t) |t —mg < ¢(x)}.

Since W is also reverse tame (15.10), we can use the argument above to
define a homotopy

Gs : WxR—WxR (0<s<1)

and a constant m/, > 1 such that:

0 — lda

s is fibre-preserving over R for each s,

(x,t) = (z,t) if ¢(x) <t for each s,

S{(:E t) |t <@(x)} C{(x,t)|t <¢(x)} for each s,
L(W X R) C {(2,1) |o(x) < t+ mj}.

Ky = GsoHy : WxR— W xR (0<s<1)
and let N = max{mz, mb}. o
Proposition 17.14 Let W be a compact ANR with a map ¢ : W—S*.

The infinite cyclic cover W = ¢*R of W is finitely dominated (i.e. (W, c) is
a band) if and only if ¢ : W——R is a proper bounded fibration.
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Proof The ‘if’ statement follows from 17.12. Let Z : W—W denote the
(+1)-generating covering translation. Let K be given by 17.13. It remains
to show that ¢ has the (N + 1)-homotopy lifting property. This estimate
arises because ¢p1 K1 : W x R—R is (N +1)-close to ps : W x R—R where

: W x R—W and ps : W x R—R are the projections (in fact, they are
a dlstance at most N apart). Define

g: W—WxR; z— (z,¢(z)) .

Thus g is the natural embedding of W onto the graph I'(¢) of e. A lifting
problem for ¢, say a homotopy F' : Z x [—R with an initial lift f : Z—W
so that Fy = ¢f, induces a lifting problem for ps with homotopy F' but with
initial lift given by gf : Z —W x R. Of course, ps is a fibration, so let
F:7Zx I—W X R be a _solution of this second problem so that Fy = qgf.
It follows that F = mK LF is an (N + 1)-solution of the first problem. o

Corollary 17.15 Let X be an open manifold of dimension n > 5 or a
Hilbert cube manifold. If X is an infinite cyclic cover of a compact space,
then there exists a manifold approximate fibration d : X —R.

Proof Apply 16.10 and 17.14. o

Proposition 17.16 (i) For an ANR X the following are equivalent :

a) there exists a proper bounded fibration d : X —R |

b) for every e > 0 there exists a proper e-fibration d : X —R,,

c) there exists a manifold approximate fibration d : X x Q—R,

d) X is finitely dominated and X x @Q is an infinite cyclic cover of a
compact space,

(e) X is infinite simple homotopy equivalent to the finitely dominated infi-
nite cyclic cover W of a CW band (W, c) ,

(f) X is proper homotopy equivalent to the finitely dominated infinite cyclic

cover W of a CW band (W, c).

(
(
(
(

(ii) For an open manifold X of dimension n > 5 or a Hilbert cube manifold,
the conditions of (i) are equivalent to :

(g) there exists a manifold approrimated fibration d : X —TR
(h) X is finitely dominated and is an infinite cyclic cover of a compact
space.

Proof (i) (a) <= (b) <= (c) by 17.11 (i).
(¢) = (d) because X x @ is a Hilbert cube manifold, so 17.1 implies
that X x @ is the finitely dominated infinite cyclic cover of a Hilbert cube
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manifold band.

(d) = (e) Let K be a compact space with infinite cyclic cover K = X x Q.
Since K is a compact Hilbert cube manifold, X is homeomorphic to Y x Q)
for some finite CW complex Y (by Chapman’s Triangulation Theorem).
Then Y is a CW band with finitely dominated infinite cyclic cover Y such
that X x Q and Y x @ are homeomorphic. By the work of Chapman, this
is what it means for X and Y to be infinite simple homotopy equivalent.

(e) = (f) is obvious.

(f) = (a) by 16.5 and 17.14.

(i) (a) <= (g) by 17.11 (ii).

(g) = (h) by 17.1.

(h) = (a) by 17.14. o

Remark 17.17 (i) If the conditions of 17.16 (i) are satisfied, then the
compact space of which X is an infinite cyclic cover is a compact ANR
and, hence, of the homotopy type of a finite CW complex (by the theorem
of West [168]).

(ii) It follows from 15.9 that the conditions of 17.16 (i) imply that X is
proper homotopy equivalent to an AN R ribbon. For a CW ribbon (X, d)
the converse is established in 20.3 (ii) : X is proper homotopy equivalent to
the finitely dominated infinite cyclic cover of a CW band. O

Corollary 17.18 An open manifold X of dimension > 5 is the total space
of a manifold approzimate fibration X —R if and only if it is the infinite
cyclic cover X = M of a compact manifold band (M, c). o

Theorem 17.19 (i) For a strongly locally finite CW compler X with a
finite number of ends, the following are equivalent :

(a) X is forward and reverse tame,

(b) there exists a CW band (W, c) such that X and W™ are proper homo-
topy equivalent at co.

(ii) For a manifold X with a finite number of ends of dimension > 5 with
compact boundary or a Hilbert cube manifold, the conditions above are equiv-
alent to:

(c) there exists a manifold band (W,c) such that W™ is homeomorphic to
a closed cocompact subspace of X ,

(d) there exists a manifold band (W,c) such that W is homeomorphic to
an open cocompact subspace of X.
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Proof (i) (a) = (b) By 16.13 and 17.1 X x @ has an open cocompact
subspace U which is the finitely dominated infinite cyclic cover of a Hilbert

cube manifold band (U, ¢;). Since U is homeomorphic to W x @ for some
finite CW complex W, (W, ¢ = ¢; o inclusion) is a CW band such that X

and W are proper homotopy equivalent at oo.
(b) = (a) by 15.9 (i), 9.6 and 9.8.
(ii) (a) = (d) by 16.13 and 17.1.
(d) = (c) and (c) = (b) are obvious. o

Proposition 17.20 Every AN R band (X, c) is simple homotopy equivalent
to one such that ¢ : X—R is proper homotopic to a proper approrimate
fibration. o

The proof of 17.20 will be based on the following two lemmas.

Lemma 17.21 Suppose M is a finitely dominated manifold such that OM
is also finitely dominated. Then there exist a compact subset C C M and a
homotopy h :idys >~ hy : M x I— M such that :

(ii) if x € OM (resp. int(M)) then h(x x I) C OM (resp. int(M)).

Proof This is a standard construction using a collar of M in M. i

Lemma 17.22 Let (N,0N) be a compact n-dimensional manifold with
boundary such that 71 (ON)—m1(N) is a split injection. If (b,0b) : (N,ON)
—S81 is a map such that (N,b) is a band then the boundary (ON,0b) is
also a band. -

Proof Let IV be the universal cover of IV, and let N be the corresponding
cover of AN. We need to show that the infinite cyclic cover ON = (9b)*R

of ON is finitely dominated, which by 6.9 (i) is equivalent to the Z[m (NV)]-

finite domination of the cellular Z[m;(N)]-module chain complex C(ON).

The infinite cyclic cover N = b*R of N is finitely dominated, so that C'(IV)

is Z[m1(N)]-finitely dominated, and so is the n-dual Z[r (IV)]-module chain
complex C(N)"*. By the exactness of

0 — C(ON) — C(N) — C(N,0N) — 0
and the Poincaré-Lefschetz Z[m1(N)]-module chain equivalence
C(N,ON) ~ C(N)"™*
there is defined a Z[m (N)]-module chain equivalence

C(ON) ~ e(C(N)—C(N)"")ut1 ,
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so that C(ON) is indeed Z[r;(N)]-finitely dominated. o

Proof of 17.20 By West’s result on the homotopy finiteness of compact
AN R’s there is no loss of generality in assuming that (X, ¢) is a CW band.
Let N be a regular neighbourhood of X in some Euclidean space of suffi-
ciently high dimension that the inclusion 0N — N induces an isomorphism
m1(ON) = 71 (N) and dim(N) > 5.

Thus, X is simple homotopy equivalent to N and there is a map

b: N~ X — 8!

inducing a finitely dominated infinite cyclic cover N. It follows from Propo-
sition 17.14 that the induced map b : N—R is a proper bounded fibration.
Lemma 17.22 implies that ON is also finitely dominated, so 9b : 9N —R is
also a proper bounded fibration.

The rest of the proof consists of applying a stratified sucking principle
from Hughes [74] to show that b is boundedly homotopic to an approximate
fibration. (Note that 16.10 cannot be used because N has a boundary.)
The idea is that N is a stratified space with strata N and int(N). The
proof of Proposition 17.14 actually shows that (b,9b) : (N,0N)—R is a
proper stratified bounded fibration. This is because Lemma 17.22 shows that
(N,ON) is finitely dominated in a stratified sense. Now use the stratified
sucking theorem [74]. o

Remark 17.23 (i) The wrapping up (X,d) of a manifold approximate
fibration (X,d) can also be constructed by the end obstruction theory of
Siebenmann [140] (quoted in 10.2) and the projective surgery theory of
Pedersen and Ranicki [109], as follows.

The total projective surgery obstruction groups Sk(K) of [109] are defined
for any space K to fit into the algebraic surgery exact sequence

AP
. — Hy,(K;L.) — LP (Zm(K)]) — SP(K)
— Hp 1 (KGL) — ..,

with L. the 1-connective simply-connected surgery spectrum such that m,(L.)
= L.(Z), and AP the assembly map in projective L-theory.

The total projective surgery obstruction sP(K) € SP (K) of a finitely
dominated m-dimensional Poincaré space K is such that sP(K) = 0 if
(and for m > 5 only if) K x S' is homotopy equivalent to a compact
(m + 1)-dimensional manifold L. (See Ranicki [125] for a detailed expo-
sition of the total surgery obstruction.) If s?(K) = 0 then the composite
c:L~K x S'—8! defines an (m + 1)-dimensional manifold band (L, c),
such that K is homotopy equivalent to the infinite cyclic cover L = ¢*R of L.
It was shown in [109] that L can be chosen such that Lx S! is homeomorphic
to L x R.
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Given an n-dimensional manifold approximate fibration (X,d : X—R)
there is defined an open n-dimensional manifold with compact boundary

(W,0W) = (XT, Xt nX")

with one end which is both forward and reverse tame, such that e(WW) is a
finitely dominated (n — 1)-dominated Poincaré space homotopy equivalent
to X (16.17). The projective class at oo of W x S! is

W xSl = [WxS =0¢ Ko(Z[ﬂ'][Z,Z_l]) (m=m (X)),

so that for n > 5 there exists a compact (n + 1)-dimensional manifold
cobordism (N;0W x S, M) with a rel 9 homeomorphism

(N\M,0W x S') = (W,0W) x S*

and a homotopy equivalence M ~ e(W) x S!, such that (N;0W x S, M)
is unique up to adjoining h-cobordisms to M (10.2). By [109] it is possible
to choose M to be such that M x S' is homeomorphic to M x R and also

(I7) = (W] e Ko(zlr)) .

Then (M, c: M—S') = (X, d) is the wrapping up of (X, d) with X = M,
and X is a finitely dominated (n — 1)-dimensional geometric Poincaré com-
plex such that s?(X) =0 € S?_,(X). In fact, this type of wrapping up is
the method used by Freedman and Quinn [60, p. 225] to classify tame ends
of 4-dimensional manifolds with good fundamental group.

(ii) Let (W, 0W) be an open n-dimensional manifold with compact bound-
ary, such that n > 5 and W is both forward and reverse tame. By 17.10
there exists an open cocompact X C W with a manifold approximate fibra-
tion X —R, such that the end space e(WW) is a finitely dominated (n — 1)-
dimensional Poincaré space homotopy equivalent to X. The S-groups are
homotopy invariant, so that

s"(e(W)) = sP(X) = 0€S]_(e(W)),

with s?(X) = 0 as in (i). The product e(W) x S1 is homotopy equivalent to
a compact n-dimensional manifold, namely the wrapping up X of X, with
X xSt~ X xR. o

We now determine when a space is homotopy equivalent to a space which
admits a manifold approximate fibration or proper bounded fibration to R.

Proposition 17.24 The following conditions on a CW complex X are
equivalent forn > 5:

(i) X is homotopy equivalent to the infinite cyclic cover M = c¢*R of an
n-dimensional manifold approximate fibration ¢ : M—S'
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(ii) X is homotopy equivalent to an open n-dimensional manifold W with
a manifold approximate fibration d : W—R,

(iii) X x S is homotopy equivalent to a closed n-dimensional manifold,

(iv) X is a finitely dominated (n — 1)-dimensional geometric Poincaré
complex with Pedersen—Ranicki [109] total projective surgery obstruc-
tion sP(X)=0€est_(X).

n—1

Proof (i) = (ii) Let d =¢: W = M—R.

(i) = (i), (ii) = (iii) The wrapping up (W,d) = (M,c) of (W,d)
(17.1) is such that ¢ : M——S! is an approximate fibration, with homotopy
equivalences X ~ W = M, X x S' ~ W x St ~ M.

(iii) = (ii) Let X x S' ~ N for a closed n-dimensional manifold N.
The infinite cyclic cover of N classified by N ~ X x S1—8" is an open n-
dimensional manifold W = N proper homotopy equivalent to X x R. There
exists a proper map d : W—R which is boundedly homotopy equivalent
to the projection X x R—R. Also, W is homotopy equivalent to X. Now
16.3 implies that d is a bounded fibration and 16.10 implies that W admits
a manifold approximate fibration to R.

(iii) <= (iv) by [109]. O

Remark 17.25 The equivalence (i) <= (iii) in 17.24 was first obtained by
Chapman [26]. o

Proposition 17.26 Let X be a CW complex. The following conditions are
equivalent :

(i) X is finitely dominated,
(i) X x S is homotopy equivalent to a finite CW complex,
(iii) X 4s homotopy equivalent to a CW complex which admits a proper
bounded fibration to R,
(iv) X is homotopy equivalent to a CW complex which admits a proper
approximate fibration to R.

Proof (i) < (ii) by 6.7 (ii).

(i) = (iii) Let X be a finitely dominated CW complex. Then X x S!
is homotopy equivalent to a CW band with X homotopy equivalent to its
infinite cyclic cover. Apply 17.14 to this infinite cyclic cover.

(iii) = (iv) by 17.16 and 17.20.

(iv) = (i) by 17.12. o
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Geometric relaxation

By definition (15.14), a band (M,c : M——S%) is relaxed if there exists
a fundamental domain (V;U,CU) for the infinite cyclic cover M = c*R of
M such that V dominates W ' rel U, and (~'V dominates W rel U.
By 16.15 a CW band (M, c) with ¢ an approximate fibration is relaxed.
We shall now associate to a manifold band (M, c¢) with dim(M) > 5 an
h-cobordant relaxed manifold band (M’,¢’) with ¢ : M’—S! a manifold
approximate fibration, using approximate lifting properties. We shall relate
this to the original construction of Siebenmann [145], which obtained the
relaxation by (-twist glueing the two ends of the infinite cyclic cover M.

Proposition 18.1 For any manifold band (M, c) with dim(M) > 5 a gen-
erating covering translation ¢ : M ——DM is isotopic to a generating covering
translation (' : M——M of an infinite cyclic covering M—M /(' = M’
such that (M',c') is a relazed manifold band, with ¢’ : M'—S* a manifold
approximate fibration.

Proof By Proposition 17.14 @ : M——R is a bounded fibration. Thus there
is a bounded homotopy h : € ~ d where d : M—R is a manifold approx-
imate fibration (16.10). Let az > 0 be the bound on the homotopy h. In
particular, d¢ is (2ag + 1)-close to d where ¢ : M——M is the generating
covering translation. Choose a3z > 17(2a2 + 1). Let g5 : R—R be the iso-
topy g¢s : t—t + ags. Choose a; > 0 such that ag > 17(a; + 2a2 + 1) and
let G5 : M—— M be an isotopy with dG aj-close to gsd (17.4, Approximate
Isotopy Covering). Let (' = (Gy : M—DM. Tt follows from 17.5 that ¢’
acts properly discontinuously on M so that M——M /{’ is an infinite cyclic
covering. It follows from Proposition 17.6 that d is properly homotopic to
a manifold approximate fibration d : M —R such that d¢’ = gid. If S* is
identified with R/Z, then d induces a manifold approximate fibration

d M = M/ — S [z] — [d(z)/a3] .

That ¢’ is a manifold approximate fibration follows from the fact that it is
one locally (Coram [35]). o

214
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Definition 18.2 The relazation of a manifold band (M, ¢) with dim(M) > 5
is the relaxed manifold band of 18.1

(M',) = (M/¢,M/¢'—8") . o

Relaxation Theorem 18.3 The relaxation (M',c') of a manifold band
(M, c) with dim(M) > 5 has the following properties :

(i) M =M,
(ii) the generating covering translation (' : M —2M is isotopic to the
generating covering translation ¢ : M—M ,
(iii) the classifying map ¢’ : M'—S' is a manifold approzimate fibration,
(iv) there exist homeomorphisms

MxR 2T 2T & M xR,

(v) the homeomorphism of (iv) determines the relaxation h-cobordism
(W M, M) with well-defined torsion in Wh(mi(M)) which depends
only on the homotopy class of the classifying map ¢ : M——S'. The
homotopy equivalence f : M——M' induced by the h-cobordism is
such that c ~ ' f.

The following conditions are equivalent :

(a) c: M—S" is homotopic to a manifold approzimate fibration,
(b) (W; M, M’) is a trivial h-cobordism,
(¢) f: M—M' is homotopic to a homeomorphism.

Proof (M’,) is a relaxed manifold band by 16.15.

(1),(ii),(iii) obvious.

(iv) It follows from 14.8 (ii) that 7'(¢) & M x R and T(¢') =2 M’ x R.
Since (' is isotopic to ¢ we have T'(¢") = T'(¢).

(v) We begin with an explicit description of the homeomorphism

MxR =2 M xR.

Consider

where
(x,s+n)~ (("z,s) , (v,s+n)=()"z,s) , neZ.
The natural projections m : T(¢()—S' = R/Z and 7y : T({')—S' = R/Z
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are [z, s]—[s]. Define a homeomorphism
hy : MxR = M/(xR = T(¢) = (MxR)/~; ([x],s) — [z,s—2()] .

The composition M—=%M x RLT(C) is [x]—[z, —¢(z)] for x € M, and
the diagram

MA)MXRLT(C)

c

—1

St St

commutes where —1 : S1——81; [s]|—[—s]. The isotopy ¢ = ¢’ induces a
homeomorphism

hy @ T(C) — T(C) ; [2,8] — [(Crs1—sC" 2,5 — n]
m<s<n+1,nez)

which commutes with the natural projections T'({)— St and T'(¢')—S*.
Define a homeomorphism

hy : T(C) = (M xR)/~ — M' xR = M/C xR;
[z,8] — ([2],s +7(2)) .
As above, the diagram
0 hy'
M 2 M xR 27

c/

Sl

commutes. The homeomorphism

h = hshahy : M xR — M’ xR
determines an h-cobordism (W; M, M) by choosing L > 0 so large that
h(M x (—00,0]) C M’ x (—o0, L)
and letting
W = M’ x (—oo,L]Nh(M x [0,00)) ,

that is, W C M’ x R is the region between h(M x {0}) and M’ x {L} in
M’ xR. In the h-cobordism (W; M, M) we identify M with h(M x {0}) and
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M' with M’ x {L}. With these identifications there is a map ¢ : W——S*
such that ¢({M = ¢ and ¢/M’ = ¢/. This map is constructed by using the
homotopy extension property to adjust the map 7T2h3_1| : W—S1. For

mohg HW(M x {0}) = —ch™ (M x {0})

and mohz /M’ x {L} is homotopic to the composition

thgl

M x {L} — M’ x {0} ——— S'; (z,L) — — ().
The homotopy equivalence f : M—— M’ is such that
df ~ éoi =c¢: M — St

with i = inclusion : M —W. We now show that the torsion of (W; M, M’)
is well-defined, by which we mean that it is independent of the choices made
in constructing M’. So suppose G : M——M is another isotopy such that
¢G’, is (a1 + 2ay)-close to gs¢. By a one-parameter and relative version of
Approximate Isotopy Covering 17.4 (see Hughes, Taylor and Williams [77])
there is a two-parameter isotopy I's; : M —DM such that Loy = idgg, els
is (a1 + 2ag)-close to gs¢, I'sg = G5 and I's; = G. The homeomorphism

B = ((xid)T1— : Mx1xI — Mx1x1I

defines a properly discontinuous action of Z on M x I (Proposition 17.5).
We claim that the natural projection (M x I)/B——1I is a locally trivial
bundle projection. First note that since M x I—(M x I)/f3 is a covering
and the composition M x [—(M x I)/B3——1I is locally trivial, it follows
easily that (M x I)/3——1 is a Serre fibration. Because (M x I)/3 and I
are finite dimensional ANR’s, (M x I)/3—1I is also a Hurewicz fibration
(Ungar [162]). The fibres are manifolds of dimension greater than 4, so that
it is locally trivial (Chapman and Ferry [29]). Since 8y = (Gi, there is a
trivializing homeomorphism o : M’ x I—(M x I)/f3 such that ag = idy.
Let

H: (MxI/BxR— MxIxR
be the homeomorphism given by the composite
(MxI)/BxR = T(8) = T({ xid;) & M x I xR.

Since Hj is isotopic to Hj o (a; X idg), it follows that the h-cobordisms
determined by Hy and Hj o (g X idg) are homeomorphic (using the Isotopy
Extension Theorem of Edwards and Kirby [41]), and have the same torsion.
Hence, the h-cobordisms determined by Hy and H; have the same torsion.
These are the h-cobordisms given by the two sets of data so we have estab-
lished well-definedness. This also shows that the torsion depends only on
the homotopy class of ¢, for if ¢ ~ ¢;, then both ¢ and ¢; induce data for
constructing the relaxation of (M, ¢) yielding the same torsion.
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(a) = (b) We now assume that ¢ is homotopic to a manifold approxi-
mate fibration and show that the h-cobordism is trivial. By the preceding
paragraph we may assume that c itself is a manifold approximate fibration.
Therefore, in the construction of M’ we may take d = ¢, az > 17 and aq, as
as small as we like. Then we shall have ¢G5 ai-close to gs¢. Proposition
17.5 can be used to show that (G, acts properly discontinuously on M for
each s. Then the homeomorphism

v = ((xid))G : MxIT — Mx1I

induces a properly discontinuous action on M x I with (M x I)/y = M x I
by the argument above. Since 79 = ¢ and ;1 = (G}, it follows as above
that v may be used to show that the h-cobordism between M = M /¢ and
M' = M /G, is trivial.

(b) = (c) If h : M x I—W is a homeomorphism with hg = ids then

h|
M =M x {1}—M' C W is a homeomorphism homotopic to f.

(¢) = (a) Since ¢ ~ f, if f is homotopic to a homeomorphism h :
M——M’ then c is homotopic to the manifold approximate fibration ¢’ f.
O

Remark 18.4 (i) For any (n+ 1)-dimensional h-cobordism (W; M, M") the
torsion of the homotopy equivalence f : M—W — M’ is

(f) = T(M—W) = 7(M'—W)
= T(M—W) + ()"7(M—W)" € Wh(m:(M)) .

It will be shown in 26.13 that for the relaxation h-cobordism (W; M, M’)
of 18.3 (v) 7(M—W) and 7(M'——W) are in complementary direct sum-
mands of the Whitehead group of m1(M) = m (M) x¢, Z, namely the two

copies of the reduced nilpotent class group l\ﬁlo, and that there is a Poincaré
duality 7(M'—W) = (=)~ '7(M—W)*. Thus the conditions (a), (b),
(c) in 18.3 are also equivalent to:

(@) 7(f) = 0.

In particular, f is simple if and only if f is homotopic to a homeomor-
phism.

(ii) It will follow from 26.10 (i) that an n-dimensional manifold band
(M,c) with n > 5 is relaxed if and only if the homotopy equivalence
f: M—M' in 18.3 (v) is simple. Combining this with (i) and 18.3 (iii)
gives:

a manifold band (M, c) with dim M > 5 is relaxed if and only if the map
c: M—S' is homotopic to a manifold approzimate fibration. o
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Lemma 18.5 For a manifold approzimate fibration d : X —R with dim(X)
> 5, there exists an isotopy of open embeddings

H : d ' (-0, 1) xI — X

with Hy : d=1(—o00,1)—X the inclusion, Hy : d~'(—00,1)—X a homeo-
morphism, and for everyt € I Hy| : d=(—o00,0]—X the inclusion.
Proof Define

X* = {(mb) e X xI|dz) < ——1

1—-1¢
(d(z),t) ifd(z) <0,
' X* —RxI; (z,t) — d(x) : 1
(1—(1—t)d(:17)’t> 1f0§d(x)<§

so that d*| : (d*) 7! (R x {t})—R x {t} is a manifold approximate fibration
for each ¢t € I and

d*| = d| xid; : (@*)7'((=o00,0) x I) = d ' (—00,0] x I — (—00,0] x I .
It follows from the argument of Hughes [73, p. 75] that the composition

*

" proj.
m: X" —RxI — 1T

is a fibre bundle with trivial subbundle 7| : d~!(—00,0] x I—I. Since
771(0) = d~}(—o0, 1) a trivializing homeomorphism

H : d(—o00,1)xI — X*CXxI

with
Hy = identity : 7 1(0) — d~*(—o00,1),
H| = inclusion : d '(—o00,0] x I — X*
gives the desired isotopy of open embeddings. o

Proposition 18.6 Let d : X—R be a manifold approximate fibration with
dim(X) > 5. The wrapping up X of 17.1 is homeomorphic to any Sieben-
mann twist glueing W1i(f—, f+) of X relative to the identity 1 : X—X
(15.17).

Proof The isotopy

gs : R—R;t—t+s (0<s<1)

can be covered up to a; by an isotopy Gs : X— X where a3 > 0 is such
that 17a; < 1. Then G; is a covering translation and X = X/G; is the
wrapping up X (17.7). Define a fundamental domain (V; U, G1U) by

U=d40) , V= Gid(—00,00nd1[0,00) .
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Let

U =d'-00d), Uy =d'E 00)cX.
By Edwards and Kirby [41] there exists an isotopy H : X x [—X x I
supported on d~1[—2,3] such that

Hd Y ([-1,2]) = G4 (0<s<1).

By 18.5 Hg|d~!(—00,0] extends to an isotopy k; : U_—X (0 < s < 1) of
open embeddings such that k] U_ = X and

H,| = ks| = inclusion : d™'(—00,-2] — X (0<s<1).
Since we can choose a; > 0 as small as desired we can assume that G1d~*(0)
- d_l(%,oo). By 18.5 again, there is an isotopy kf : U;—X of open
embeddings such that k{ Uy = X and k| = inclusion : d71([%, 00))—X
for0 < s < 1. Let f_ = ki, f+ = ki and form the Siebenmann twist glueing

Wi(f-, f+). We now demonstrate that the inclusion : V—X induces a
homeomorphism

X = X/Gi — Wi(f- fy) = X/~

The map is well-defined for if x € U then Gy(x) = f1'f—(x). The map is
onto because every x € X is ~-related to a point in V. This also shows that
X/~ = V/~, from which it follows that the map is one-to-one. Uniqueness
follows from 15.18. O

Proposition 18.7 Let (W, c) be a manifold band, dim(W') > 5, with gen-
erating covering translation ( : W—W. Any Siebenmann twist glueing
We(f=, f+) of W relative to ¢ is homeomorphic to the relazation W' of
18.2.

Proof Let ¢ : W—R be the bounded fibration induced by ¢ : W—S81.
Let a1, a9,a3 > 0 be as in 18.1, so that there is an ao-homotopy from ¢ to a
manifold approximate fibration d : W ——R, and recall that a; is allowed to
be chosen as small as desired. The isotopy

gs : R— R; t —t+azs (0<s<1)

can be covered up to a; by an isotopy G : W—W. Then ¢’ = (G, is a
covering translation and W’ = W /¢’ is the relaxation of W. The infinite
cyclic cover W' of W' has a fundamental domain (V;U,('U) with

U=4d%) , V = d(—o00,00nd1[0,00) .
Let
U. = d'(-o00,1) , Uy = dY2,00)CcW.

By Edwards and Kirby [41] there exists an isotopy H : W x [—W x [
supported on d~1[—2, N + 1] such that H|d ![-1,N] = G4| for 0 < s < 1
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where N is so large that V C d~!(—oco, N). By 18.5 H,|d ! (—o0, 0] extends
to an isotopy k; : U_——W of open embeddings such that k&, U_ = W and

H,| = ks| = inclusion : d~'(—00,~2] — W (0<s<1).

Since ag > 17 and we can choose a; > 0 as small as desired we can as-
sume that G1d=1(0) C d~1(3,00). By 18.5 again, there is an isotopy
k¥ : U,—W of open embeddings such that kU, = W and k}| =
inclusion : d71[4,00)—W for 0 < s < 1. Let f- =k, f+ = ki and
form the Siebenmann twist glueing W¢(f_, f+). We now demonstrate that
inclusion : V—W induces a homeomorphism

W= WS Welforfi) = W/

The map is well-defined for if z € U then (G1(x) = f;l(:f, (z). To show
that the map is onto it suffices to show that every x € U_ is ~-related to a
point in V. This is clear for d(xz) > —1, so we consider the case d(x) < —1.
For such an x we have x ~ f;lgf, (x) = f;lg(x), so it suffices to show that
f;lq (z) € V. For this we must make sure that a; is chosen small enough
that ag — a1 > 2a9, in which case

d™(—00,2as) € d~(—o0,a3 — a1] € G1d™(—o0,0] .

Since d(x) < —1 it follows that ¢(z) < aa—1 so ¢((z) < az and d((z) < 2as.
Thus ¢(z) € G1d~*(—00,0], from which it follows that f;'¢(z) € V. This
also shows that W/~ = V/~, from which it follows that the map is one-
to-one. Uniqueness follows from 15.18. o
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Homotopy theoretic twist glueing

Given a CW ribbon (X,d : X—R) and a self homotopy equivalence h :
(X,d)— (X, d) we use h to identify the two copies of X in e(X) ~ X 1T X,
constructing an infinite CW complex X (h) equipped with a map d(h) :
X (h)—S8'. The ‘homotopy theoretic twist glueing’ X (h) is homotopy
equivalent to the mapping torus 7'(h). The induced infinite cyclic cover
X (h) = d(h)*R of X (h) is related to (X,d) by a homotopy equivalence

~

F(h) : (X,d) — (X(h),d(h))

such that the generating covering translation CY(h) : X(h)— X (h) fits into
a homotopy commutative square

x 0
I

The construction of (X (h),d(h)) from (X, d), h is a homotopy theoretic ver-
sion of Siebenmann twist glueing (15.17). If h: (X,d)— (X, d) is a proper
homotopy equivalence which is either an end-preserving covering translation
or the identity we refine the construction of (X (h),d(h)), F(h) to obtain a
relaxed CW mi-band (X[h], d[h]) in the homotopy type of (X (h),d(h)) with
an infinite simple homotopy equivalence

Flh] : (X,d) — (X[A],d[h) .

In Chapter 20 we shall show that the wrapping up (X ,a?) of a manifold
ribbon (X, d) constructed in Chapter 17 has the simple homotopy type of
the 1-twist glueing (X[1], d[1]), and that the relaxation (M’, ¢’) of a manifold
band (M, ¢) constructed in Chapter 18 has the simple homotopy type of the
(-twist glueing (X[¢], d[¢]) of the manifold ribbon (X, d) = (M,¢).

222
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The homotopy theoretic twist glueings fit into various homotopy pushouts.
The chain homotopy analogue of the homotopy pushout property of the
double mapping cylinder (12.1) is given by :

Definition 19.1 Let A be a ring.
(i) The algebraic mapping pushout of A-module chain maps f : P—@Q,
g : P— R is the algebraic mapping cone

it = e(!)ir—aen.

(ii) The algebraic mapping pullback of A-module chain maps h: Q—S,
k : R—S is the algebraic mapping cone

P(h,k) = €((h k):Q®R—5)wy1 -
(iii) A square of A-module chain complexes and chain maps

f

pP—

rR—FE g
is chain homotopy cartesian if there is given a chain homotopy

e: hf ~kg: P— S
such that the A-module chain map
it = o) ir—qam —s
defined by
M(fa g)n = n—1 B Qn > Rn B Sn ; (xaya Z) - E(IL') + h(y) - k(z)
is a chain equivalence, or equivalently such that the A-module chain map
P — Ph,k) = ¢((h —k): Q& R—S5).t1

defined by

Py — P(h,k)y = Qn® Ry ® Sni1; @ — (f(2),9(2), e(2))

is a chain equivalence. O

Example 19.2 A homotopy pushout of spaces induces a chain homotopy
cartesian square on the chain level. o



224 Ends of complezes

A chain homotopy cartesian square has the universal property of a chain
homotopy pushout (analogous to 12.2), and also the universal property of
a chain homotopy pullback :

Proposition 19.3 A chain homotopy cartesian square as in 19.1 has the
following universal properties :

(i) Given an A-module chain complex T, chain maps v : Q—T, v :
R—T and a chain homotopy uf ~ vg : P—T there exists a chain map

(u,v) :+ S — T

such that there is defined a chain homotopy commutative diagram

(ii) Given an A-module chain complex T, chain maps u : T—Q, v :
T—R and a chain homotopy hu ~ kv : T—S there exists a chain map

(u,v) : T — P

such that there is defined a chain homotopy commutative diagram

T
U
(u;v)
v p#@

Definition 19.4 (i) A homotopy cobordism (V, Uy, Us, f1, f2) is a diagram
of spaces and maps

f f
U -5V e Uy
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which may be visualized as

f
U, — - > < “*U2

If the spaces are CW complexes and the maps are cellular this is a CW
cobordism.
(ii) The union of homotopy cobordisms

c = (V U17 U27 fla fQ) ) C/ = (Vl, U{a Ué: f{a fé)
with Uy = U7 is the homotopy cobordism
cud = (V" U0y £ F5)

with
f
LU = U sV —— V= M(fa fl)

f/
dUY = U SV VT = M(f, f])

so that there is defined a homotopy commutative diagram

\/\A
N A

with the square a homotopy pushout.

’ ’

s f s ;
Uy =Uy 14 LU =U = V' LUy =U,

V//

Example 19.5 (i) A manifold cobordism (V;U;,Us) determines a homo-
topy cobordism (V, U1,U2,f1,f2) with f1 : Uy—V, fo : Up—V the in-
clusions. The union of manifold cobordisms (V; Uy, Us), (V';U1,Us) with
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U, =Uj
(Vi U1, Uz) U (V5 ULU3) = (V Upy=ty V'3 UL, Up)
is a manifold cobordism which is rel @ homotopy equivalent to the union
homotopy cobordism (V, U1, Ua, f1, fa) U (V', U1, Uy, fi, f3)- _
(ii) A fundamental domain (V;U,(U) for an infinite cyclic cover W of

a space W with generating covering translation ¢ : W——W determines a
homotopy cobordism (V,U,U, f*, f~) with

ffr U —V;,z—ua,

T U—Viy—(y. o

Proposition 19.6 Let (X,d) be a CW complex ribbon, and write the in-
clusions as

it U = d'0) — XT = a7'0,00) ,
iU — X = d(-0,0],
gt + XT — X, ¢ : X — X,
so that
X = XTuX , U=X"nX",
with U C X a finite subcomplex. Also, let
7 =mU) = m(X") = m(X7) = m(X)

and let [7,)2“‘,)2_,5( be the universal covers of U, X, X, X.
(i) The commutative square

j+

v—~ X+t

q

X —X

1s a homotopy pushout, with the natural map defining a homotopy equiva-
lence

M(GTT) — X
(i) X T and X = dominate X. N N
(ili) The finite f.g. free Z[x]-module chain complex C(U) dominates C(X )
and C(X 7).
(iv) X+, X~ and X are finitely dominated.
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Proof (i) This is a standard property of CW complexes: pushout squares
are homotopy pushouts.

(ii) Use the homotopy equivalences e(X *) ~ X to define dominations of
Xby Xt and X~

(Xt.ptqtgTpT ~1x),

(X7p7,a ¢ p =1x)
with
¢ Xt — X
the inclusions and
pt i X ~ e(XF) — X*E.
(iii) The Z[r]-module chain homotopy cartesian square

() g Xt

Ak

cXx)—L L cox)
is a chain homotopy pullback by 19.3. The Z[r]-module chain maps
~ (1,p—q™h)
it OXh) S w(gt ) =~ C),

~ _(pTq 1) ~

im: OXT) —— P¢tq) = CU)

fit into chain homotopy commutative diagrams
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so that there are defined chain homotopy dominations of C'(X *) and C(X )

(C(U),i+,j+,j+i+2 10()?+)) ) (C(U)v'iiuji’jiii = 10(%—)) :
(iv) It follows from (iii) and 6.8 (i) that X and X~ are finitely dominated.
Combining this with (ii) gives that X is finitely dominated also. m

Remark 19.7 In general, the finite subcomplex U = X™ N X~ of a CW
ribbon (X, d) does not dominate X+ and X~. In particular, this fails to
be the case for the example in (i) below. In Chapter 20 below it is proved
that every CW ribbon (X, d) is infinite simple homotopy equivalent to the
infinite cyclic cover (W,¢) of a relaxed CW mi-band (W,c). In (ii) be-
low it is shown that every relaxed CW mi-band (W, ¢) is simple homotopy
equivalent to a relaxed CW mi-band (Wi,c1) with a 7j-fundamental do-
main (V4, Uy, Uy, fi7, f7) for Wy such that Uy = Wf NW, dominates Wfr
and W, rel U;. Thus every CW ribbon (X, d) is infinite simple homotopy
equivalent to one (also denoted (X, d)) such that U dominates X+ and X,
with dominations

(U7i+ : X+—>U7j+7j+i+ = 1X+) ) (U7Z‘7 : X7—>U7j77j7i7 =~ ]-X*)
inducing the chain homotopy dominations

(CU),i* 5" %t ~1 CU),i~ 5 ,J i ~ 15

C(j{+)) ) ( C(X)

of 19.6.
(i) For any integers m,n > 1 let (V1,Uy,Us, f1, f2) be the trace of the
trivial surgery on S™ C U; = S™*", so that

Vi = S x TuD™H x §" ~ gty gt Uy = ST x S

Also, let (Va,Us, Us, f5, f3) be the trace of the trivial surgery on S™ C Uy =
S x 8™, so that

Vo = 8Mx S x TUD™ x 8" ~ gmtnygm | Uy=U; = ST,
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Then
(V1,U1, U, f1, f2) U (Va, Us, Us, f, f3)

~ (ST x 8™ x {0}, 8™ x {1},140,11) ,
(Va,Us, Us, f3, f3) U (V1, U1, Ua, f1, f2)

~ (87 S™ ST 8™ x ST ST x S™ gV p1 VO,qV 0V po)

with ig,71; the inclusions, p; : ™ x §"——8™, py : §™ x §"—5" the
projections and ¢ : S™ x S"——S8™T" a degree 1 map. The infinite cyclic
cover of the CW band

(W,e) = (8™ x S* projection : "™ x §1—— 81
is thus a CW ribbon
(X,d) = (W,e) = (™™ x R,projection : S x R—R)

with a fundamental domain (V,U, U, f*, f~) such that up to homotopy

Vp1V0
fEU = gmx st DL gmtny gmy gno Y

VOV
FoiU = Smx st T gmEny gmy gn o~
gt 1V o~ gty gmy g, gty gm o~ X
g~ 1V o Sty gy g, gy G~ X

(ii) For any CW m-band (W, ¢) and any 7i-fundamental domain (V, U, U,
1, f7) for the infinite cyclic cover W = ¢*R of W let

i = M(f+7 f_)
be the double mapping cylinder, so that there is defined a homotopy pushout

v_JI" v
q [1—
+
Vfgl,vl

The CW cobordism (Vi,V,V, i, fi') is a m-fundamental domain for the
CW mi-band defined by the mapping coequalizer

(Wi,e1) = W) -
The application of 13.18 with
it =ft, i =f  K=U—X-=Y =1V,
jt = =1:L=V-—X=Y =V
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shows that (W7, c;) is simple homotopy equivalent to (W, c). If (W,¢) is a
relaxed CW mi-band and V' dominates W rel U and V dominates W rel
CU let

KW — vV, k(W —V
be maps such that

gkt ~ 1 : W —w" relU

gk ~1: (W — (W rel(U,

with g7 : V—>W+, g~ : V—(W  the inclusions. The homotopy com-
mutative square

is a homotopy pushout, so that
ktg™ k=g~
U=V —VeW, 6 ff:U=V-—7Vx=W,
+ —

gfr:Vg—>W+:W1+ : gf:VLW_:WI_.
(Warning: the homotopy equivalence V' =~ V; is not simple in general — in
the notation of 22.5 7(V ~ Vi) = ¢* € Wh(m(W)).) The fundamental
domain (Vi,Us, U, fi, fi) for the infinite cyclic cover (W1,¢;) of (Wi, c1)
is such that U; dominates Wfr and W, , with

gt —
giff =V —W" ~ W,

— p— g J— N
g fi U =V —W ~W, . o

Definition 19.8 Given a CW ribbon (X,d) and a homotopy equivalence
h: X—X define the h-twist glueing (X (h),d(h)) of X to be the (infinite)

CW complex
X(h) = W(fT(h), f~(h))

= UxIUsmug-m V(h)

with
(V(R),U,U, f*(h), f~(h))
= (Xt U X, 55 p h)UX ™, X, Up i)
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the union cobordism and
d(h’) : X(h) - W(l{pt.}al{pt.}) - Sl
the canonical map. The double mapping cylinder
V(h) = M(p*h,p”)
fits into the homotopy pushout square

p

X—X"

p+hl ‘k(h)

+

and the maps f*(h), f~(h) are the composites

+ +
) U L xt k(R) V(h)
ey v x- My
o) e (Jeme) = ()
V(h)

Proposition 19.9 (i) The maps f*(h) : U—V (h) induce isomorphisms

~

FFR)e : mU) = m(X) — m(V(Rh)
such that

~

HER)D)T () = he = m(U) = m(X) — m(X).

The h-twist glueing X (h) is homotopy equivalent to the mapping torus T'(h),
with d(h) homotopic to the canonical map T(h)—S?' :

d(h) : X(h) ~ T(h) — S*.
The infinite cyclic cover of X (h)
X(h) = zx V(NG f~(W)(@) =G +1,fT(h)(x)]j € Z,x € U}
18 homotopy equivalent to X, with the generating covering translation

CX(h) : X(h) — X(h); (j,v) — (j + 1,v)
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such that

Gy = ho: X(h) ~ X — X(h) ~ X.
The restrictions
C%W = Sxm : X(h)” — X(h)~

are such that

+ () + L Pttt < () +
CX(h) Xh)t ~ Xt — ~ X(h)*,
p h7'q

C§(h) c X(h)” 2~ X7 —— X~ ~ X(h)™ .

(ii) The maps
g (h) + V(h) —
g (h) = V(h) —

fit into a homotopy pushout square

hq

X —X

and homotopy commutative diagrams
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In particular, V (h) dominates X T and X ~ rel U.
(iii) There are defined homotopy pushout squares

Uﬂﬂ/(h) U&V(h)
J’ﬂ hg‘ (h) J*h kgﬂh)
X-M,X— Xt M,X"i-

(iv) V(h) is finitely dominated, with finiteness obstruction
V(R)] = (he = DIX '] = (1= h)[X ] € Ko(Z[r1(X)]) -
Proof (i) The map
(@ 5" a g™ (b))« WT(h), f7(h) = X(h) — W(lx,h) = T(h)
is a homotopy equivalence — this is a special case of 13.18, since the maps
gt U — X", j7 :U— X"~
pth : X — Xt po : X — X~

)

are such that up to homotopy
it k* (h)
fr) - U — XT — MpThp™) = V() ,

v x Y thp) = v,

+

+h
hex 20 xt LomGti) = X

1. x 2o x- LoomGh,io) = X .
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The infinite cyclic cover X (h) of X (h) has a fundamental domain

({0} x X~ Ugoyss-my@)=f1yxf+my) {113 x X 73 {0} x X, {1} x X))

which is (homotopy equivalent to) a fundamental domain (M(h : X —X),
X x {0}, X x {1}) of the canonical infinite cyclic cover T'(h) of the mapping
torus T'(h), so that

Gy = oy =+ X(W)=T(h)~X — X(h)~T(h)~X .

(ii) The square is a homotopy pushout because it is homotopy equivalent
to the pushout square

(ili) The squares are homotopy pushouts because they are homotopy
equivalent to the pushout squares

U———"—V(h) U———V(h)
_ C%(h) l k + %(h) lJr
X(h)- —=25X(h) X(h)T ————X(h)
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(iv) Let V(h), X, X+, X ~, X(h) be the universal covers of V(h), X, X T,
X 7, X (h) respectively, and let

m(V(R) = m(X) = m(XT) = m(X~) = 7.

The Z[r]-module chain complexes C(X), h,C(X T), C(X ™) in the chain
homotopy cartesian square

c(x) —L——c(x7)
pth hk’_(h)
o W oimy

are finitely dominated, so that C'(V(h)) is also a finitely dominated Z[r]-
module chain complex, and V' (h) is a finitely dominated CW complex (by
6.8). It now follows from

[X] = X7+ [X 7]
= h[X] = h[X 7]+ h[X 7] € Ko(z[n))
that the finiteness obstruction of V' (h) is given by
V(R)] = ha[X 7]+ [X 7] = [X]
= (= DX = (1—h)[X ] € Ro(zlr]) . :

Example 19.10 If h, =1 : m(X)—m(X) then
V(h)] = [XT]-[X7] = 0€ Ky(zZlm (X)) ,

and V(h) is homotopy finite. u]

Proposition 19.11 (i) Let h = 1 : X—X. The cellular chain complex
C(V(1)) of the universal cover V(1) of V(1) is equipped with a Z[m1(X)]-
module chain equivalence

such that
F) e =5 o) = o),

i - -

(1) - c(U) — CcU) ~ Cc(V(1)).

The chain equivalence determines a particular simple chain homotopy type

on C(V (1)), and hence particular simple homotopy types on the spaces V (1),
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(X(1),d(1)).

(ii) If h : X—X s a covering translation with
A(XT)cXt |, i(XT)c X~

let

U=X"'nX" ,V =X"nhX)cX,

ff U —V;,z—ua,

fm7:U—V,;zx— h(z).
Then (V,U,U, f*,f7) is a m-fundamental domain for X regarded as the
infinite cyclic cover of the CW my-band X /h, with f+, f~ inducing isomor-
phisms

~

fE e s mU) — m(V) = m(X)
such that f; = h.f.

Xt

The cellular chain complex C(V (Rh)) of the universal cover V (h) of V (k) is
equipped with a Zm (X )]-module chain equivalence

C(V) ~ C(V(h))
which determines a particular simple chain homotopy type on C(V(h)).
This determines a particular simple homotopy type on the space V(h), and
also on (X (h),d(h)).

Proof (i) Both C'(U) and C(V (1)) fit into chain homotopy cartesian squares

ox) —2 C(X) oX)—F L ox)
T
ox)—1" e@  oxn) Y omy)
(ii) The maps
gtV —XT: 20— 2,

g V—X"; 1z — hl(z)
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fit into a pushout square

g+

v—9 . x+

A

hq~

X —
The restrictions
Rt =h : XT — X1,
R~ =hY X7 — X~

are proper homotopy equivalences at oo such that there are defined com-
mutative diagrams

e(XT) = X
\ V
X+
e(ht)|~ h*J h
X-‘r
PN

so that
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The Z|r]-module chain maps

KT o= frit L o(XT) — C),

k- = fTim s O(X7) — C(V)

fit into chain homotopy commutative diagrams

X+ C(X)
y p—h/
1 o) 4 oX) 1
Y AN
C(XH) . C(X)
C(X —)\ 1 C(X7)
k= V
cv)
q- gﬂ hq~
(Xt
pth X
C(X) A C(X)

oo?ﬂL (X) X)) —F L ow)
I 0T
o) —I L o(X) X)L o5

are chain homotopy cartesian. Moreover, it follows from the chain homotopy
commutative diagram
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(X 1 C(X)
K %
p7h71 C(X +) pihil
A
b oxX )+ ey L ox) 1
lo*
a C(X) ha
C(X) h C(X)

that the chain homotopy commutative square

is chain homotopy cartesian, so that there is defined a chain equivalence

C(V) = C(V(h)

such that
KX (h) : C(XT) * C(V) ~ C(V(h),
E(h) : C(X7) -2 (V) ~ C(V(h) . :

Proposition 19.12 Let (X,d) be a CW ribbon, and let h : (X,d)— (X, d)
be a proper homotopy equivalence such that h : X—X is a cellular end-
preserving homeomorphism which s either a covering translation or the
identity, with
AXTYCcXt | Al (XT)CcXx .

Let

V.U, U, 7, f7)

B { a fundamental domain for X if h is a covering translation ,

(U,U,U,1,1) ifh=1.
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Choose a finite CW complex V[h] in the simple homotopy type of V(h)
given by 19.11, and let (V[h],U, U, f*[h], f~[h]) be the finite CW cobordism
defined by
i FE ()
f[h] : U — V(h) ~ VIh].

(i) The finite CW cobordism (V' [h],U,U, f*[h], f~[h]) is a m1-fundamental
domain for the infinite cyclic cover X[h] = d[h]*R of a relaxed CW m1-band
(X[h], d[h]) with

X[n] = W(f*[n], £ [n)
= U X IUptppug-m VIR

and

dlh] : X[h] ~ X(h) ™ ogr

The chain homotopy idempotents given by 19.6

=ity o =i s o(U) — C(U)

are such that

fER ~ fiErt o C(0) — C(VIR])

with
+

ol Loowy — com)

(ii) There is defined an end-preserving proper homotopy equivalence

F[h] = (X,d) — (X[h],d[h])

such that the generating covering translation CY[h} : X[h]—X[h] fits into a
homotopy commutative square

x P
e
Pl LI e

If h : X— X s a covering translation then d : X —R is proper homotopic
to a Z-equivariant lift of a map d/h : X/h—S' classifying (d/h)*R = X,
and F[h] is homotopic to a Z-equivariant lift of a homotopy equivalence
(X/h,d/h)—(X|[h],d[h]) of CW bands.

If h=1: X—X the composite

1 T(F[1]) proj. __
G: X xS = T(lx) — T(Crp) — X[1/Cpy = X[

1s a homotopy equivalence such that

incl.

Al sox 2 xxr Soxp
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Proof (i) The chain homotopy f¥[h] ~ f,fri is given by the chain homo-
topy commutative diagram

_ £ -

f5(h) /
o N
i/ \
c(X

7%

(ii) The homotopy equivalence X[h] ~ X (h) is induced by the rel 9 ho-
motopy equivalence

(VAL UU T [R] f[R]) = (V(R), U, U, f(h), f~(h)) -

The composite

X — X xR —T(h) — X(h)
of
X — XXxR; z— (x,d(x)),
X xR —T(h); (z,a+b) — (h%(z),b) (a€Z,be]0,1))

and a Z-equivariant lift T'(h)— X (h) of the homotopy equivalence T'(h)—
X (h) of 19.9 (i) is a proper map

Flh © X — X(h) .

Now F'[h] induces isomorphisms of the fundamental groups, the fundamental
groups at oo, the homology groups of the universal covers

Flh). « H(X) — H.(X(0)
and also the locally w-finite homology groups of the universal covers
Flh). : HY7(X) — HY7(X(h) |
so that F'[h] is a proper homotopy equivalence by 5.7. O
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Proposition 19.13 Let (X,d) be a CW ribbon with m(X) = w, and let
h:(X,d)—(X,d) be a proper homotopy equivalence.
(i) The finiteness obstruction of V(h) is the image of the infinite torsion
T (h) € Whi(X) (11.1) under the isomorphism Whi/(X) = Kq(Z[x]) :
V(n)] = [ ()] = (he = 1[XT] € Ko(2Z[]) .
Thus V' (h) is homotopy finite if and only if 7'/ (h) = 0 € Wh'/(X).
(ii) If h is a covering translation or the identity (as in 19.12) then
) = V()] = 0eWr(X) = Kolr))

and F[h) : X—X|h] is a proper homotopy equivalence with infinite torsion

FI(F) = XY= [XT[h)] = 0e WHY (X) = Ko(z[x]) . O

Remark 19.14 The fundamental group of the h-twist glueing X (h) is the
a-twisted extension of m = m;(X) by Z

(X (h) = 7 Xa Z

with = hy : m——m. The splitting theorem of Farrell and Hsiang [48]
expresses the Whitehead group as

Wh(r xo Z) = Wh(m,a) @ Nilg(Z[r], o) & Nilo(Z[x],a™?)
with Wh(m, «) the class group of a-twisted automorphisms of f.g. projective
Z[r]-modules, the relative group of Siebenmann [145] in the exact sequence
l1-a l-a —

Wh(r) — Wh(r) — Wh(r,a) — Ko(Zlr]) — Ro(Z[x]) .

and Nilo(Z[r], @) the reduced nilpotent class group of a-twisted endomor-
phisms of f.g. projective Z[r]-modules. (See Chapter 21 for a slightly more
detailed account.) The fibring obstructions of the relaxed CW band X|h]
of 19.12 will be shown in Chapter 26 to be such that

dE(X[h]) € Wh(m,o) C Wh(m Xo Z) ,
with image
[@F(X[h])] = £[XT] € ker(1 — a : Ko(Z[r])— Ko(Z[r))) .

(Actually, only the case o = 1 is considered in Chapter 26, but the result
holds for arbitrary «.) o

Example 19.15 Let (X,d) = (W,¢) be the manifold ribbon defined by
the infinite cyclic cover of an n-dimensional manifold band (W, ¢), and let
h : X—X be an end-preserving homeomorphism which is either a cov-
ering translation or the identity, as in 19.12. For n > 6 the relaxed CW
mi-band (X[h], d[h]) is realized by a relaxed manifold band (also denoted by
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(X[h],d[h])), constructed by the original geometric twist glueing construc-
tion of Siebenmann [145], as follows. Let (V;U,(U) be a manifold funda-
mental domain for the infinite cyclic cover W. Use engulfing (Siebenmann,
Guillou and Hihl [149]) to realize the maps p* : X—X T p~ : X— X ~
by embeddings

pt] : XXt | [p7]: XCX"~
as disjoint open neighbourhoods of the ends. The finite CW fundamental
domain (V[h],U, U, f*[h], f~[h]) for X[h] of 19.12 is realized by the com-

pact n-dimensional manifold cobordism (also denoted by (V[h], U, U, f*[h],
f~[h])) which fits into pushout squares

V[h]4> X~

A Tk

V[h] x+ 194 X

with
ffR U — X" —VI[h] , f7h] : U— X~ — VI
and ([h] : X— X a covering translation isotopic to h. The h-twist glueing
X[h] = W(FTRL f7[R) = U T Upsppug-p VIR
is a relaxed manifold band such that
C[h] = CY[h] ~ h: Xh = X —X[h] = X,

Xht =X, Xh~ = X",

XhTNnXh™ = XThXx =U,

VIh] = XTn¢hl(X™) ~ XTnh(X™) ~ V(h),
pry o P v~ v
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Homotopy theoretic wrapping up and relaxation

We now use the homotopy theoretic twist glueing of Chapter 19 to develop
the homotopy theoretic analogues of the geometric wrapping up and relax-
ation techniques of Chapters 17, 18. We prove that every CW ribbon (X, d)
is infinite simple proper homotopy equivalent to the infinite cyclic cover
(W, ¢) of a relaxed CW mi-band (W, c), so that (X, d) is both forward and

reverse tame.

Definition 20.1 The wrapping up of a CW ribbon (X, d) is the relaxed
1-twist glueing CW mi-band given by 19.12

()A(vc’l\) = (X[l]vd[l]) : d

Remark 20.2 If (X, d) is a CW ribbon such that the chain homotopy dom-
inations (C(U),i%,j*,j5i* ~ 10()?1)) of 19.6 are realized by dominations
(U,i*,j%,jFi* ~1x+) (as in 19.7 (ii)) with a homotopy

itpt ~diTpT X — U = XTNnX™
then the homotopy commutative square

p+

X———X*

X~ —r U
is a homotopy pushout such that the homotopy equivalence

V(1) = Mptp) — U
is simple, with

)
itit U — V(1) — U,

=
iy U — V(1) —U.

244
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The wrapping up ()? , CT) is a relaxed CW m-band, which can be taken to be
the mapping coequalizer (13.7) of the homotopy idempotents i 5 * : U——U
of the finite CW complex U

(X[],d[1]) = W(i*5",i757) o

Proposition 20.3 The wrapping up of a CW ribbon (X,d) is a relaxed
CW my-band

~

(Wie) = (‘)?7d

~—

such that :

i) the covering translation of the infinite cyclic cover W = d*(R of W
g
18 homotopic to the identity,
Gy = 1: W — W,

(ii) there is defined an infinite simple homotopy equivalence of CW rib-
bons

F: (X,d) — (W,0)
with

Xtnx- = winw"
and the restrictions F| : XEWE are proper homotopy equiva-
lencesrel XT N X,

(iii) there is defined an infinite simple homotopy equivalence of CW rib-
bons

~

G : (X x Sl,d(prl)) — (W xR, pry) .

Proof (i) This is the special case h = 1 of the homotopy CY[h} ~ h given by
19.9 (i).

(ii) Let F' = F[1], with F[1] as defined in 19.12 (ii), such that 7/ (F) = 0
by 19.13 (ii).

(iii) Use the homotopy equivalence

~

T(F) : T(lx) = X xS' — T(G)
and the homotopy equivalence defined by the projection
p:T(Gp) — W/ = W (o,t) —
to define a proper map
G: XxS'— WxR; (z,5) — (pT(F)(x,s),d(x))

which is a homotopy equivalence. Moreover, GG induces isomorphisms of
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fundamental groups at oo and the locally w-finite homology groups of the
universal covers (with 7 = 71(X) X Z), so that G is a proper homotopy
equivalence by 5.7. The isomorphism

WhY (X x SY) = Ko(Z[r (X) x 7))
sends 7/ (G) € Wh/ (X x SY) to
(Xt x 81— [W x[0,00)] = 0€ Ko(Z[r(X) x Z]) ,

so that G is infinite simple. o

Theorem 20.4 (i) If (X,d) is a CW ribbon then d : X —R is proper ho-
motopic to a proper bounded fibration, and X is forward and reverse tame.
(ii) If (X,d) is a manifold ribbon with X an open manifold of dimension
> 5 or a Hilbert cube manifold then d : X——R is proper homotopic to a
manifold approzimate fibration. The homotopy theoretic wrapping up (X, d)
of 20.1 is realized (within its simple homotopy type) by the geometric wrap-
ping up of 17.1, with the infinite simple homotopy equivalence G of 20.3
realized by the homeomorphism X x 81 = X xR of 17.1.
Proof (i) Immediate from 17.16 (i) and 19.12 (ii).

(ii) It is immediate from (i) and 16.10 that d is proper homotopic to a
manifold approximate fibration d’ : X —R. By 18.6 the geometric wrap-
ping up of 17.1 is homeomorphic to any Siebenmann 1-twist glueing of
(X,d). Thus it suffices to show that there is a Siebenmann 1-twist glueing
Wi (f-, f+) of X with a natural homotopy equivalence X —Wi(f-, f+)-
As in 18.6 if U_ = (d')"!(—o00,—1) and Uy = (d')~!(1,00) then there are
homeomorphisms fi : Ux— X which are isotopic to the identity through
open embeddings. The maps

—1
ps] = X (fi> Ur C X*
realize p+ : X ~ e(X*)— X7 up to homotopy. It is then clear that the
Siebenmann twist glueing Wi (f_, f1) is homotopy equivalent to the 1-twist
glueing W(fT(1), f~(1)) with [p4] replacing p1 in 19.8 (cf. 19.15). m

Remark 20.5 Let (X, d) be an n-dimensional manifold ribbon with 7 (X) =
.

(i) X is a finitely dominated (n — 1)-dimensional geometric Poincaré com-
plex with finiteness obstruction

(X] = [XT]+[X7] = [XF]+ ()X € Ko(zln]) -
The inverse image of 0 € R is a compact (n — 1)-dimensional manifold
U=d'0)cX

such that the inclusion defines a degree 1 normal map (f,b) : U—X. For
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n > 6 the finiteness obstruction [X*] € Ko(Z[r)) is the codimension 1 split-
ting obstruction to making ( f,b) normal bordant to a homotopy equivalence

by codimension 1 surgeries on U inside X. For any n the projective surgery
obstruction (Pedersen and Ranicki [109]) of (f,b) is

ol(f,b) = 0€ Ly (Z[n]),

n—1
since (f,b) extends to a finitely dominated normal bordism
(g.0) + (X750 e(XT)) — X x (I;{0},{1})

such that (g,c)| : e(XT)—X is a homotopy equivalence. If X is homotopy
finite then (f,b) has finite surgery obstruction

ol(f:b) = [X7] € im(H"(Zs; Ko(Zln])— Ly (Z[x]))
= ker(Ly,_(2Z[r]) — Lj_,(Z[x])) ,

n—1

in accordance with the Rothenberg-type exact sequence of Ranicki [118§]
. — Ih(2[x)) — H™(Z2; Ko(Z[r]))
— Lyy_y(Zlr]) — Ly y(2[r) — ... .

(ii) The construction of the normal map (f,b) : U—X in (i) goes back to
the special case considered by Browder [12], with X an open n-dimensional
PL manifold homeomorphic to M x R for a compact (n — 1)-dimensional
PL manifold M. For n > 6 the finiteness obstruction (= codimension 1
splitting obstruction) [XT] € Ko(Z[r]) is such that [X*] = 0 if and only if
X is PL homeomorphic to N x R for a compact (n — 1)-dimensional PL
manifold N (Novikov [104], Golo [64], Bryant and Pacheco [17]). In the
case considered in [12] 7m1(X) = m (M) = {1}, so the obstruction takes
its value in Ko(Z) = 0 — it was proved in [12] that such X is indeed PL
homeomorphic to N x R.

(iii) The finitely dominated n-dimensional geometric Poincaré cobordism
(X*;U,e(X™)) of (i) gives the identity of projective symmetric signatures

on(X) = o*(U) € L™ (z[n]) .

This is a generalization of the identity
signature(X) = signature(U) € L*(z) = Z

obtained by Novikov [103] in the case n = 4k + 1, for any open (4k + 1)-
dimensional manifold X with a proper map d : X —R transverse regular at
0 € R. The identity was used in [103] to prove the homotopy invariance of
the codimension 1 component Li(M*+1) ¢ H*(M;Q) of the L-genus of a
(4k + 1)-dimensional manifold M*+1. Novikov [104] proved the topological
invariance of the £-genus L£.(M) € H*(M;Q) and the rational Pontrjagin
classes p.(M) € H**(M;Q) for all manifolds M, using the tori 7% and the
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signature properties of open manifolds with a proper map to R?, general-
izing the method of Browder [12]. This proof was interpreted in Ranicki
[125, Appendix C] in terms of the lower L-theory of Ranicki [124]. Gromov
[65] used a signature identity of the above type in the case n = 0 (mod2)
with coefficients in a flat bundle, replacing the tori in [104] by surfaces of
higher genus. See Ranicki [127,4.2] for the relationship of the proofs to each
other. |

~

Remark 20.6 (i) In 26.7 it will be proved that the wrapping up ()A(, d) of
a CW ribbon (X, d) has fibring obstructions

®H(X,d) = —B(X7]) , & (X,d) = B(X")) € Wh(m(X) x z)
with

-/

B : Ko(z[r(X)]) — Wh(m(X) x Z) ;
[P] — 7(—2: P[z,z_l]—>P[z,z_1])

the geometrically significant split injection of Ranicki [122]. Thus X is not
in general in the canonical (finite) simple homotopy type of X x S! (cf.
17.2).

(ii) In 27.4 below it will be shown that a CW band (W,c) is simple
homotopy equivalent to the wrapping up (X,d) of a CW ribbon (X,d) if

and only if (W, ¢) is relaxed and there exists a homotopy ¢ ~1: W—TW.
o

Definition 20.7 The relazation of a CW mi-band (W,c) is the (-twist
glueing of the infinite cyclic cover CW ribbon (W,¢) given by 19.12, the
relaxed CW mi-band

(W', ) = (W[c],e[c]) -

The relaxation (W', ') is related to (W, ¢) by a homotopy equivalence

(W,c) ~ (W', ()
(which is not simple in general) with

CW/:C:W/QW%W/:W. o

Proposition 20.8 Given a CW mi-band (W, c) let

(X,d) = (W,¢)
be the CW ribbon defined by the infinite cyclic cover, and write the wrapping
up as

~

(X,d) = (W,o) .
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The mapping torus of the simple self homotopy equivalence of the wrapping
up

~
~

—_ ~ 1 ¢(x1 ___ 1= =
W —WxS§ —Wx§ — W
1s such that there is defined a simple homotopy equivalence
T — W xS,

Proof The homotopy equivalence X x S ~ X is a restriction of the proper
homotopy equivalence G : X x S ~ X x R of 20.3 (iii). The simple
homotopy equivalence T(E) ~, W x S! is the composite of the evident
simple homotopy equivalence T(g ) ~ T(¢) x S and the simple homotopy
equivalence proj. x 1:T(¢) x S' ~, W x S O

Remark 20.9 It will be proved in Chapter 26 that the relaxation W’ has
fibring obstructions

EW') = dF(W) € Wh(m (W)

with ®*(W) obtained from ®*(W) by setting the Nil-components to 0,
and

(W W) = &EW') - dE(W) € Wh(m (W))
the sum of the I\ATfl—components. O

Example 20.10 The geometric relaxation (W', ¢) (18.2) of a manifold band
(W, ¢) with dim(W) > 6 is a relaxed manifold band in the simple homo-
topy type of the homotopy theoretic relaxation (W', ¢) of 20.7. The simple

homotopy equivalence C W—W of 20.8 is realized by a homeomorphism
and the simple homotopy equivalence W x St ~, T(C ) is realized by a home-
omorphism W x St 2 T({) with a lift to a Z-equivariant homeomorphism

WxS' =T = WxR.
The composite

proj. c

Wx S — w — st

is homotopic to the projection of a fibre bundle over S 1 with fibre W and
monodromy ¢ : W—W. o
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Wrapping up and relaxation are related by :
Proposition 20.11 Let (W, c) be a CW mi-band. A fundamental domain

(V,U,U, f+, f7) for the infinite cyclic cover W = ¢*R of W and correspond-
ing fundamental domains

(V,UU T F) = (VLU U, fISIT, 1K)
V', UU T f7) = (VICLUU, FIAT, £1K7)

for the wrapping up and relaxation
(W,e) = W[i],c[1]) , (W'.¢) = (W[(],c[C])
are related by simple rel 9 homotopy equivalences

VU, U, fH Y u(V,U,U, FH ) ~ (V,U,U, f'*, f7)
(V,U,UFH YUV, UU, fH ) ~ (V,U,U, f'*, 7).

Proof The homotopy pushout property of the square

w—L w
[ v

and the homotopy commutative diagram

w—L . w"
T
Ky
give a map
¢V —=V
such that
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The homotopy commutative diagram

U w
/ g+t % X
1% w W
\JFA % y‘ -
W v
K+ /
V/

ffUv—=VvV —w —V,

¢
fmr U =V —-W —V =V,

with
A P A A
The corresponding map
Vuv = M(ff ) — v
defines a simple rel @ homotopy equivalence
V.UU S UVUUF ) = (VLUU 7).
Similarly for the simple rel 0 homotopy equivalence

V,UU, fH YUV UU ) ~ (VU U /7, 7). O

A CW m-band (W, ¢) and its relaxation (W', ¢) are related by the follow-
ing ‘CW h-cobordism’ (Z; W, W’). For manifold W it is possible to realize
(Z; W, W’) by a manifold h-cobordism.
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Definition 20.12 A CW mi-band (W, ¢) is related to the relaxation (W', )
by the relazation CW h-cobordism ((Z,d); (W,c), (W', ), with (Z,d) a
CW band containing (W, ¢) and (W, ¢’) as deformation retracts, constructed
as follows. Given a mj-fundamental domain (V, U, U, 1, f7) for the infinite
cyclic cover W = ¢*R let
h: VUV —Vuv

be the simple homotopy equivalence defined by composing the simple ho-
motopy equivalences VUV ~ V' V' ~ V UV’ given by applying 20.11 to
(W,¢) and (W', ), and let

X = Mh:VUV—VUV).
The mapping coequalizer of the two inclusions et,e™ : V—X isa CW
band
Z = W(et,e™)
such that (Z; W, W) is a CW triad, with the inclusions
W =W — 2, W =W/ ") —2
homotopy equivalences. The infinite cyclic cover Z of Z has a m1-fundamental

domain (X,V,V, e" e”) which restricts to the m-fundamental domains
(V,U,U, f+, f7), (VU U, f'*, f'7) of the infinite cyclic covers W = ¢*R,

W' = c*R of W, W'.

() A

U

] Y

<D

a h

U

\ \_J

<
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Remark 20.13 (i) The CW structure of the relaxation h-cobordism (W; M,
M") (18.3) of a manifold band (M, ¢) is the relaxation CW h-cobordism of
20.12, up to simple homotopy equivalence — see 26.14 below for a more de-
tailed discussion.

(ii) In Chapter 26 we shall identify the torsions of the relaxation CW h-
cobordism 7(W—2), 7 (W'—Z) € Wh(m(W)) with the nilpotent com-
ponents of the fibring obstructions ®* (W) € Wh(m (W)), so that

OT(W) -t (W) = (W) — &~ (W)
= 71(W—W")
= 7(tT) —7(t7) € Wh(m(W))

and ®* (W) is obtained from ®* (W) by setting the nilpotent components
to zero. |

Example 20.14 Let (W, ¢) be an n-dimensional manifold band, with n > 6.
(i) The following conditions are equivalent :

(a) the reduced projective class
W) = ()" W) € Ko(zlm (W)

is such that [W+] =0,

(b) there are defined homeomorphisms
W > MxR, W= MxS!

for a closed (n — 1)-dimensional manifold M |,

(c) the homotopy equivalence given by 20.3
h =G : W — WS
splits along W x {*} C W x S!, i.e. the codimension 1 submanifold
M = YW x {x})cW

is such that the restriction h| : M—W is a homotopy equivalence.

(See Browder [12] for the first application of surgery to prove that W =

M x R in the unobstructed case m (W) = {1}.)

(ii) The manifold ¢-twist glueing (W', ') = (W], ¢[¢]) is the relaxation
of (W,¢) in the sense of Siebenmann [145]. The infinite cyclic cover W'
of W’ is homeomorphic to the infinite cyclic cover W of W, and W' has
a fundamental domain (V’; U, ('U) such that V' dominates W' rel U and
V'’ dominates (‘W' rel ¢'U. The relaxation W’ is h-cobordant to W, and
(equivalently) W x S! is homeomorphic to W’ x S!. Such an h-cobordism
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(Z; W, W') was obtained by Farrell [46] and Wall [165, 12.9] using a winding
trick, and also by Cappell [19,11.1,VI] using the closely related nilpotent
normal cobordism construction. o



Part Three: The algebraic theory

21

Polynomial extensions

The cellular chain complex of an infinite cyclic cover of a CW complex is
a chain complex over a polynomial extension ring. In Chapter 21 we recall
from Ranicki [122,123,124] the chain complex treatments of the mapping
torus and of the splitting theorems of Bass, Heller and Swan [5] and Bass

[4],
Wh(A[z]) = Wh(A) & Nilg(A) ,
Wh(A[z,27Y]) = Wh(A) ® Ko(A) ® Nilg(A4) @ Nily(A) ,

including the algebraic analogue for finite based f.g. free A[z, z~!]-module
chain complexes of the geometric transversality construction of fundamental
domains for infinite cyclic covers of finite CW complexes.

Definition 21.1 (i) The polynomial extension of a ring A is the ring
0 .
Alz] = {Z a;z’ |a; € A,{j > 0]a; # 0} finite} .
j=0
Similarly for A[z7!], which is isomorphic to A[z].
(ii) The Laurent polynomial extension of A is the ring
> .
Alz, 27l = { Z a;z’ |a; € A,{j € Z|a; # 0} finite}
j=—00
obtained from A[z] by inverting z. u]
Remark 21.2 (i) Given a ring A and an automorphism « : A—A let z be
an indeterminate over A such that
az = za(a) (a€A).

Given an A-module P let ayP be the A-module with elements cyz (x € P)

255
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and
ar+ay = a@+y) , almz) = ala(a)z) € P .

The a-twisted polynomial extensions A,[z], As[z,27!] are defined by anal-
ogy with A[z], A[z,271]. There are natural direct sum decompositions

Wh(A[z]) = Wh(A) @® Nily(A, o) |
Wh(Aalz,27Y) = Wh(A, o) & Nilg(A, o) & Nilg(A, ) .

Here, Wh(A, a) is the Grothendieck group of equivalence classes of pairs
(P, f) with P a f.g. projective A-module and f : P—ay P an isomorphism,
and 1\AH/10(A, «) is the reduced nilpotent class group of equivalence classes of
pairs (P,v) with P a f.g. projective A-module and v : P—ay P a nilpotent
morphism (Farrell and Hsiang [48], Siebenmann [145]). The algebraic results
of Chapters 21, 22 apply equally well in the a-twisted case, but for the sake

of simplicity we shall only consider the special case
a=1:A—A, AJz] = Alz] , Aulz,27Y] = Alz, 271

with a;Pj P.
(ii) If W is a connected infinite cyclic cover of a connected space W and
the generating covering translation ¢ : W——W induces the automorphism

a = (e m(W)—m (W) then
T (W) = mi(W) xaZ , Zm(W)] = Z[ri(W)]alz, 274 .

In dealing with infinite cyclic covers we again make the simplifying assump-
tion a = 1, so that

m(W) = mW)xz , Z[m(W)] = Zm(W)][z 2] . .

Convention 21.3 In dealing with A[z]- and A[z, 27 !]-modules M we shall
always denote the action of z on M by (, that is

(: M —M;x— zx. o

Thus if X is a connected CW complex with 71(X) = nxZand ¢ : X—X
is the action of z = 1 € Z C 7 x Z on the universal cover X then the induced
Z[r)-module chain map ¢ : C(X)—C(X) is the action of z € Z[r x Z] =
Z[r[z, 271 on C(X).

Definition 21.4 A CW band (W, ¢) is untwisted if (on each component)
the induced surjection of fundamental groups

cx : m(W) — m(SY) = 7z
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splits, so that
m(W) = m(W) xz , Zm(W)] = Z[r(W)][z,27Y . |

We shall be mainly concerned with untwisted CW bands from now on, in
order to only have to consider untwisted polynomial extensions.

Definition 21.5 The algebraic mapping coequalizer of A-module chain maps
ft,f~ : D—E is the A[z, 2~ !]-module chain complex

Wt f7) = e(ft —z7'f": D[z, 27| —E[z,27")) . 0

Example 21.6 Let f*, f~ : U—V be maps of connected CW complexes
such that

fF=f = mU) — m(V)

is an isomorphism, and let f*,f~ : C(U)—C(V) be the induced Z[r]-
module chain maps of the cellular chain complexes of the universal covers
U,V of U, V. The mapping coequalizer (13.7)

W(f+,f_) = Ux IUf+Uf— |4
has fundamental group
m(W(f f7) = nxZ

and the cellular Z[r x Z]-module chain complex of the universal cover
W(ft, f7) of W(fT, f7) is given by the algebraic mapping coequalizer

CON(fT,f7) = W )
= C(ft =2 O]z, 2 ] —C(V)[z, 27Y])

(assuming that f*, f~ are the inclusions of disjoint subcomplexes). o

By analogy with the geometric mapping torus:

Definition 21.7 Let h : C——C be an A-module chain map.
(i) The algebraic mapping torus of h is the A[z, z~!]-module chain complex

T(h) = W(,h) = €(1— 2" h:Clz,27]—C[z,27Y]) .

(ii) The modified algebraic mapping torus of h is the A[z, z~!]-module
chain complex

T'(h) = €(1—zh:C[z,2z" ' ]—C[z,27Y]) . o
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Example 21.8 (i) The canonical infinite cyclic cover T'(h) of a mapping
torus T'(h : X—X) = W(1,h) is such that there is defined a pushout
=+
—— T (h)

square
X

T (h) ———T(h)
as in 14.6 (vii). If X is a CW complex and h : X—X is a cellular map
the cellular Z[z, z~!]-module chain complexes are such that

C(T(h) = €(1—z"'h:C(X)[z,27]—C(X)[z,271])
~ C(T"(h) = e(l-z"'h:20(X)[z]—C(X)[2]) ,
C(T (h) = (1 -z h:z'O0(X) [z ] —2z'C(X)[z7Y]) ~ C(X) .

(ii) If X is a connected finite CW complex with universal cover X and
h: X—X is a cellular map such that h, = 1: m(X)—m1(X) then
m(T(h)) = m(X)xZ , Z[m(T(h))] = Z[r(X)][z, 2]

and the cellular Z[m(T'(h))]-module chain complex of the universal cover

T'(h) of T'(h) is the algebraic mapping torus of the induced Z[m (X)]-module
chain map h : C(X)—C(X)
C(T(h)) = T(h:C(X)—0C(X))
= C(1—z'h:C(X)[z 27 |—CX)[z,27Y]) . o

Proposition 21.9 (Ranicki [123,124]) (i) An A-module chain homotopy
e:h~h':C—C induces an Alz,z~1]-module chain equivalence

T(h) — T(h); (z,y) — (z+e(y),y) -

(ii) For any A-module chain maps f : C—D, g : D—C' there is defined
an Alz, z~Y-module chain equivalence

T(gf) — T(f9); (z,y) — (f(2), f(y)) .

(iii) If C is a finitely dominated A-module chain complex and h : C—C
is any chain map the algebraic mapping torus T'(h : C—C') has a canonical
simple chain homotopy type (as in 6.3). If

(D,f:C—D,g: D—C,gf ~1:C—C)

is a finite domination of C then for any choice of basis for D the algebraic
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mapping torus T(fhg : D—D) is a finite based f.g. free Alz,z~']-module
chain complex in the canonical simple chain homotopy type. i

Definition 21.10 The Whitehead group of Alz,z71] is
Wh(m x Z)
Wh(A[z,27']) = { coker(K1(Z[z,27])— K1 (Az, 271]))
= Ki(Alz,27])/ {2}
if A= Z[r]is a group ring ,
{otherwise . m

The splitting theorem for Wh(A[z, z71]) involves the following K-group
of nilpotent endomorphisms.

Definition 21.11 (i) The nilpotent class group Nily(A) is the abelian group
generated by pairs (P,v) with P a f.g. projective A-module and v : P—P
a nilpotent endomorphism, with one relation

(P,v) = (P',V)+ (P",V") € Nily(A)

for each exact sequence
0—>P’L>PLI>P”—>O
with
vf = f/ : PP—P V' = fv:.:P—P.
(ii) The reduced nilpotent class group is

Nilg(4) = coker(Ko(A)—Nilg(A))
with

Ko(A) — Nilo(4) 5 [P] — [P,0] .
The direct sum decomposition

Nilg(A) = Ko(A) @ Nilg(A)

is such that the projective class [P] € Ky(A) a component of the nilpotent
class [P, v] € Nilp(A). o

See Ranicki [124, Chapter 9] for the chain complex treatment of the nilpo-
tent class group Nilg(A) of a ring A, including the definition of the nilpotent
class [P,v] € Nilp(A) of a finitely dominated A-module chain complex P
with a chain homotopy nilpotent self chain map v : P—P.

Let it : A—AJz], i : A—A[z,27!] be the inclusions.



260 Ends of complexes
Proposition 21.12 (Bass [4]) (i) The torsion group of Alz] is such that
K1(A[z]) = Ki(A) @ Nilg(4)
with an isomorphism
K1(A) @ Nilg(4) — Ki(A[2]) ;
(1, [P,v]) — 47+ 7(1 — zv: P[z]—P[z]) .
(ii) The torsion group of Alz, 21| is such that
K1(Alz,27Y]) = Ki(A) © Ko(A) @ Nilg(A) @ Nilp(4)
with an isomorphism
K1(A) ® Ko(A) © Nilg(A) @ Nilg(4) — K1(A[z,271]) ;
(r, [P, IP* ], [P 7)) — iy + (= Ple, 2 —P[z, 2]
+7(1 — z2vT : Pz, 27— P12, 271))
+7(1— 2w Pz, 27— P [2,27Y)) .
(iii) The Whitehead group of Alz, 2z~ is such that
Wh(A[z,27Y]) = Wh(A) @ Ko(A) ® Nily(A) ® Nily(A) . o

Definition 21.13 A Mayer—Vietoris presentation (CT,C ™) of a finite
based f.g. free A[z,z71]-module chain complex C' is a based f.g. free A[z]-
module subcomplex C' T C C together with a based f.g. free A[z~!]-module
subcomplex C'~ C C such that C*NC~ C C is a based f.g. free A-module
subcomplex, with

C = A[Z,Zfl] @ Alz) cCt = A[Z,Zfl] @Az c,

and such that the basis elements of C,C~,CT N C~ are each of the type
2Nb for some basis element b € C and N € Z. o

Proposition 21.14 (Ranicki [124]) (i) Every finite based f.g. free Alz, 2 ]-
module chain complex C' admits a Mayer—Vietoris presentation (C,C 7).
(ii) Given a finite based f.g. free Alz, 2z~ ]-module chain complex C and
a Mayer—Vietoris presentation (C*,C ™) define the finite based f.g. free
A-module chain complexes
D =C"nC”, E =C"n¢C .
The injections

f+:D—>E;ac—>x, fmT:D—FE;y— (y
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are such that there is defined a short exact sequence of finite based f.g. free
Alz, z71]-module chain complexes

f+ _ Z*lf*

0 — D[z,27Y] ——— E[z,27'] — C — 0

with torsion 7 = 0 € Wh(A[z,z7Y). In particular, C is simple chain
equivalent to W(fT, f7).

Cj‘lE CjE Cj‘HE

Cj—lp CjD Cj‘HD Cj+2D

Example 21.15 Let W be a connected finite CW complex with funda-
mental group w1 (W) = 7 x Z. Let W be the universal cover of W, so that
W = W/ is an infinite cyclic cover of W with 71 (W) = 7, and a generating
covering translation ¢ : W——W induces ¢, = 1 : 7——m. Assume that W
has a CW mi-fundamental domain (V;U,(U), so that 7 (U) = m (V) ==
and W =W(fT, f7) with

ftr U —V,zo—z, ff:U—V;,z—(x.
Let
wh=dv, W = |Jdvcw= | v,
=0 j=—o0 j=—o0

and let W+, W= C W be the lifts of W, W~ c W. The cellular chain

complex
C(W) = W, f7) = e(ft == f: C(O0)[z, 27 |—C(V)[z,27])

is a finite complex of based f.g. free Z[r][z, 27 !]-modules with a Mayer—
Vietoris presentation (C(W ), C(W 7)) such that

C(WJr) = coker(]pr — zC(ﬁ)[z]—>C(17)[z]) ,
CW ™) = coker(ft —z71f :27'C(0) [z ]—2"'C(V)[z7Y)) .

cCwWHnecw-) = cU) , CWHncCW™) = CV) .
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C(mV ) (V) (V)

(U ) C(U™) C(G+T+) C(¢+2U+)

By analogy with 13.18:

Proposition 21.16 Given A-module chain maps it : C—E, i~ : C—F,
jt i D——F, j7 : D—FE let

.+ .+

EUcF = e((?) :C—FE®F) , EUpF = e((],) :D—E®F).
[ J

The algebraic mapping coequalizers of the chain maps
" _

fi,))f : C > E-—EUpF , fi,j)" : C — F — EUpF ,
i+

9y D F— FUoE , g(i,j)" : D 2 E — FUQE
are related by a canonical Alz, z~']-module chain equivalence
W(f (i, 5) " f(6,5)7) = Wg(i,5) ", 9(i,5)7) ,
which is stmple iof C, D, E, F are finite and based f.g. free.
Proof The A[z, z~!]-module chain complex

Bz(:’(( N

i
can be cut open along either C' or D, so that both W(f(i,5)", f(i,7)”) and
W(g(i,5)", g(i,7)7) are chain equivalent to B. o

f) (C D)z (B ® Pz 2)

271~
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Algebraic bands

An ‘algebraic band’ is the chain complex analogue of a C'W band. We
shall now recall from Ranicki [124, Chapter 20] the algebraic band version
of the Whitehead torsion obstruction of Farrell [47] and Siebenmann [145]
for fibring a manifold band over S'. In Chapters 23-25 we shall develop the
chain complex analogues of forward and reverse tameness, relaxation, and
ribbons, which will then be applied in Chapter 26 to obtain an algebraic
version of the homotopy theoretic twist glueing of Chapter 19.

Definition 22.1 A chain complex band is a finite based f.g. free A[z, z71]-
module chain complex C which is A-finitely dominated, so that the projec-
tive class [C] € Ky(A) is defined. o

Proposition 22.2 (i) If C is a finite based f.g. free A-module chain complex
and h : C—C' is a chain equivalence the algebraic mapping torus T'(h) is
an Alz, z~Y-module chain complex band.

(i) If C is a finitely dominated A-module chain complex and h : C—C' is
a chain equivalence then any finite based f.g. free A-module chain complex
E chain equivalent to T(h) is an Az, z71]-module chain compler band. If
(D,f: C—D,g: D—C,gf ~1:C—C) is a finite domination of C
then E = T(fhg : D—D) is such a chain complex band in the canonical
simple chain homotopy type of T'(h). o

For any f.g. free A[z, 2~!]-module chain complex C there are defined exact
sequences of A[z, z~!]-module chain complexes

1—2¢t

0 — Clz,27 Y] Clz,zY ] — C —0,

_ 2’71C

0 — Clz,z7 Y Clz,z7'] — C — 0

263
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with
(:C—C;xz— zzx ,
Clz, z 1] — C; Z mjzj — Z ¢ (z5)
j=—o00 j=—o0

If C is a band the induced Az, 2~ !]-module chain maps
TN = =2 i Ol 2 —=C, 27T — €
T¢) = el —2z"%¢:Clz, 27 ]—C[z,271]) — C

are A[z, z~!]-module chain equivalences.

Definition 22.3 The fibring obstructions of an Az, z~!]-module chain com-
plex band C' are

oH(C) = 1(T'(¢H—0),
= (C) = 7(T(()—C) € Wh(Alz,z71]) . u

Proposition 22.4 Let W be a connected finite CW complex with funda-
mental group (W) = 7 x Z and universal cover W, so that W = W /7 is
an infinite cyclic cover of W with m (W) = 7, and

Zim(W)] = Zr x2z] = Zxl[z,271] .
Let ¢ : W——S" be a map inducing
c. = projection : m (W) = 7 xZ — m(SY) = Z.

Then (W, c) is an (untwisted) CW band if and only if the cellular Z[r]|z, z Y-
module chain complex C(W) is a chain complex band, in which case the
fibring obstructions of (W, ¢) are the fibring obstructions of C(W) :

dE(W,c) = H(C(W)) € Wh(m (W) x Z) . O

For any finite based f.g. free A[z, z~!]-module chain complex C' and any
Mayer—Vietoris presentation (C+,C7) let

ftf D =C""nC"—E =C"n¢C™; 2 — =z,
fm:D=C""nC"—E =C"nNn¢C™; y — (y,
so that as in 21.14 there is defined an exact sequence

frezle

0— D[z,z7Y] —— E[z,27'] — C —0
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with 7 =0 € Wh(A[z,27!]). The A-module chain maps

gt t E—Cz—z, g

: E—C oz — (lx,
¢t ct—cCctyz2—C,  :C —C ;02— (2

are such that there are defined commutative squares

/- f*

D—— S F D—— S F
g*f*h hgﬁ g‘f‘h hg‘
o o c—S o

giving rise to exact sequences

(gf;> 5 (=9~ ¢7)

O—D —— FEFp(C” ——— (C7 — 0,

IS
et pE Rt
00— D ME@C+(9C)C+—>O

and chain equivalences
(9 f,97) : C(fT : D—E) — €(¢(” : C~—C7),

(g f*.g) : e(f~ : D—E) — e(¢t: CT—C) .

Proposition 22.5 (Ranicki [124, Chapter 20 ;126]) (i) The fibring obstruc-
tions of an Alz, 2z~ -module chain complex band C are simple chain ho-
motopy invariants, such that ®T(C) = ®=(C) = 0 € Wh(A[z,271]) if and
only if C' is simple chain equivalent to the algebraic mapping torus T'(h) of a
simple self chain equivalence h : F——F of a finite based f.g. free A-module
chain complex F'.

(ii) A finite based f.g. free Alz,z"']-module chain complex C is a band
if and only if for any Mayer—Vietoris presentation (Ct,C™) the A-module
chain complezes C, C~ are finitely dominated. If C is a band then C'/CT,
C/C~ are also finitely dominated, and the fibring obstructions of C are
given by

oH(C) = (¢", —[C7],[c/CF L [C/Cm. ),
o (C) = (¢7,[CT],[c/CH ¢, [c/C M)
€ Wh(A[z,271]) = Wh(A) & Ko(A) & Nilg(A4) & Nil(A)

with [C/CT,(], [C/C~,(7] the classes of the chain homotopy nilpotent
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A-module chain maps
¢:c/ct —C/Ct 2 — 2,
¢l o/)cm —cC/)CT s —
The torsions
6t = —r((gf . g7)  €(fT i D E)—e(C 1 C—CT))
6" = ~((g"ft.g7) € s D—E)—e(Ct: CT—CT)) € Wh(A)

are defined using the canonical simple chain homotopy types on C(Ct :
Ct—Ct) and C((~ : C~——C™) given by 6.3, and are such that

¢ — ¢~ = 7(C: C—C) € Wh(A) .

(iii) The fibring obstructions are simple chain homotopy invariants of an
Alz, z7-module chain complex band C. The difference

H(O) -2 (C) = (6" —¢~,~[CT] - [C7],0,0)
= (7(¢: C—C),—[C],0,0)
= (=271 : Clz, 271 ]—Clz,27Y])
€ Wh(A[z,27Y]) = Wh(A) & Ko(A) & Nily(A) & Nilg(A)

s a chain homotopy invariant of C.
(iv) For any chain equivalence h : C'—C of Alz, z~]-module chain com-
plex bands

7(h) = @7(C) —27(C")
= & (C)— 3 (C") € Wh(A[z,27Y]) . o

Example 22.6 Given finite based f.g. free A-module chain complexes D, E
and chain equivalences f*, f~ : D——FE define an A[z, 27 !]-module chain
complex band

C = e(ff —z7'f D[z, 27 |—E[z,271]) .
The fibring obstructions of C' are given by
T (C) = (1(f7),0,0,0),
7(C) = (7(f7),0,0,0)
€ Wh(Alz,271) = Wh(A) @& Ko(A) @ Nilg(A) @ Nilg(A) .
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Example 22.7 If C is a finitely dominated A-module chain complex and
h : C—C'is a chain equivalence the algebraic mapping torus 7'(h) has the
canonical simple chain homotopy type of a chain complex band (22.2 (ii)),
with respect to which

(T (h)) = (r(h),~[C],0,0),
= (T(h)) = (0,0,0,0)
€ Wh(Alz,27Y]) = Wh(A) ® Ko(A) @ Nily(A) & Nilg(A) .
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Algebraic tameness

We shall now develop algebraic analogues of tameness for A[z]- and A[z, 27 1]-
module chain complexes for any ring A, corresponding to the geometric
tameness properties of the ends of infinite cyclic covers of finite CW com-
plexes. The algebraic theory of tameness will be applied in 23.22 to prove
that an end W of an infinite cyclic cover W of a finite CW complex W
with 71 (W) = w1 (W) x Z is forward (resp. reverse) tame if and only if the
cellular Z[r; (W)]-module chain complex C(W *) is forward (resp. reverse)
tame.

Definition 23.1 (i) The formal power series extension of A is the ring
0 .
Allell = {D_aj%’ |a; € A},
j=0

without any finiteness conditions on the coefficients a;. Similarly for A[[z~1]],
which is isomorphic to A[[z]].
(ii) The Nowikov polynomial extension of A is the ring

AE) = AT = (Y a2 [ag € A4 < 0] ay 0} fiite}

j=—o00

obtained from A[[z]] by inverting z. Similarly for A((z7!)), which is iso-
morphic to A((z)).

(iii) The formal Laurent polynomial extension A[[z,z7]] is the A[z, 271
bimodule consisting of all the formal power series

Allz, 274 = { i a;2’ |a; € A} . o

j=—o0

268
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Note that

All]] € A((2) € Allz, 271
Al c A((zTY) € Allz, 2701
ANNA[T = A A(())NA(T) = Alz, 271

Remark 23.2 A compact manifold M fibres over S' if and only if it admits
a Morse function ¢ : M —S" without critical points. Novikov [106] applied
the rings A((2)), A((271)) to the Morse theory of S'-valued functions on
compact manifolds M with 7 (M) = Z, A = Z. Farber [44,45] proved that
in this case there exists a Morse function ¢ : M——S! with the minimum
number of critical points given by Z((z))-coefficient homology, recovering
the fibring theorem of Browder and Levine [13]. Pazhitnov [108] applied
the Novikov rings with A = Z[r] to the Morse theory of S!-valued functions
on compact manifolds M with 71(M) = 7 X Z for any m, recovering the
fibring obstruction of Farrell [46,47] and Siebenmann [145] as an A((2))-
coefficient Reidemeister torsion. The main result of [108] gives a direct proof
that a manifold band (M, c) with dim(M) > 6 fibres over S if and only if
the A((z))-coefficient Reidemeister torsion is 0. See also Ranicki [126, 128].

o

Definition 23.3 Let C'* be a finite f.g. free A[z]-module chain complex.
(i) The locally finite chain complex of Ct is the induced A[[z]]-module
chain complex

CtY = AllZ]]@ap CT .
(i) The end complex of CT is the A[z]-module chain complex
e(Ch) = ¢e(i: ct—Cctl),
with i : Ot —CH the inclusion.
(iii) C'* is reverse tame if it is A-finitely dominated, in which case the
projective class [CT] € Ko(A) is defined.

(iv) Ot is reverse collared if it is chain homotopy A-finite, i.e. A-module
chain equivalent to a finite f.g. free A-module chain complex. o

Similarly for an A[z~!]-module chain complex C~, with

O = Al @ap O e(C7) = €l 07— C )
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Example 23.4 As in 21.15 let W be a connected finite CW complex
with 71 (W) = 7w x Z, such that the infinite cyclic cover W has a CW
mi-fundamental domain. The corresponding Mayer—Vietoris presentation

(C(W+),C(W ™)) of C(W) is such that

C(W) = z[r][z, 2] iy COW ) = Z[r][2,27] @iy C(W ),
CHm (W) = z[r][[2] @z C(W ),

CUm(W =) = z[n][[z™"]] @gpmpe-1) C(W 7).

It is clear that if W ' is reverse tame (resp. collared) then the Z[r][z]-

module chain complex C(W)T is reverse tame (resp. collared) — see 23.22
below for the converse. m

Proposition 23.5 A finite f.g. free A[z]-module chain complexNC+ is re-
verse collared if and only if C* is reverse tame and [CT] =0 € Ky(A).

Proof The reduced projective class [D] € f(JO(A) of any finitely dominated
A-module chain complex D is such that [D] = 0 if and only if D is chain
homotopy A-finite. o

Definition 23.6 A commutative square of rings and morphisms

f

A————B

9

B —7 A
is cartesian if the sequence of additive groups
(7 ,
! (9 —4)
0—A ——BeB —— "~ A —0

is exact. O

Proposition 23.7 (Ranicki [124,126]) (i) The various polynomial exten-
sions of a ring A fit into cartesian squares of rings

Alz]

Alz, 271 Al ———— Alz,271)
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(ii) A Mayer—Vietoris presentation (CT,C~) of a finite based f.g. free
Alz, z71]-module chain complexr C determines exact sequences
0—CT —CctVaC — A(2) Rap CT — 0,
0—CTNC™ — CP a0 — A((2) @4 CT — 0,
0—CtNC™ — CtaC Y — A((z ) @ CT — 0,
with
A((2)) ®ap) CT = A((2)) @ C™ = A((2)) @ap, C
A(Y) @4 CF = A7) a1 07 = A7) @41 C
(iii) A finite f.g. free Alz]-module chain complex CT is reverse tame if
and only if H,(A((z71)) @41, CT) = 0.
(iii)’ A finite f.g. free A[z~']-module chain complex C~ is reverse tame if
and only if Hi(A((2)) ®a,-11C7) =0.

(iv) A finite f.g. free Alz, z71]-module chain complex C is A-finitely dom-
inated if and only if

H*(A((Z)) ®A[z,z*1] C) = H*(A((Zil)) ®A[z,z*1] C) = 0.

(v) A finite based f.g. free Az, z~'-module chain complez C is a band
if and only if for any Mayer—Vietoris presentation (CT,C~) of C the A-
module chain maps

ct —cteC,; z— (z,1),
- —CVeo; o — (z,1)

are homology equivalences, in which case they are chain equivalences. i

Since A[[z,271]] is not a ring, the notion of ‘A[[z, 2~ !]]-module’ does not
quite make sense. We shall only use it in the following context : if M is an
Alz, z~1]-module the ‘induced A[[z,z71]]-module’ is the induced A[z,z71]-
module

le = A[[Z,Z_l]] ®A[z,z—1} M )
constructed using the A[z, z~!]-bimodule structure of A[[z, z7]].

Definition 23.8 Let C be a finite f.g. free A[z, 27 !]-module chain complex.
The locally finite chain complex of C' is the induced A[[z, 2~ !]]-module chain
complex

cl = A[[Z,Z_l]] ®A[z,z—1} C. O
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Proposition 23.9 Let C be a finite f.g. free Alz, 2z ']-module chain com-
plex.

(i) The homology of the locally finite chain complex CY fits into a long
ezact sequence of Az, z~1]-modules

TN
. H (CY) — HT(C)

- HT’(A((Z)) ®A[z,z*1] C) ©® HT(A((Zil)) ®A[z,z*1] C)
— H.(CY)y — ...

(ii) C is A-finitely dominated if and only if the connecting morphisms in
(i) are isomorphisms 0 : Hyy1(CY) = H,(C).
Proof (i) This is the homology exact sequence induced by the short exact
sequence of A-modules

0 — C — (A((2)) ®ap -1 C) & (A=) ®ap -1 C) — C — 0.
(ii) Immediate from (i) and 23.7 (iv). o

Example 23.10 Let W be a connected finite CW complex with a map
c: W—S! such that

¢, = projection : (W) = 7 xZ — m(S') = Z,

and let W be the universal cover of W. The infinite cyclic cover W = ¢*R =
W /7 of W is finitely dominated (i.e. (W, c¢) is a band) if and only if the finite
f.g. free Z[n][z, z~']-module chain complex C(W) is Z[r]-finitely dominated
(6.8 (i)). Thus by 23.9 (W, ¢) is a band if and only if the Z[x][z, 2~ !]-module
morphisms

0« HIT(W) = Hop(C(W)Y) — H(W) = H.(C(W))

are isomorphisms. In particular, this gives an algebraic proof of the isomor-

?})nsm Hiflr(W) =~ H,(W) for a band (W, c) obtained geometrically in 15.7
1). O

Let C be an A[z, z~!]-module chain complex band with a Mayer—Vietoris
presentation (CT,C7), and let

D =C"nC,E =Ctn¢C .
Write the inclusions as

ffoD—E;a—uz, [ :D—E;y—(y,
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so that there are defined exact sequences

FR g
0 — D[z, 271 ]A Elz,z7'] — C —0,
+ 1l
OﬁzD[z]uE[z]%CJr—»O,
f—‘r_z—lf—

0— 2 "Dl —— 2 'E7 ] —C —0.

Proposition 23.11 (i) The A-module chain maps

u - DHC@C—F’U@C_’IJC; I‘)(IL’,SC,$),
v: E—CaCtec Y.y — (yy,l)

are chain equivalences, such that there are defined commutative squares

D r E
U= ~|v
Cactigo-u LELOCY (o is g oms
D I B
(e ~v
coctilgo-u SECTOL 0o crir g o

(ii) The fibring obstructions of C' are such that
(I)+(C) - (¢+7 _[C_L _[C—hlfa C+7lf]7 _[C_Jfa C_Jf]) )
O7(C) = (o7, [CT],—[CHY Y] —[e Y )
€ Wh(A[z,27 1) = Wh(A) & Ko(A) & Nilg(A4) & Nilg(A)

ot =1 ((@®1®)u: D—E), ¢~ = 7(v " u: D—E) € Wh(A)

such that ¢t — ¢~ =7(( : C—C).
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Proof (i) The A-module chain maps u,v are chain equivalences since the
natural A-module chain maps Ct—CHt @ C, C~—C—! @ C are chain
equivalences (by 23.7 (v)) and there are defined chain homotopy squares

D— (Ot E ct
- C o- S~

with j*: CT——C, j~ : C~——C the inclusions.
(ii) There are defined chain equivalences

(C/C*.¢) = ST ¢ty (/o7 ¢7h) = seY )

so that

[C/C+7C] = _[C+’lf7<+7lf} ) [C/Ciagil] = _[Ci’lfvciylf] € N\IIO(A) :
Combining this with (i) and 22.5 gives the expressions for the fibring ob-
structions ®*(C),®~(C) € Wh(A[z, 27 1)). o
Definition 23.12 Let C* be a finite f.g. free A[z]-module chain complex.

(i) C* is forward tame if the A-module chain map
¢t ot ot — 2

is chain homotopy nilpotent, that is (¢ T!/)¥ ~ 0 for some k > 0.

(ii) C* is forward collared if it is forward tame and C*/ is chain homo-
topy A-finite, i.e. A-module chain equivalent to a finite f.g. free A-module
chain complex. O

Similarly for an A[z~!]-module chain complex C'~, with

ooV o e — e

Proposition 23.13 (Ranicki [130]) (i) A finite f.g. free A[z]-module chain
complex CT is such that

Hi(Alz,27 1 @ap CT) = 0

if and only if CT is A-finitely dominated and the A-module chain map T :
CT—C™T;x——zx is chain homotopy nilpotent.
(ii) A finite f.g. free A[[z]]-module chain complex B is such that

H.(A((2)) ®apz B) = 0

if and only if B is A-finitely dominated and the A-module chain map C :
B—B;z—zx is chain homotopy nilpotent. ]
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Definition 23.14 Let C" be a finite f.g. free A[z]-module chain complex.
A cofinite neighbourhood (of infinity) D C C* is a f.g. free A-module sub-
complex such that z*C* C D for some k > 0. O

Proposition 23.15 Let C" be a finite f.g. free Alz]-module chain complez.
(i) The following conditions are equivalent :

(a) Ct is forward tame,

(b) H.(A((2)) ®a5 CT) =0,

(¢) the inclusion j : D—C™T of a cofinite neighbourhood D C C* is such
that j' ~0: DY —CHlf

(d) the inclusions

it ot — ot = AR QapCT iz — 10,
¢ Ot — C = Alz,z7Y ®A[] Ct,z2—1Qz
are the components of a homology equivalence
it ~
< ) . C+ SN C"le ®C
q* ’
(e) the composite A-module chain map

+
e(Ch) = et ct—cti), ., — ot Lo

1s a homology equivalence.

(ii) If C* is forward tame then CTU is A-finitely dominated, and the
nilpotent class of (CT, ) is such that

[CHY, P = —[C/Ct. ] = —[C7/(CT N CT), (] € Nily(4) .
(iit) C* is forward collared if and only if Hi(A((2)) ®ap.) CT) =0 and
[CHY] = 0e Ky(A) .

(iv) If there exists a cofinite neighbourhood D C Ct such that DY ~ 0
then CT is forward collared.
Proof (i) (a) = (b) For any k > 0 there is defined an exact sequence of
A-module chain complexes

cap DY + kot
0—Cc" —— ™ — C7/2°CT — 0

which is split in each degree, so that there is defined an A-module chain
equivalence

C+/sz+ ~ G((C*vlf)k : C+,lf_>c+,lf) )
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Moreover, Ct/zFC¥ is a finite f.g. free A-module chain complex. If k > 0
is so large that (CH!)F ~0: CH/—CHf there is defined an A-module
chain equivalence

C+/zk0+ ~ CcHlf ¢ sotlf
Thus O is A-finitely dominated, and by 23.13 (ii)
H.(A((2)) ®ap C7) = Hu(A((2)) @ CTY) = 0.
(b) = (a) Immediate from 23.13 (ii).
(a) = (c) If (¢P)*F ~0: CcHf—CHY the inclusion j : D—C+
of the cofinite neighbourhood D = zFC* C C7 is such that j ~ 0 :
DY —ctlf

(¢) = (a) For any cofinite neighbourhood D C C* let k& > 0 be so large
that zFC* C D, in which case there are factorizations

(CJr)k -0t — D L C+
(CJr,lf) C+lf _)le C+lf

If ¥/ ~ 0 then ((PV)F ~0: CH —CHIf

( ) <= (d) Immediate from 23.7 (ii).

(d) < (e) Trivial.

(ii) From (i) and 23.13 (ii) with B = C™!/ noting that the proof of 23.11
(ii) and excision give A-module chain equlvalences

S(CHV (HT) =~ (C/C, Q) ~ (C7/(CTNCT),0) .
(iii) Immediate from (i).
(iv) Apply (i) and (iii), noting that g ~ 0 : DY ~ 0—CTY and
[CH] = [DY] =0 € Ky(A). o

Similarly for an A[z~1]-module chain complex :

Proposition 23.15' Let C~ be a finite f.g. free A[z~']-module chain com-
plex.
(i) The following conditions are equivalent :

(a) C~ is forward tame,

(b) Hi(A((z71) @411 C7) =0

(¢) the inclusion j : D—C~ of a cofinite neighbourhood D C C~ is such
that jf ~0: DV —C—4f |

(d) the inclusions

im0 00— 0 = AT @0 s — 10w,
¢ CT — C = Alz,2z7] Qa1 C ;20— 10z
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are the components of a homology equivalence

(;) o0 S ocVaec,

(e) the composite A-module chain map

q

e(CT) = et :C"—C M)y — 0T — C

1s a homology equivalence.

(ii) If C~ is forward tame then C— is A-finitely dominated, and the
nilpotent class of (C—, (M) is such that

Cc—H ¢~ = ~[c/0, ¢ = —[CT/(CTNCT), ¢ € Nily(A) .

(iii) C~ is forward collared if and only if H.(A((z~1) ® A1) C7)=0and
[~ = 0e Ky(A) .

(iv) If there exists a cofinite neighbourhood D C C~ such that DY ~ 0

then C~ s forward collared. o

In the following three propositions it is assumed that C' is a finite based
f.g. free A[z, z71]-module chain complex with a Mayer—Vietoris presentation

(C+,07).

Proposition 23.16 The following conditions are equivalent :

i) CT is forward tame,

i) C~ is reverse tame,

( 11) H*(A((Z)) ®A[z,z*1} C) =0,

(iv) the natural A-module chain map e(Ct)——C is a homology equiva-
lence,

(v) the A-module chain map

ct —coct .z — (z,1)

is a homology equivalence.

If these conditions are satisfied

[CTH] = [C*]~10] = [C*NCT]~[C7] € Ko(4)

(CHH ) = —[0/Ct,¢] = —[C/(CT N C7), (] € Nilg(4) .
Proof Combine 23.7 and 23.15. |
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Reversing the role of C* and C~ gives

Proposition 23.16' The following conditions are equivalent

(i) C~ s forward tame,

(ii) CT is reverse tame,

(iif) H(A((z™)) ®afs,.-1) C) =0,
)

(iv) the natural A-module chain map e(C~)—C' is a homology equiva-
lence,

(v) the A-module chain map

- —CoC™ Y,z — (z,2)
is a homology equivalence

If these conditions are satisfied
[c™Y) = [CcY]-[C] =

[CTNCT]—[C7] € Ko(A)
[~ ¢~ = —[c/C™,¢7Y = —[CT/(CTNCT), ¢ € Nilg(A)

- O

Together, 23.16 and 23.16’ give

Proposition 23.17 The following conditions are equivalent

(i) C is a chain complezx band,
(i) CT is forward and reverse tame,
iii)

)

(iif) H.(A((2)) @ap;) CF) =

H.(A((z™1) ®ap) CT) =0

(iv) the natural A-module chain maps e(Ct)—C, e(C~)—C are both
homology equivalences.

If these conditions are satisfied

[C] = [CT]+[C7]

—[CtnCT]
[CH] = [CH] = [C7] = [C7V] € Ko(A)
and
[CHT (P = —[C/CT.() = ~[C7/(CTNCT).(],
[C_7lf7<_7lf] = _[0/0_74._1} = _[C+/(C+ N C_)ag_l] € NﬂO(A) :
Example 23.18 Let
C = T(h) = €1 —zh:D[z,z7"

J—Dlz,271)
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be the algebraic mapping torus of a chain map h : D—D for a finite based
f.g. free A-module chain complex D. The finite f.g. free A[z]-module chain
complex

C*t = e(1 - zh: D[z]—DJz])

is forward collared, and (equivalently) the finite f.g. free A[z~!]-module
chain complex

C~ = e(1—zh:2z'D[z"Y1—D[z7Y))
is reverse collared, with A-module chain equivalences
cttf ~0, CC ~ D.

In general, C" is not reverse tame and (equivalently) C'~ is not forward
tame. See 23.25 for an explicit example of such non-tameness. If h : D—D
is a chain equivalence then C' is a chain complex band, with CT reverse
collared, C~ forward collared and C ~ D A-module chain homotopy finite.

O

Example 23.19 Let A be an integral domain, and let
n
p(z) = Z a;20 € Alz] (aj € A)
j=m

be a polynomial over A, with a,,,a, # 0 € A.

(i) The polynomial p(z) is a unit in A((z)) (resp. A((z71))) if and only if
am, (resp. ay) is a unit in A.

(ii) The 1-dimensional f.g. free A[z]-module chain complex

CT = C(p(z) : A[z]—A2])

is forward (resp. reverse) tame if and only if a,, (resp. ay) is a unit in A.
(iii) The 1-dimensional based f.g. free A[z, 2~ !]-module chain complex

C = C(p(z): Alz, 27— Az, 271))

is a band if and only if a,,, a, are both units in A. o

Example 23.20 For any ring A and central non-zero divisor s € A the
localization of A inverting s and the s-adic completion of A (2.28) are such
that

All/s] = Alz]/(1 = z5) ,

A, = lim(A/s"A4) = A[[2]]/(z—s) .

P
k

In fact, A[1/s] = Alz]/(1 — zs) is just a restatement of the identification of
2.28 (i)

A[l)s] = Tm(A - A a4 24— ).
—
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The localization of the completion A,[1/s] fits into the cartesian square of
rings

T%A[l/s]
A, A[1/s)

(See Ranicki [119] for the algebraic K- and L-theory of such squares). The
1-dimensional chain complexes

Ct = e(1—zs: Alz]—A[7]) ,
C™ = (1 —zs:z Az —A[z7Y)
~ el — s ALY Al 1]>,
C = C(1—2zs: Az, 271 |—Az,27Y)
= Alz,z7Y ® A[2] ct = A[z,z_l] ®a-1 C~

define a Mayer—Vietoris presentation (C*,C™) of C such that

(CT) = Ho(C) = A[1/s],

(CH) = Hy(A[[2]] ®a CT) = 0,

(c7) = 4,

(™) = Ho(Al[e )] ®ap-1C7) = Ay,

(A((2)) ®ap C7) = Ho(A((2)) @41 C7) = 0,
(A((z) ®ap CF) = Ho(A((z™") @ap-11 C7) = A[1/s] .

FEEEES

Thus CT is forward tame and C~ is reverse tame. The following conditions
are equivalent :

i) CT is reverse tame,
(ii) C~ is forward tame,
(iii) C is a band,
(iv) s € Ais a unit,
(v) Ay =0. o
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Remark 23.21 Note that for s = 2 € A = B|[z] the localization—completion
square in 23.20 is just the localization—completion square in 23.7 (i)

B[(] B[z,‘z o
B[] B((2))

Given a connected CW complex W and a Z[r;(W)]-module A the A-
coefficient homology of W' is defined as usual by

with C'(W) the cellular Z[m;(W)]-module chain complex of the universal

cover W.

Proposition 23.22 Let W be a connected finite CW complex with m (W) =
7™ X Z, so that W = W/x is an infinite cyclic cover of W with ¢ =1 :
m (W) = m—m. Given a fundamental domain (V;U,CU) for W let
00 -1
wht=Udv, w = |JdvcCcw.
j=0 j=—o0

(i) The following conditions are equivalent :

a) the CW complex W is forward tame,

b) the CW complex W is reverse tame,

c) the natural map e(W+)—>W is a homotopy equivalence,

d) the finite f.g. free Z|r|[z]-module chain complex C(W ) is forward
tame, .

(e) the finite f.g. free Z[x][z71]-module chain complex C(W =) is reverse

tame,

(f) H.(W;2Z[7]((2))) = 0.

If these conditions are satisfied

W = W7 € Ko(zlm (W) -
Similarly with the role 0fW+,W_ reversed.

(ii) The following conditions are equivalent :

(a) W is infinite simple homotopy equivalent to an infinite cyclic cover X
of a finite CW complex X with X" forward collared,
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(b) W is infinite simple homotopy equivalent to an infinite cyclic cover X

of a finite CW complex X with X reverse collared,
(c) the finite f.g. free Z[rw][z]-module chain complex C(W *) is forward

collared,
(d) the watedfg free Z[x)[z"Y]-module chain complex C(W =) is reverse
(c) Hi(W;Z[x)((2)) = 0 and [W ']/ = 0 € Ko(Zlm (W),
(f) Ho(W;Z[m)((2))) = 0 and W ] =0 € Ko(Z[m: (W)]) .

Similarly with the role 0fW+,W_ reversed.
(iii) The following conditions are equivalent :

(a) the  CW complex W is finitely dominated,
(b) C( ) is a chain complex band,

() W+

(d) W s both forward and reverse tame,

(&) H(WiZ[)({2)) = H.(W; Z[]((=~1))) = 0.

1s both forward and reverse tame,

Proof Combine 13.15 and 23.15,23.16, 23.17. O

Example 23.23 Let W = T'(h) be the mapping torus of a self map h :

K—K of a connected finite CW complex K. Let W = T(h) be the
canonical infinite cyclic cover of W, with classifying map ¢ : W—S", and
define W =T (h), W~ =T (h) as in 14.6 (vii). Then W is forward
collared and W~ is reverse collared, but in general W™ is not reverse tame
and W is not forward tame (cf. 23.25 below). If h : K—K is a homotopy

equivalence then (W,c) is a CW band, with W™ reverse collared, W
forward collared and W ~ K homotopy finite. o

_ In general, W™ and W need be neither forward nor reverse tame, and
W need not be finitely dominated :

Example 23.24 Let W = S v S1, the figure 8 space:
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and let W = ¢*R be the infinite cyclic cover of W classified by a projection
c: W——S! collapsing one of the circles to the base point :

sleYoXele

The cellular Z[z, z~1]-module chain complex of W is given by

COT) + o0zl ez )

The homology groups
H(W;Z((2)) = Z((2)) , H\(W;Z((z™)) = Z((z™"))

are non-zero, so that W+, W are neither forward nor reverse tame, and
W is not finitely dominated. Actually, for the non-reverse-tameness and
non-finite-domination in this case it is enough to note that the homology
groups

HW™ = z[z] , HW ") = z[z7Y , H1(W) = Z[z,27Y]

are not finitely generated (cf. 8.6). o

Example 23.25 Fix an integer s > 2. The mapping torus T(s : S'—S1)
has fundamental group

1 (T(s)) = ZxsZ = {x,2|zx2" = 2%}
= Z[1/s]| xs Z ,

an extension of Z[1/s] by Z. The canonical infinite cyclic cover T(s) is
classified by the projection

m(T(s) —Z; x—0, z— 1,
with

m(T(s)) = () = ker(m(T(s))—1Z)

such that there is defined an isomorphism

Z[1/s] = 7 (T(s)) ; Z(nk/sk) — H zTRgm R
k=0 k=0

Note that 7 (T(s)) = Z[1/s] is not finitely generated. The cellular Z[z, z~1]-
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module chain complex of the infinite cyclic cover T'(s) is

Y

C(T(s)) : 0 — Z[z, 27| ———5 Z[z,27 @ z[z, 27}

and
H\(T(s)) = Zser @2 , Hi(T(s) = Z[1/s],
Hy(T(s);2((2))) = 0 , Hi(T(s)Z((z71)) = Z[1/s] = Qs ,
HY(T(s)) = Z,02.

The space T'(s) is not finitely dominated, and is neither forward nor reverse
tame. The positive half

T+(s) = Tel(s) ~ hocolim (S* et st )
—_—
is forward collared but not finitely dominated (and hence not reverse tame),
with
T'(s) = T(s) , H\(T"(s)) = z[1/s] ,
) =0, eT7(s) = T(s).
The negative half T (s) is the mapping cotelescope W(s) (2.16) — it is

homotopy equivalent (but not proper homotopy equivalent) to S, and it is
reverse collared but not forward tame, with

T (s) =~ S, Hi(T (s)) = 2 , H/(T (s)) = Zs,
2 ~ . 1, % 1,5 1
e(T" (s)) ~ holim(S* «— S" «— S «— ..))
~ lim (ST — ST ST )
«—
= the s-adic solenoid S! (2.18) .
See 23.28 for the homology of the s-adic solenoid. |

Example 23.26 For any finite f.g. free A[z]-module chain complex C* the
subcomplexes z/CT C CT (j > 0) define an inverse system of A[z]-module
chain complexes

Ct ozt 2220t o> ... o0t oAt 0t o
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with
o
S it — Lo o) —
llmzC —QzC —0,11@(0/20)—0,
J j= j

; + /00T — + — oHlf
lin(C*/21C7) = Al @ CF = €T,
J
lim' 27C* = (A[[z]]/A[z]) @ap CT = CTY/CT ~ e(CT).mr .
J

By 2.19 there are defined short exact sequences

0— lim" H,1(C*/2/CY) — H,(CPY) — lim H,(C* /27 CT) —0,

J J

0— lim' Hy41(z’C") — H,(e(C")) — lim H,(27CF) — 0.
The A-modules
M, = ker(1—27'¢": H(CT)((2)) — H:(CT)((2)))
= im( Hr11(A((2)) ® a2 CF) — H(CT)((2)))
N, = coker(1 - 271CF H(CF)((2)) — HA(CH)((2)))
= im(H,(C7)((2)) — H(A((2)) ®a) CT))
are such that there are defined exact sequences of A-modules

0 — N, — H,(A((2)) @Al C+) — My — 0,
0— M, — lim H,(’C*) — H,(C) — N, — lim' H,(’C*) —0
J J
with
C = Alz,z7Y ®ap) C = coker(1— T Ot —CT ),
lim H,(z/C) = ker(1—27'¢" : Hy(CH)[[2)]—H,(CH)[[2]) ,
J
lim' H,(1C%) = coker(1—=7'¢* : Hy(CH)[[z])—H(CF)[[2])) -
J
By 23.15 the following conditions are equivalent :
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Condition (v) corresponds to

H.(e(W)) = lmH.(W)) , lim" H.(W;) = 0
J J

for a forward tame space W with a sequence of closed cocompact subspaces
W 2D Wy 2 Wi D ... such that NW; =0 (7.10 (ii)). o
J

Example 23.27 As in 23.20 let A be a ring with a central non-zero divisor
s € A. For the reverse collared 1-dimensional f.g. free A[z]-module chain
complex C* defined by

d =z-s: 0 = Alz] — Cf = Al7]
the A-modules in 23.26 are
Ho(C*) = A, Ho(C) = Al1/s] ,

Ho(CHY) = @Ho(m/zjcﬂ = li_gl(A/sjA) = A,
J J
M, =0, Ny = AJ1/s] , N, = 0 (r#0),

Hy(e(CT)) = @Hg(sz"') = lims’A = ﬂs]A,
J i 7=0

so that O is forward tame if and only if s € A is a unit. o

Example 23.28 For any integer s > 2 let W =T (s) = W(s : S'—81)
be the mapping cotelescope of 23.25. Let p : W——[0,00) be the canonical
proper map, so that the cofinite subcomplexes

W; = p'[j,o0) CW (j=>0)
define an inverse system

W =WeoWid>...o\W; = 0.
J

Each Wj is a copy of W, and the inclusions W;—W;_; are given up to
homotopy by

W, ~ 8t Wy ~ St
The cellular chain complex of W is given by

<Z08> (0 z—1)

CW) : Zz]| — Z[z] ® Z[z]) ——— Z[7]
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with
C(W;) = ZC(W)SC(W) (j>0).

The end space e(W) is homotopy equivalent to the s-adic solenoid gsl =
lim(s : §'——") (2.18). The exact sequences of 4.16

0 — lim' 741 (W)) — mp(e(W)) — limm, (W) — 0,

J J
0 — lim' Hyp (Wy) — HF(W) — lim H, (W) — 0
J J

combined with 23.27 (with A = Z) give the singular homology of the s-adic
solenoid S} to be

H,(81) = Hy(e(W)) = Hx(W) = {EO G/ ifr=0,
0 otherwise .
Slig connected, but not path-connected.) Regard S! as the intersection
S S
N oo
§ = N1 cr
j=0
of solid tori
RED>Ty>T1D>...0T;-1 DT;>...0 8},

such that each inclusion T C T;j_; induces s : (1) = Z — m(T}j—1) = Z.
Now S} is a compact metric space, so that the Steenrod homology groups
HEH(SY) are defined — some of the properties of H! were recalled at the end
of Chapter 4. The short exact sequences of Milnor [95]
0 — lim" H, (1)) — H3H(SY) — lim HE(T}) — 0
J J

in the non-trivial dimensions * = 0, 1 involve the inverse and direct systems
of the inverse systems of abelian groups

1 HNTj) = Ho(Ty) = Z — Hi'(Tj-1) = Ho(Tj1) = Z,
s« Hi'(Ty) = H\(T}) = 2 — H{'(Tj-1) = Hi(Tj-1) = Z
so that the Steenrod homology of S ! is the same as the singular homology

H(SY) = H.(SY) . o
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Relaxation techniques

‘Relaxation’ is the name given by Siebenmann [145] to the idempotent map

Wh(Aglz,27Y]) = Wh(A,a)® Nilg(A,a) @ Nilg(4, 0 ")
— Wh(Aa[z,271)) ;
w = (x7y+7y7) —>U)/ = (.’E,0,0),

which is defined for any ring A and automorphism « : A—A. The geomet-
ric twist glueing construction of [145] associated to a manifold band (W, ¢)
an h-cobordant ‘relaxed’ manifold band (W', ') with fibring obstruction

(W' ) = T (W,c) € Wh(m (W))

such that ((W'),(¢)") is homeomorphic to (W', ). We have already de-
veloped homotopy theoretic twist glueing in Chapter 19, defining the relax-
ation of a CW mi-band (W, ¢) as the 1-twist glueing (W', ') = (W1], ¢[1]).
In Chapters 24-26 we shall develop the chain complex analogues of twist
glueing and relaxation in the special case a = 1: A— A, with

Wh(A,1) = Wh(A) @& Ko(A) , Nilg(4,1) = Nilg(A) .

Definition 24.1 A finite f.g. free A[z]-module chain complex C™ is relazed
if it is forward tame and

[CH ¢t = 0e ﬁlo(A) . )

Proposition 24.2 Let C* be a finite f.g. free A[z]-module chain complex.
(i) If

then CT is relazed.

288
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(ii) If CT is forward tame the inclusion ¢* : CT—C = Alz, Z_l]®A[z] ct
s a chain homotopy surjection, and if

<+ ~ p+€-q+ . C+ _ C+

for a chain homotopy injection p* : C——C™T splitting g then C™T is relazed.
Proof (i) It is clear that if (P! ~ 0 : CHY —CT then CT is forward
tame. Also

[CHYCHIT = [CH0) = 0 € Nilg(4)

so that CT is relaxed.
(i) As C'" is forward tame the inclusions

it O — O = Al ®ap CT
q+ 0t — C = A[Z,Z_l] @Al ct

are the components of an A-module chain equivalence

it o~ ;
<q+> 0t — ot aecC,

by 23.15 (i). Let
j-‘r . C+’lf—>0+ ’ p-I— SO0 — Ot

be the A-module chain maps which are the components of a chain homotopy
inverse

'_A'_ —1 ~
<;+> = (G pH) P eC — CT,

so that there is defined a map of A-module chain homotopy direct sum
systems

+ .
C P foas it loaxli
q+ j+
C §+ C+,lf
+ .
C ' foas i oaxli
q+ j+

If there exists an A-module chain homotopy ¢t ~ pT(q™ : C*——C™ then
(Pl ~0:CT—CT and CF is relaxed by (i). o

For any integer ¢ > 1 define a ring morphism

q : Alz] — AlZ] ; Zajzj — Zajzjq.
=0 =0
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Definition 24.3 The g-fold transfer

¢' : {A[z]-modules} — {A[z]-modules} ; M — ¢'M

is the induced functor: for any A[z]-module M the induced A[z]-module
¢'M has the same A-module structure as M but z acts by 29, o

Example 24.4 If C is a forward tame finite f.g. free A[z]-module chain
complex and ¢ > 1 is so large that ((*4)? ~ 0 : C Y —CH then
¢'C* is a finite f.g. free A[z]-module chain complex such that ¢t ~ 0 :
¢'C T —q¢'CH | so that ¢'CT is relaxed by 24.2 (i). O

Definition 24.5 The algebraic mapping telescope of an A-module chain
map f: B— B is the A[z]-module chain complex

Tel(f) = €(1 —zf : B[z]—BJz]) . o

Proposition 24.6 If B is a finite f.g. free A-module chain complexr and
f + B—B is a chain map, the algebraic mapping telescope Tel(f) is a
relazed finite f.g. free A[z]-module chain complez.

Proof Immediate from

Tel(f)” = €(1 - 2f : Blz]]—BI[]]) =~ 0. o

Example 24.7 Let X be a connected finite CW complex with universal
cover X, and let h : X— X be a cellular map such that h, =1 : 7 (X) =
m——m. The mapping telescope of h

Tel(h) — <ﬁ X %I x {j})/(m, 1,7) = (h(x),0,j + 1)
j=0

is an infinite CW complex with 71 (Tel(h)) = 7, such that the cellular chain
complex of the universal cover Tel(h) is the algebraic mapping telescope

C(Tel(h) = €(1—zh: C(X)[]—C(X)[:]) ,

which is a relaxed finite f.g. free Z[r][z]-module chain complex. O

Definition 24.1’ A finite f.g. free A[z~!]-module chain complex C~ is
relazed if it is forward tame and

[C—,lf’ C_Jf] — O S N\;IO(A) .
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For any finite f.g. free A[z]-module chain complex C* there exists a finite
f.g. free A-module subcomplex E C CT such that

S o) - ot
=0

and
D =EN( Y E)cCTcC = Alz,z7 ' |@, CT
is a finite f.g. free A-module subcomplex, with the A-module chain maps
ff:D—FE;z—uz,
fm+D—FE;y—
such that there are defined exact sequences

f+ _ Z*lf*

0 — zD[z] ———— E[z] — CT — 0,

A 1
0 — D[z,27 | ———— FElz,z7'] — C — 0.
The A[z~!]-module subcomplex

-1
c- = > JECC

Jj=00

is such that (C*,C7) is a Mayer—Vietoris presentation of C.

Proposition 24.8 (i) If CT is such that for some choice of E C C™ the
A-module chain map

E/D — C*/D

is a chain homotopy split surjection then CT is relazed.
(i) If C* is such that for some choice of E C C* the A-module chain
map

('E/D — C/D

is a chain homotopy split surjection then C~ is relaxed.
Proof (i) We have that the inclusion

¢ctct/jct = ¢'E/D — C/CT = C7/D

is a chain homotopy split surjection, so that C'~ is reverse tame. By 23.16
CT is forward tame, and

(O ¢ ] = ~[C/C*, () € Nilo(4) .
It follows from the exact sequence

0— ¢ tct/jct — c/jct — c/iciet — 0
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that
(=0 : C/ct — cjciet - oot
so that
[C/CT,¢] = 0 Nily(A)
and C™ is relaxed.
(ii) As for (i), using
[c=, ¢ = ~[C/C*.() € Nilg(4) . 0

Example 24.9 Let W be a connected finite CW complex with a map
c: W——8* such that

¢, = projection : m (W) = 7 XZ —Z.
Let (V;U,CU) be a fundamental domain for the infinite cyclic cover W =
c*R of W, and let W be the universal cover of W.

(i) If V dominates W= U320 ¢!V rel U then C(W ) is a relaxed finite
f.g. free Z[r][z]-module chain complex, by 24.8 (i). Thus if (W,¢) is a
positively relaxed CW band (15.14 (i)) then C(W *) is relaxed.

(ii) If 7'V dominates W~ = j_:l_oo ¢V rel U then C(W ~) is a relaxed
finite f.g. free Z[r][z~!]-module chain complex, by 24.8 (i)’. Thus if (W,c)
is a negatively relaxed CW band (15.14 (ii)) then C(W ~) is relaxed. O

Example 24.10 (i) The engulfing technique of Siebenmann [145] and Sieben-
mann, Guillou and H&hl [149] shows that for an n-dimensional manifold
band (W, c¢) with n > 6 and 71 (W) = 7 x Z the Z[n][z]-module chain com-

plex C (Wﬂ is relaxed if and only if there exists an isotopy
i« W —W (0<t<1)
such that :

(a) hf (z) =z forz e W,

(b) b (y) €W " for y e W™,
(c) hy = identity : W—W,
(

If there exists such an isotopy {h;} the inclusion
gtV = WnaW™ — W™
and the map
hf|W+ W — vV
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are such that there is defined a homotopy
hi o+ o identity =~ g (hf|m+) : wt—w"
rel U =W "NW ™, so that V dominates W rel U and C(W ) is relaxed

by 24.8 (i).
()" As for (i), but reversing the role of the ends wWrtwW. o

Proposition 24.11 The following conditions on an Alz, z~']-module chain
complex band C are equivalent :

(i) for any Mayer—Vietoris presentation (C*,C~) of C the Alz]-module
chain compler C* and the Alz~']-module chain complex C~ are re-
lazed,

(i) the Nil-components of the fibring obstructions ®T(C),® (C) €
Wh(Alz,271]) are 0, that is

[C/C*,¢] = [C/C™,¢7"] = 0eNilg(4) . o

Definition 24.12 An A[z, z71]-module chain complex band C is relazed if
it satisfies the conditions of 24.11. O

Example 24.13 (i) If fT, f~ : D—F are chain equivalences of finite based
f.g. free A-module chain complexes then
C = e(ft —z7'f :Dlz,z7 |—E[z,27Y)
is a relaxed A[z, z~!]-module chain complex band, with fibring obstructions
T(C) = (7(f7),0,0,0) , 27(C) = (7(f7),0,0,0)
€ Wh(A[z,271) = Wh(A) @ Ko(A) @ Nily(A) @ Nilg(A)

as in 22.7.

(ii) If C is a finitely dominated A-module chain complex and h : C—C
is a chain equivalence, then any based finite f.g. free A[z, 27 !]-module chain
complex T in the canonical simple chain homotopy type of the algebraic
mapping torus T'(h) is a relaxed A[z, 2~ !]-module chain complex band with
fibring obstructions

®H(T) = (r(h),-[C],0,0) , @ (T) = (0,0,0,0)
€ Wh(Az,27Y]) = Wh(A)® Ko(A) @ Nily(A4) & Nily(A)
as in 22.8. In particular, if (D, f: C—D,g: D—C,gf ~1:C—C) is
a finite domination of C' then T = T'(fhg : D—D) is a relaxed A[z,z71]-

module chain complex band in the canonical simple chain homotopy type
of T'(h). o
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Remark 24.14 The property of being relaxed is a chain homotopy invariant
of a finite f.g. free A[z]-module chain complex CT, and likewise for a finite
f.g. free A[z~!]-module chain complex C~. The property of being relaxed
is a simple chain homotopy invariant of an A[z, z~!]-module chain complex
band C, but it is not in general a chain homotopy invariant property. See
Chapter 26 below for the construction of the ‘relaxation’ of an A[z, 271
module chain complex band C, which is a relaxed A[z, 2~ !]-module chain
complex band C’ in the chain homotopy type of C. O

Example 24.15 (i) The following conditions on an untwisted CW band
(W, ¢) with 1 (W) = 7 x Z are equivalent :

(a) W is simple homotopy equivalent to a CW mi-band (also denoted by
(W, ¢)) with a m-fundamental domain (V;U,CU) for W such that
the inclusions

ff U —V;,z—ua,
T U—=Viy—y
are homotopy equivalences,
(b) @t (W), @ (W) € im(Wh(r)—Wh(m x 7)) ,
(c) W is relaxed and W™, W~ are homotopy finite.

If W satisfies these conditions the fibring obstructions are given by 24.13
(i) to be

(I)+(W) = (T(f_)a 0, 070) ) (I)_(W) = (T(f+)v 0,0, 0)
€ Whir x Z) = Wh(r) ® Ko(z[r]) ® Nilo(Z[x]) & Nilo(Z[r]) .

(ii) A manifold band (W, ¢) pseudo-fibres over S* if W admits a (manifold)
fundamental domain (V;U,(U) which is an h-cobordism. For n > 6 a
manifold band (W, ¢) with 7 (W) = 7 x Z pseudo-fibres if and only if the
conditions in (i) are satisfied (cf. 24.16 below).

(iii) If h : W—W is a homotopy equivalence such that h, =1 : 71—
then the fundamental domain V'(h) of the h-twist glueing W(h) (19.8) is
homotopy finite. Any choice of simple homotopy type on V(h) determines
a simple homotopy type on W (h), with respect to which (W (h),c(h)) is a
relaxed CW band with fibring obstructions of the type

(W (h) = (¢7(h),—[W 1,0,0), (W (h)) = (¢ (h),[W ],0,0)
€ Whir x Z) = Wh(r) ® Ko(Z[r]) & Nilo(Z[r]) & Nily(z[r])

(
for some ¢T(h), ¢~ (h) € Wh(m) with ¢*(h) — ¢~ (h) = 7(h). See Chapter
26 below for a more detailed account.
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(iv) Let h : X— X be a self homotopy equivalence of a finitely dominated
CW complex X, such that hy = 1 : m(X) = 7—7. Any finite CW
complex W in the canonical simple homotopy type of the mapping torus
T'(h) determines a relaxed CW band (W, ¢) with

¢, = projection : m (W) = m(T(h)) = 71 XZ —Z.
The fibring obstructions of such W are given by 24.13 (ii) to be

ot(W) = (r(h),—[X],0,0), @~ (W) = (0,0,0,0)
€ Whir x Z) = Wh(r) & Ko(z[r]) & Nilo(Z[x]) & Nilo(Z[r]) .

fo=(Y,f: X—Y,g:Y—X,gf ~1: X—X) is a finite domination of
X then (W =T(fhg : Y —Y), ¢) is such a relaxed CW band. In particular,
this applies to h = 1 : X— X, showing that for any finitely dominated C'W
complex X every finite CW complex W in the canonical simple homotopy
type of X x S (e.g. W = T(fg : Y—Y) for any finite domination & of
X)) determines a relaxed CW band (W, ¢) with the infinite cyclic cover W
homotopy equivalent to X.

(v) If (W,¢) is a CW band with a fundamental domain (V; U, (U) such
that the inclusion

V—Ww" = Jdv
=0

is a homotopy surjection rel U, and the inclusion

0
V— W = (J dV

j=—o00

is a homotopy surjection rel (U, then (W, ¢) is a relaxed CW band, by 24.13.

(vi) Let (W, c) be an untwisted n-dimensional manifold band with n > 6
and m (W) = 7 x Z, and let C = C(W) be the corresponding Z[r][z, 2~ 1]
module chain complex band. The geometric relaxation technique of Sieben-
mann [145] associates to (W, c) a relaxed manifold band (W', ¢') (= the
¢-twist glueing (W], ¢[¢]) in the terminology of Chapter 19) such that
W = W', with a fundamental domain (V';U',¢'U’) such that V' dominates
W' rel U' and V' dominates ¢'W'~ rel ¢'U’ via isotopies {h/"}, {h/"} of
W as in 24.10. The manifold band (W, ¢) is a relaxed CW band if and only
W is homeomorphic to the relaxation W’. The following conditions on an
untwisted n-dimensional manifold band (W7, c;) are equivalent :
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(a) there exists an h-cobordism (M; W, W) with torsion one of the nilpo-
tent class components of ®*(W,c) = ®*(C),

Tr(M—W) = (0,0,[C/CT,(],0)
€ Whin x Z) = Wh(r) ® Ko(2z[r]) ® Nilo(z[x]) & Nilo(Z[x]) ,

(b) (W1, ¢1) is homeomorphic to the relaxation (W', ),
(¢) (W1, 1) is h-cobordant to (W, ¢), and is a relaxed CW band. u]

Example 24.16 Let f : W—X x S! be a homotopy equivalence, with W a
closed n-dimensional manifold and X a finite (n — 1)-dimensional geometric
Poincaré complex. Then (W, ¢) is an untwisted manifold band with

!
e W xxst Lot (p = proj.) ,

and (X x S, p) is a geometric Poincaré band. Moreover, f induces a simple
homotopy equivalence

T(C:W—W) ~ X x 8,

giving T'(¢) the canonical simple homotopy type. The fibring obstructions
of W determine each other by Poincaré duality :

(W) = ()" 1o~ (W)* € Wh(n x Z) .
Let m (X) = 7, so that
m(W) = m(X xS = nxz

and let W be the universal cover of W. The torsion of f agrees up to sign
with one of the fibring obstructions of W :

T(f) = —7(T(¢Q)—W)
= -t (W) = -0 (C) e Wh(r x Z) ,

where C' = C(W) is the Z[r][z, 2~ !]-module chain complex band. The image
[7(f)] € coker(Wh(m)—Wh(m x Z)) is given by

[r(N)] = —[e"(W)] = —[@7(C)]
= ([C7],-[c/c™, ¢, ~c/c.¢7M)
€ Ko(Z[r]) @ Nilo(2[r]) ® Nilo(Z[x]) ,
and the ﬁlo—componen‘cs are +-dual to each other by Poincaré duality :
[€/C*,¢] = (-)"[C/C, ¢ € Nilo(2[]) .
(i) Make f transverse at X x {pt.} C X x S1, so that the restriction
g=fl:U=f1Xx{pt}) — X
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is a degree 1 normal map. By definition, the homotopy equivalence f is split
if it is homotopic to a map (also denoted by f) such that g : U—X is a
homotopy equivalence.

The splitting theorem of Farrell and Hsiang [49] shows that for n > 6 the
following conditions are equivalent :

(a) f is split,

(b) (W, ¢) pseudo-fibres,

© F(N=0, _ _

(d) [C7] = 0 € Ro(z[x]) and [C/C*, ] = 0 € Nilo(2[r])
(e) the fibring obstruction is such that

dH(W) = &7(C) € im(Wh(r)—Wh(r x Z)) .
(See Ranicki [124,10.9] for the analogous chain complex splitting results.)

(i) The homotopy equivalence f : W—X x S! is split by a homotopy
open strip if it is homotopic to a map (also denoted by f) such that

U= f'Xx{pt})cw
has an open neighbourhood Z C W with
f(Z)C X x(-1,1)c X x S*,

and such that the restriction f| : Z— X x(—1, 1) is a homotopy equivalence,
in which case

(~0:cC/Ct —cCc/Cct, ¢t ~0:C/CT —C/C

and C' is a relaxed chain complex band. For n > 6 the following conditions
are equivalent :

a) f is split by a homotopy open strip,

b) [C/CT, (] =0 € Nilo(Z[x]) ,

c) CT is relaxed,

d) C is relaxed,

e) W is homeomorphic to the relaxation W' |

f) the map ¢ : W ~ X x S1——S! is homotopic to a manifold approximate
fibration,

(g) the fibring obstruction is relaxed, that is

(
(
(
(
(
(

dH(W) = &H(C) € im(Wh(r) ® Ko(Z[x]))—Wh(r x Z)) .

The equivalence of (a) and (b) is due to Farrell and Hsiang [49, p.835]. D
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Remark 24.17 Let (W, c) be an AN R band, with universal cover W and
infinite cyclic cover W. For the usual sake of simplicity assume that (W, ¢)
is untwisted, so that

G=1:m(W)=7—7, m(W)=0Xx7Z.
The fibring obstructions ®* (W, c), @ (W, ¢) (15.11) differ by
O~ (W,c) — @ (W,c) = 7(r) € Wh(n x 2) ,
the torsion of the homeomorphism
T T 5 (1) — (21 —1)

with respect to the canonical simple homotopy types (14.3). The torsion
7(r) is relaxed, with components (up to sign) the torsion of ¢ : W—W

and the finiteness obstruction of W

7(r) = (=2 O(W)[z 27— C(W)[z,271))

= (_T(C)7 [W]v 0, 0)
€ Wh(r x 2) = Wh(x) ® Ko(z[r]) & Nily(z[r]) ® Nilo(Z[r])

(Ranicki [124, p. 159]). As already noted in 15.12, if (W, ¢) is an n-dimension-
al manifold band the fibring obstructions are Poincaré dual to each other,

Ot (W,e) = (=)™ 10 (W,¢)* € Whin x 7) |

and for n > 6 ®F(W,c) = & (W,¢) = 0 if and only if ¢ : W—51 is
homotopic to the projection of a fibre bundle. Chapman and Ferry [27, 28]
investigated the fibring properties of an ANR band (W, ¢), assuming W
to be a locally compact separable metric space and ¢ : W——S"' to be a
(Hurewicz) fibration — in this generality, ®*(W,¢) and &~ (W, ¢) need not
be Poincaré dual. Their results have the following reformulation in terms
of @ (W, ¢) and &~ (W, ¢):

(i) [27, Thm. 3;28, Thm. 4] ¢ is fibre homotopy equivalent to a PL fibra-
tion (= PL map of compact polyhedra which is a fibration) if and
only if ¢ is fibre homotopy equivalent to the projection of a compact
Hilbert cube manifold fibre bundle, if and only if

T(r) = 0€ Wh(nr xZ) .

(ii) [28, Thm. 6] If W is a compact Hilbert cube manifold then ¢ is ho-
motopic to the projection of a fibre bundle if and only if

T (W,e) = & (W,c) = 0€ Whin x Z) .

The two conditions in (ii) are equivalent to 7(r) = 0 (the first obstruction
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of [28]) and ®* (W, ¢) = 0 (the second obstruction of [28]). In both [27] and
[28] it was assumed that W is homotopy finite. If (K, ¢ : W ~ K) is a finite
structure on W then K is a finite CW complex with a self homotopy equiv-

alence h = ¢C¢p~ ! : K— K, and there is defined a homotopy equivalence
T(h)— W, such that

7(r) = dw7(h) , ®T(W,¢) = 7(T(h)—W) € Wh(r x Z)

with i, : Wh(m)—Wh(m x Z) the inclusion. However, it is not necessary
to assume that W is homotopy finite in the reformulation. o
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Algebraic ribbons

‘Algebraic ribbons’ are the chain complex analogues of the geometric ribbons
of Chapter 15. We shall now develop the algebraic theory of ribbons, in the
context of the bounded algebra of Pedersen and Weibel [110] and Ranicki
[124]. A chain complex ribbon is a finite chain complex C' in the category
Cr(A) of R-bounded A-modules (for some ring A) with the end properties
of a chain complex band. In Chapter 26 we shall use algebraic ribbons to
develop the algebraic theory of twist glueing. An A[z, z7!]-module chain
complex band is an example of a chain complex ribbon; in 26.6 it will be
shown that every chain complex ribbon C' is simple chain equivalent to a
chain complex band C, the ‘wrapping up’ of C'. In Chapter 27 we shall
describe the effects of wrapping up in algebraic K- and L-theory.

We refer to Ferry and Pedersen [58] and Ranicki [124] for accounts of
bounded topology and algebra, only repeating the most essential definitions
here.

Definition 25.1 Let A be a ring, and let B be a metric space. The B-
bounded A-module category Cp(A) is the additive category with objects
B-graded A-modules

M = > M(x)

z€eB

such that each M(x) is based f.g. free, with {y € B|d(z,y) <r, M(y) # 0}
finite for each z € B, r > 0. A morphism f : M—N in Cp(A) is an
A-module morphism such that there exists a number b > 0 for which the
composite
incl. f proj.
f) « M) = M - N 25 N(y)

is 0 whenever d(z,y) > b. o

300
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Definition 25.2 The B-bounded Whitehead group of a ring A is

Whp(A) = coker(K;(Cp(Z))—K1(Cp(A))) . u]

A B-bounded CW complex (X,d) is a CW complex X with a proper
cellular map d : X—— B such that the diameters of the images in B of the
cells e C X are uniformly bounded, that is there exists a bound b > 0 with
diameter(d(e)) < b for all e C X. If X is a regular cover of X with group
of covering translations 7 the cellular Z[r]-module chain complex C(X) is
defined in Cp(Z[r]). A B-bounded map f : (X,d)—(Y,e) of B-bounded
CW complexes is a proper cellular map f : X—Y such that there exists
a bound b > 0 with

dp(e(f(2)),d(x)) <b (z € X) .

A B-bounded map [ induces a chain map f: C(X)—C(Y) in Cp(Z[r])
for any regular cover Y of Y with group of covering translations m, with

X = f*f/ the pullback cover of X. A B-bounded homotopy equivalence
f:(X,d)—(Y,e) of B-bounded CW complexes has a B-bounded torsion

5(f) = T8(f: C(X)—C(Y)) € Whp(Z[m (X)) .

A B-bounded h-cobordism has B-bounded torsion in Whg(Z[m]), and
there are bounded versions of the hA- and s-cobordism theorems; in the
bounded version of the Wall surgery theory a B-bounded normal map has
a surgery obstruction in L.(Cp(Z[m])) (Ferry and Pedersen [58]). For
bounded surgery theory A is a ring with involution (e.g. a group ring),

and Cp(A) is an additive category with involution, so that the L-groups
L.(Cp(A)) are defined as in Ranicki [124].

Definition 25.3 Let A be a ring.
(i) Let M(A) be the additive category of A-modules. Define the sum and
product functors

S ChlA) — M) M — M = 3 M),
zeB

H : Cp(A) — M(A) ; M — MY = HM({L')
zeB

The inclusion i : M— M defines a natural transformation from 3 to [].
(ii) The end complex of a chain complex C' in Cg(A) is the A-module
chain complex

e(C) = C(i: C—CY),yy . u]
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Example 25.4 Let (X, d) be a connected B-bounded CW complex, so that
the cellular chain complex C'(X) of the universal cover X of X is a finite
chain complex in Cp(Z[r]) with 7 = m;(X). The locally 7-finite cellular
chain complex of X (5.5 (1)) is

crm(X) = c(xX)Y .

Let e(AX/) = p*X be the cover of the end complex e(X) obtained from X
by pullback along the projection p : e(X)—X;w—w(0). If X is forward

tame the Z[r]-module chain complex at oo C*>™(X) is homology equivalent
to the end complex e(C(X)) of C(X). a]

Definition 25.5 A subobject M' C M of an object M in Cg(A) is the object

M = M(B) = ) M(y)

determined by a subset B’ C B, with M (B’)(z) =0 for x € B\B'. o

We shall be mainly concerned with the R-bounded category Cg(A) here.

Definition 25.6 A covering translation of an object M in Cr(A) is an
isomorphism ¢ : M — M such that ((z+1,z) : M (z)— M (x+1) is a basis-
preserving isomorphism for each x € R, and ((y,z) =0: M (z)— M (y) for
y#x+1. O

Proposition 25.7 The additive category of based f.g. free Alz, 2~ ']-modules
is equivalent to the category Cg(A)% of pairs (M,¢) with M an object in
Cr(A) and ¢ : M— M a covering translation, with morphisms f : (M,{)—
(M',¢") defined by morphisms f: M——M' in Cg(A) such that {'f = f(.
Proof If L is a based f.g. free A-module the induced based f.g. free
Alz, z~-module

M = L[z, = ) AL

j=—00
is an object in Cg(A) with

JL ifx=j€7,
0 if x € R\Z

M(z) = {

and with a covering translation ¢ : M — M, defining an equivalence

{based f.g. free A[z, z~-modules} — Cg(A)*; L[z,27'] — (M,¢) . o
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Similarly for the additive category of based f.g. free Alz]-modules. A
finite based f.g. free A[z]-module chain complex CT can be regarded as a
chain complex in Cjg o.)(A) together with an isomorphism ¢* : CT—C*
such that (T (y,z) = 0 for y # x + 1, and the end complex e(C™) defined in
25.3 is just the end complex as defined in 23.3.

Definition 25.8 A Mayer-Vietoris presentation (C*,C~) of a finite chain
complex C' in Cg(A) is the exact sequence
(%)
—j
0—C NnC™
determined by subcomplexes C,C~ C C such that

Cf = C[-NF,0) , C7 = Cr(—00,N,]

T

+ —
crac- oy

for some real numbers N,, N,” > 0, with
jt . 0ctnCcT —Ct , j7 . CTNnCT — C,
gt . Ct—C , ¢ : CT —C

the inclusions.

C

m}

Remark 25.9 (i) Note that C* N C~ is defined in C_y nj(A) for some
bound N (e.g. max{N,", N,”}), so that it is a finite chain complex of based
f.g. free A-modules.

(ii) A Mayer-Vietoris presentation (C*,C~) of a based f.g. free Az, z71]-
module chain complex C' (21.13) is a Mayer—Vietoris presentation of C' re-
garded as a chain complex in Cg(A) such that ((C*) c C+, ¢~1(C™) c C~.

m}

Proposition 25.10 (Ranicki [124, Chapters 6,7,8]) (i) Every finite chain
complex C in Cg(A) admits Mayer—Vietoris presentations (CT,C~). If h:
C—C is a covering translation there exist Mayer—Vietoris presentations
(C*+,C7) such that h(Ct) c C+, 1 (C~) c C~.

(ii) The R-bounded Whitehead group of A is isomorphic to the reduced
projective class group of A :

Wh(Ca(A) = Ko(A) .
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(iii) Fvery contractible finite chain complex C in Cgr(A) has a torsion
=(C) € Whg(A) with image [CT] = —[C~| € Ko(A), for any Mayer—-
Vietoris presentation (CT,C™) of C. O

Remark 25.11 The R-bounded Whitehead torsion of an R-bounded homo-
topy equivalence f : (X,d)— (Y, e) of R-bounded CW complexes is
w(f) = [e(fT: C(XT)—C(YT))] € Wh(Ca(2[n])) = Ko(Z[r])
with 7 = 71 (X) = m1(Y). This is also the infinite torsion (11.1):
m/(f) e WhY(X) = Ko(z[n]) . 0

Definition 25.12 A chain complex ribbon is a finite chain complex C in
Cgr(A) such that for some Mayer—Vietoris presentation (Ct,C~) the A-
module chain maps
ot — C@C+’lf : T — ($+,ZL'+) 7
- —CoC 27— (a7,27)
are chain equivalences, or equivalently such that the composites
q+

e(CH) —ct o, o) —c L

are chain equivalences. o

Example 25.13 If (X,d : X—R) is a CW ribbon with 71 (X) = 7 then
the cellular chain complex C(X) of the universal cover X of X is a chain
complex ribbon in Cg(Z[r]). o

Proposition 25.14 (i) If C is a chain complex ribbon in Cr(A) with a
Mayer—Vietoris presentation (CT,C ™) the natural A-module chain maps

ct—cectt | ¢ —cCcapcl
are chain equivalences. Moreover, the A-module chain map
w: Ctnec~- —cectVec YV, 2 — (z,2,1)

is a chain equivalence, so that each of C,Ct,C—,CY CHlf C— is A-
finitely dominated.

(ii) A finite chain complex C' in Cg(A) is a chain complex ribbon if and
only if CY' is chain equivalent to a free A-module chain complex and the
connecting maps in the Mayer—Vietoris exact sequence

0
. — H, 1 (CY) — H,(C) — H,(e(CT)—C) & H,(e(C™)—C)
— H.(CY) — ...
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are isomorphisms 0 : H,1(CY) = H,(C), for any Mayer-Vietoris presen-
tation (C*,C7).

(iii) A finite based f.g. free Alz,z~']-module chain complex C is a chain
complex band (i.e. C is A-finitely dominated) if and only if C is a chain
complex ribbon in Cg(A).

Proof (i) For any Mayer—Vietoris presentations (C*,C7), (C't,C'7) of C
there exists a Mayer—Vietoris presentation (C”*, C"~) such that C* C C"*,
C't C 0", with C"/C, C"/C’ finite f.g. free, so that

CJ“lf/CJF _ Cl+,lf/cl+ _ C//Jr,lf/clur )

The chain equivalence Ct NC~ ~ CT4 ¢ 0= @ C follows from the chain
equivalences Ct ~ C@CH, C~ ~ C®»C—! and the short exact sequence
0—C'NnC~- —CteC™ — C —0.

(ii) The natural A-module chain map defines a chain equivalence
e(CH@e(C™) ~ ¢(C).

The Mayer—Vietoris exact sequence of the statement is induced by the short
exact sequence of A-module chain complexes

0 — C — C(e(CT)—C) P e(e(C™)—C) — D — 0

with D = €(e(CF) @ e(C7)—C) ~ CY. If CY is chain equivalent to
a free A-module chain complex then so are CT!f C—! and the chain
maps e(CT)—C, e(C~)—C are chain equivalences if and only if they are
homology equivalences. The connecting maps 0 are isomorphisms if and
only if Hy(e(Ct)—C) = H,(e(C~)—C) =0 (as in 23.9).

(iii) Immediate from 23.17. o

We shall use the following result in Chapter 26:

Proposition 25.15 If (C,C™) is a Mayer—Vietoris presentation of a finite
chain complex C in Cg(A) the commutative square of inclusions

+
D— loas

7

c—1 ¢
is chain homotopy cartesian, with D = Ct* N C~.
Proof Let P=C((¢" ¢7) : CT®&C™—C)sy1, with P, = Cr a6 C & Cpyy.
The A-module chain map D—P;z—(j"(z), —j (2),0) is a homology
equivalence of free A-module chain complexes, so that it is a chain equiva-
lence. O
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Algebraic twist glueing

We shall now develop the algebraic theory of twist glueing for chain complex
ribbons, constructing relaxed chain complex bands by a direct translation
of the homotopy theoretic twist glueing of Chapter 19. Algebraic wrapping
up and relaxation are the special cases of algebraic twist glueing by the
identity and a covering translation.

Given a chain complex ribbon C in Cg(A) and a Mayer—Vietoris presen-
tation (C*,C™) write
pt : C ~ e(CT) — CT |
p : C ~eC)— C .
Use 25.15 to define the A-module chain maps
i = (LgpH) : CT— D,
iw = (¢*p7,1) : CT — D,
and to define chain homotopies
jtfit ~1: 0t —0Ct |, j7i ~1:C —C,

¢gpt ~1:C—C, ¢gp ~1:C—C,

with j* : D = Ct N C~—C™*, ¢F : C*—C the inclusions. Exactly as in
Chapter 19 there are defined chain homotopy commutative diagrams

C——

c-—* D

306
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c-—9% ¢

For an A-module chain equivalence h : C—C the A-module chain complex
defined by
Th
E(h) = a(ﬁf»):c——%ﬁwgc‘)

is such that there is defined a chain homotopy cartesian square

pth

C ———Ct

pl kk+(h)

kt(h) : ¢t — E(h); 2t — (21,0,0) ,
k=(h) : C° — E(h); = — (0,27,0) .

with

Define also the A-module chain maps

Frh) = KFWT, (h) = k~(h)j” : D = CTACT — E(h).

Definition 26.1 Given a chain complex ribbon C in Cg(A), a Mayer—
Vietoris presentation (C*,C~) and an A-module chain equivalence h :
C——C define the algebraic h-twist glueing to be the A[z, 2~!]-module chain
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complex

C(h) = W(f"(h), f~(h))
= C(f*(h) —2z7'f(h): D[z, 27 |—E(h)[z,27]) . O

The A-module chain complex F(h) is finitely dominated, with projective
class

[E(h)] = [CT]+[C7]=[C] = [D] € im(Ko(Z)—Ko(4)) .

Thus [E(h)] = 0 € Ky(A), and E(h) is chain homotopy finite, but in general
E(h) does not have a preferred finite structure.

Proposition 26.2 The algebraic h-twist glueing C'(h) is chain equivalent
to the algebraic mapping torus

T(h) = (1 -z h:Clz, 271 ]—C[z,27']) .

Proof Since ¢™p™ ~ 1 ~ ¢ p~ : C—C it is possible to choose a chain
homotopy

e:qpt ~qp : C—C.
The A-module chain map g(h) : E(h)—C defined by
gh) = (¢© hq~ he) : BE(h)y = CToCr @Cry — Cy

is such that there is defined a commutative diagram

D M,E(h) S,
q*ﬁl g(h)‘ qui*
c—L1 c—r ¢

The induced Az, 2~ !]-module chain map
gth) 0
( o) ) E O — T

is a chain equivalence by 21.16, since (as in the geometric case in 19.9) the
chain maps

st :D—cCt, j :D-—C |,
pth : C —Ct |, po : C — C~
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are such that up to chain homotopy

ft(h) : D L Ct — W(pTh,p~) = E(h),

Fh) s Do wethyp) = E(B),

+h
h : Cp—>C+q—>W(j+,j7) ~ (',

1: 02 0 Lowitji) =~ C. o

Proposition 26.3 Let C be a chain complex ribbon in Cg(A) and let
h : C—C be an isomorphism which is either a covering translation or
the identity, so that there exists a Mayer—Vietoris presentation (CT,C™)
with h(CT) C CT, h~Y(C~) C C~. The algebraic h-twist glueing C(h)
is Alz, 27 1-module chain equivalent to a relaxved chain complex band C[h]
which is simple chain equivalent to C' (in Cr(A)). The algebraic fibring
obstructions are of the type

o7(Clh) = (¢[h]",~[C7],0,0) , @7 (C[h) = (¢[h]",[C7],0,0)
e Wh(Alz,27Y]) = Wh(A) @ Ko(A) ® Nilg(A) @ Nily(A) ,

with

Proof The subcomplex
E[h) = Ctnh(C™)cC

is a finite based f.g. free A-module chain complex. The A-module chain
maps given by

fif +D—Eh;z—u,
fi D Bl & — bz,

gr ¢ Elh) —Ct iy —y,

g = B[l — C™ 5y — b (y),
ktn = fit « ¢t — D — E[n],
k=[h] = f,i7 : C7 — D — E[h]

are such that there are defined chain homotopy cartesian squares
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oo o B

Define the finite based f.g. free A[z, z71]-module chain complex

Clh] = W(f*[n], f~[h])
with
frh = kTRt = flitiT 0 D — B[R],
f7lh] = k7 [hjm = f,ij : D— E[h].
The A-module chain map
wlh] : Elh| — E(h) ; * — (z,2,0)

is a chain equivalence such that up to chain homotopy

) wlh] ™!
fTn] : D — E(h) L E[h] ,
f=(h) wlh]~?

f7lh +: D — E(h) —— EIh].
The induced Az, 2~ !]-module chain map
(Lw[h]) : C[h] — C(h)

is a chain equivalence, so that C[h| is A-module chain equivalent to C' and
C[h] is a chain complex band. The inclusions C*——FE[h], C~—z"1E[h]
determine A-module chain equivalences

Ct — C[h" = e(ff[h] -z [h szD—>szE

O™ — Clh™ = e(ff[h - ="' f[h Z #D— Z

k=—00 k=—o0
which in turn determine chain equivalences
(C/C*,0) ~ (C[h]/CIh)T,0) ~ S~HC[h] T, ¢y,
(C/C7,0) = (CIW/CIA™,0) = S~ (C[H~,¢~H) .
Thus C1h] is a relaxed chain complex band, with
(C[p T ¢y = (Ch] 7, ¢7H) = 0 e Nily(4) .
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The composite of (1,w[h]) and the A-module chain equivalence
Ch)y — C; > Z(xjy) — >, ha;
Jj=—00 j=—o00

is an A-module chain equivalence which is chain homotopic to a chain equiv-
alence F'[h] : C[h]—C in Cg(A) (the algebraic analogue of the proper
homotopy equivalence F'[h] : X[h]—X in 19.12 (ii)), with torsion

w(F[h]) = [CT] = [C[M]*] = 0€ Wh(Cr(4)) = Ko(4).

In order to compute the fibring obstructions ®*(C[h]), &~ (C[h]) consider
the A-module chain equivalences given by 23.11

ulh] : D — Clhlech ™ och Y, v — (z,2,1),
vh] B[R] — Clhl@ Clh ™ o Ci Y 5y — (y,y,h7'y)
so that
oF(C[h]) = (o[n", ~[C[1]71,0,0) , @7 (C[h]) = (¢[h]™,[C[h]"],0,0)
€ Wh(Az,27Y)) = Wh(A) @ Ko(A) & Nilg(A4) & Nily(A)

with
o] = 7(wh] Y (h®1® 1)ulh] : D—E[h]) ,
¢[h]” = 7(v[h] tu[h] : D—E[h]) € Wh(A)
such that ¢[h]" — ¢[h]™ = 7(h). o

The algebraic twist glueing of 26.1 is the algebraic analogue of the CW
twist glueing of Chapter 19:

Proposition 26.4 Let (X,d) be a CW ribbon, and let h : X — X be a ho-
motopy equivalence, so that the CW h-twist glueing (X (h),d(h)) is defined
as in 19.8. Assume h, = 1:m(X) = m—m7, so that m (X (h)) =7 X Z.

(i) The cellular Z[x][z, 2~ 1]-module chain complex of the universal cover
X'(h) of X (h) is given up to chain equivalence by the algebraic h-twist glue-
ing of the chain complex ribbon C(X) in Cg(Z[x])

C(X(h)) = Clh:C(X)—C(X)] .

(ii) If h is either a covering translation or the identity (as in 19.12) then
the cellular Z[r][z, z~1]-module chain complex of the universal cover X [h] of
the CW band (X[h],d[h]) is given up to simple chain equivalence by

C(X[h) = Clh: O(X)—C(X)] .
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with the fibring obstructions given by 26.3:
~ 2 et
¥ (X[, dn]) = ®(C[A)) = (¢~ [h], F[X],0,0)
€ Whir x Z) = Wh(r)® Ko(Z[x]) & Nilo(Z[r]) & Nily(Z[x]) .
In particular, the homotopy equivalence T'(h) ~ X[h] has torsion
7(T(h) ~ X[h]) = & (X[h],d[h]) € Wh(m x Z) .
Proof Immediate from 26.3. o
Definition 26.5 The wrapping up of a chain complex ribbon C' in Cg(A) is
the relaxed A[z, z7!]-module chain complex band

C = Cfj. o

Proposition 26.6 (i) The wrapping up of a chain complex ribbon C in
Cr(A) is an Alz, 2~ -module chain complex band

C = Cl] = eyt —2Y%j :D[z,27 ' |—Dl[z,271))
which, is simple chain equivalent to C, with
d+(C) = (0,—[C7],0,0), @ (C) = (0,[C*],0,0)
€ Wh(Alz,27Y) = Wh(A) @ Ko(A) ® Nilg(A) ® Nily(A) .

(ii) Let C be an Alz, z~']-module chain complex, let C' denote C' regarded
as a finitely dominated A-module chain complex, and let (' : C'—C'" de-
note the covering translation ¢ : C——C' regarded as an A-module isomor-
phism. Let 2’ denote an invertible indeterminate which commutes with z,
and let

Y = e(1—z:2Zz 2 —2z[z27Y),
Y = e(l-2:z[, 7 \—uz[,Z7)) .

The fibring obstructions of the Alz,z71, 2", 2’~]-module chain complex band
C ® XY/ vanish,

PT(CRY) = o (CeY) = 0€ Wh(Alz, 27,2, 27Y)

and there is defined a simple Az, 274, 2/, 2/71]

-module chain equivalence
Coy ~ T :C'—C"
with C' a copy of C defined over Al2',2' 1] and

(~¢leol : O~ C'loy —C ~ C'oy
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a simple A[Z',2'~1]-module chain equivalence.

Proof (i) Immediate from 26.3, noting that for h =1: C—C
fl =ff =1:D—El] =D,
ull] = v[1] : D — Cll]a ™Y aon) V.
(ii) This is the algebraic analogue of 20.8. o

Example 26.7 The wrapping up of a CW ribbon (X, d) is a relaxed CW
m1-band

(W,e) = (X,d)
such that the relaxed Z[r][z, z~!]-module chain complex band C (IZIV/) =Cis
the algebraic wrapping up of the chain complex ribbon C' = C(X), by the
special case h = 1 : X—X of 26.4, with 7 = m(X). The application of
26.6 (i) gives the fibring obstructions of X to be
TW,e) = —[X7] , & (W,¢) = [XT) e Ko(Z[r]) C Wh(r x Z) .

Moreover, 26.6 (ii) shows that the infinite simple homotopy equivalence
G: X xSt~ W xR of 20.3 (iii) is not (in general) simple as a homotopy
equivalence with respect to the canonical simple homotopy types, since it
has torsion

(G) = & (W,¢) = [X1] e Ko(Z[r]) C Wh(x x Z) . o

Definition 26.8 The relazation of an A[z, z~1]-module chain complex band
C is the (-twist glueing

C' = C[C:C—(]. o

Proposition 26.9 Let C be an A[z, z~']-module chain complex band. Given
a Mayer—Vietoris presentation (C+,C™) let

ft:D=C"nC"—FE =0C"n¢C™ ; 2 — x,
fT:D=C"nC-—E =C"Nn¢C™ ; y — (y
so that there is defined an exact sequence

f—‘r _ z—lf—

0 — Dlz,27Y] —— E[z,271]

— C — 0.
The relazation of C is given up to simple chain equivalence by
C' = C(ff =z f'": D[z, 27— E[z,271))
with
f o=, =K D—E



314 Ends of complexes

such that there are defined chain homotopy commutative squares
I+
D ! E

Caotifgo—if 18180  opotif o o-lf

) —
D ! E

cactiigo-t SP0PL ogorug o

with w,v as in 23.11. ]

As in Chapter 24 define the Whitehead group relaxation map
Wh(A[z,27Y]) = Wh(A) ® Ko(A) @ Nily(A) & Nil(A)

— Wh(A[z,27Y) ;
r = (a,b,c,d) — 2’ = (a,),0,0) .

Proposition 26.10 Let C' be an Alz, 2~ -module chain complex band.
(i) The relazation C' is a relaxed chain complex band with fibring obstruc-
tions the relaxations of the fibring obstructions of C' :

dE(C") = dE(C) e Wh(Alz,27Y]) .
In the notation of 23.11
(I)+(C,) = (¢+a —-[C7],0,0) (I)_(C,) = (¢, [C+]a0a0)
€ Wh(Alz,27']) = Wh(A) ® Ko(A) ® Nilg(A) & Nilg(A)

OH(O) = (¢, —[CT] [0 ¢ oY )
o (C) = ((]57,[CJFL—[C+vlf’<+vlf]’_[Cf,lfjcf,lf])
€ Wh(A[ZWZil]) = Wh(A) S %O(A) D N\IID(A) D N\IIO(A) .
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(ii) The relazation C' is chain equivalent to C, with torsion

T(C~C") = &H(C)—dT(C) = & (C') —d (C)
= (0,0,[CTY P[0 (7))
€ Wh(Alz,27Y]) = Wh(A) @ Ko(A) ® Nily(A) @ Nily(A)

the Nil-components of the fibring obstructions ®=(C) € Wh(Alz, z71]).
(iii) C is relaved if and only if T(C' ~ C') =0 € Wh(A[z,271]).
(iv) 7(C" =~ (C")) =0 € Wh(A[z, 27 1]).

Proof Apply 26.3 with h = : C—C. i

Example 26.11 If (W,c) is an untwisted CW -band with relaxation
(W'.c) (20.7) and 7 (W) = 7 x Z then C(W) is a Z[x][z, z~!]-module
chain complex band with relaxation

(up to simple chain equivalence) and

OE(W,0) = oH(C(W))
= (¢F, F W], —[CYm (W), ¢ H], — [ (W), ¢ H])
PEW', ) = oEC(W)) = dEHCW)) = (¢5,FW1,0,0)
€ Whir x Z) = Wh(r)® Ko(Z[r]) & Nilo(Z[r]) ® Nily(z[r]) . o

Proposition 26.12 An untwisted CW m1-band (W, c¢) with m(W) =7 x Z
is simple homotopy equivalent to a relazed CW mq-band if and only if the
Z[r][z, 2~ Y-module chain complex band C(W) is relaved.

Proof If (W,c¢) is an untwisted CW mi-band which is simple homotopy
equivalent to a relaxed CW mi-band then C (W) is a relaxed chain complex
band over Z[r|[z, z~!], by 24.9 and the simple chain homotopy invariance of

the nilpotent classes of a chain complex band C

[CH ¢ [ ¢ 7] € Nilg(4) -
Conversely, if (W, ¢) is an untwisted CW m-band such that C(W) is a

relaxed chain complex band then (W, c¢) is simple homotopy equivalent to
the relaxation (W', '), which is a relaxed CW m1-band. o
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By analogy with 20.12:

Proposition 26.13 An Alz, 27 !]-module chain complex band C and its
relaxzation C' are related by the relaxation algebraic h-cobordism (B;C,C")
with B an Alz, z~1]-module chain complex band and C— B, C'— B chain
equivalences such that

®*(B) = (¢",~[C7],~[CH.¢TV],0)

o~ (B) = (¢7,[C7],0,—[C~Y, (Y],

7(C—B) = (0,0,0,[C M, ¢H]) |

7(C'—B) = (0,0,[C T ¢+, 0)

€ Wh(Alz,27Y) = Wh(A) ® Ko(A) ® Nilg(A) ® Nilg(A) .

Proof Any finite based f.g. free A[z,271]-module chain complex B with
a chain equivalence C— B such that 7(C—B) = (0,0,0,[C !, ¢—])
will satisfy the other conditions. The wrapping up C' can be used to give an

explicit construction of B, by analogy with the construction of the relaxation
CW h-cobordism (Z; W, W') in 20.12. Define

B = e(gt 2l Bz, 27— F2,27Y)

with F' the algebraic mapping cylinder of a simple A-module chain equiva-
lence

Y. p et ). p—
e(<f/+>'D EeE) e((f+>.p E®E)

and g%, g~ : E—F the chain maps appearing in the commutative diagram

fr g* A
E F E
/= 9” f

which is chain equivalent (via u,v) to the commutative diagram
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Cootifgo—if 18180 o0 mtif g ot 18081 o0 otif g o it

1o1e¢Y 18140 18140
coctilgo—t LELB0, g orir g ot 22081 g cris g o-tf

(o¢tY ol (¢t ol (01

Caoctifgo—if 18180 opmtif g o-tf 18081 o otif g o it
O

Remark 26.14 Let (W, 0W) be an open n-dimensional manifold with com-
pact boundary and one end. In Chapter 17 we used geometric wrapping up
to show that if n > 5 and W is both forward and reverse tame then the
end has an open neighbourhood V' C W which is the infinite cyclic cover
(V,d) = (U,¢) of a relaxed manifold band (U, ¢). Moreover, it was shown
that (U,c) = (V,g) is the wrapping up of the ribbon (V,d), with a ho-
motopy equivalence e(W) ~ U and a homeomorphism U x S! & U x R.
If (W,0W) = (M ,M " N M) is an end of the infinite cyclic cover

M = ¢*R of a manifold band (M, c) then U,V are such that V = U = M,
M x St = T(Z ) for a homeomorphism E : U—U in the homotopy class of
(x1:U~MxS'~—M x S* ~ U (17.10). The underlying (simple) ho-
motopy types were obtained in Chapter 19 using homotopy theoretic twist
glueing. In the terminology of Chapter 19 the wrapping up W = M[1] is a
manifold in the canonical simple homotopy type of the 1-twist glueing M (1)

of M. By 26.4

C(U) = C(M(1)) = C[1:C(M)—C(M)] = C(M) .
The relaxation CW h-cobordism (Z; W, W’) of 20.12 between an untwisted

CW m-band (W, ¢) and the relaxation (W', ¢') induces the chain complex
h-cobordism (B;C,C") of 26.13, with

B=CZ ,C=CcWw), ¢ =cWw).

The relaxation of an untwisted manifold band (W, ¢) is an untwisted man-
ifold band (W', ¢'), and there exists a manifold h-cobordism (Z; W, W)
realizing the chain complex h-cobordism (B; C, C"), verifying the correspon-
dence of the manifold and CW relaxation h-cobordisms (20.13 (i)). O
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Wrapping up in algebraic K- and L-theory

The geometric wrapping up construction of Chapter 17 and the algebraic
wrapping up construction of Chapter 26 are now related to the splitting the-
orems for the algebraic K- and L-groups of a Laurent polynomial extension
Alz, z71] (with involution on A and Z = 2! in L-theory)

Ki(Alz,27Y) = Ki(A) & Ko(A) & Nily(4) & Nilg(4) |
LA, =1]) = Lip(A) © L2-(4),
Lh(A[z,27Y) = Lh(A) & L), (4)
and the corresponding results for the R-bounded category Cr(A)
Ki(Cr(4)) = Ki(Alz, 2 )™M = Ko(4)
LMCr(A) = Ly(Alz, 2 DY = Lp7H(4),
L(Ca(4)) = Ly(Alz, 2 D™V = Lj_1(4)

with TNV denoting the subgroup of the elements invariant under the trans-
fers induced from all the finite covers g : S'——S' (¢ > 1) of S*. We refer to
Ranicki [124] for the chain complex treatment of these splitting theorems.

Regard S! as the unit circle {z € C||z| = 1} in the complex plane. For
each integer ¢ > 1 complex multiplication defines a g-fold covering of S* by
itself

q: St — 82— 21,
corresponding to injections of the rings A[z], A[z, 27!] into themselves by
g Al Al] s 2 21
q : Alz,z7Y — Alz, 274 2 — 29,
In Chapter 24 we considered the g-fold transfer
¢' : {A[z]-modules} — {A[z]-modules} ; M — M" .

318
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Definition 27.1 The g-fold transfer functor

!

q' : {A[z,z7"-modules} — {A[z, z~]-modules} ; M — M"

sends an A[z,z7']-module M to the Az, z"!]-module M' with the same
additive group and

Az, 27 Y x M' — M'; (z,2) — 29z . o

Proposition 27.2 (Ranicki [124, Chapters 12,18]) (i) The g-fold transfer
map induced in algebraic K-theory is such that

!

¢ = qgvledeq :
Ki(Alz,27Y)) = K1(A) @ Ko(A) @ Nilg(A) @ Nilg(A4)
— K1(Alz,271]) = Ki(A) ® Ko(A) @ Nilg(A) @ Nily(A)

with
0"+ Nilo(4) — Nily(A) ; (P.v) — (P,of) .
The transfer invariant subgroup of K1(A[z, z71])
Ki(Alz, 2 )NV = {2 € Ki(Al2,271]) |q'(x) = @ for ¢ > 2}

is such that there is defined an isomorphism

Ko(A) — Ki(Alz, = )V 5 [P] — 7(—2: Ple, 2~ ]—P[z,271]) |

(ii) The q-fold transfer maps induced in symmetric L-theory are such that
¢ = qol: Li(Alz27]) = Lij(A) o Ly (4)

—s LMAlz,271]) = LA @ Lgfl(A) .

The transfer invariant subgroup of LY (A[z, z71])

Liy(Alz,z )™ = {z € Li(Alz,271)) |¢'(2) = @ for ¢ > 2}

is such that there is defined an isomorphism

LN (A) = LAz DN 5 (C8) — (O ) ®07(S")

with (C, @) any finitely dominated (n — 1)-dimensional symmetric Poincaré
complex over A, and o*(S') the 1-dimensional symmetric Poincaré complex
over Z|z,z71] of St. Similarly for quadratic L-theory L.

(iii) The forgetful functor

{based f.g. free A[z,271]-modules} — Cgr(A)
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nduces isomorphisms
Ky (Alz, 2 )Y = Ki(Ce(4))
Ly(Alz, 27 ™Y = L™(Cr(4)) -
Similarly for the Whitehead group Wh and quadratic L-theory L. O

1

Let W be a space with a map ¢ : W——S'. The pullback along ¢ of the
g-fold cover q : S'——S' of S' is the g-fold cover (W', c') of (W, c) given by

W' = {(z,y) e W x S |e(z) =y} , c'(z,y) = ye S
with

!

=W =W—W =W, W =W/ =W;.
W! C Sl
w—¢ gt

If (V;U,CU) is a fundamental domain for the infinite cyclic cover W of W
then

-1 —1
qU (Vi dU, ¢ty = <qU ¢V, U, ¢)
j=0 j=0

is a fundamental domain for the infinite cyclic cover W' of W', with iden-

tifications
W = V/(U=(d) ,

g-1

w' = (| dv)/(U=¢) ,
j=0

w-w= | ov.

j=—00

If W is connected then so is W', and the morphism of fundamental groups
induced by the covering projection W'—W fits into an exact sequence

{1} — mW') — m(W) — 2Z4 — {1} .

Proposition 27.3 Let (W,c) be an untwisted CW band, so that (. = 1 :
m (W) =nr—7 and

m(W) = axZ , Zm(W)] = Zx][z,271] .



27. Wrapping up in algebraic K- and L-theory 321

(i) The q-fold cover (W', c') of (W, c) induced from the q-fold cover q :
S1—— 81 is an untwisted CW band with fibring obstructions

W' e = ¢'@F(W,¢) e Wh(n x Z) .
(i1) If (W,c) is an n-dimensional geometric Poincaré band then so is
(W', ch, with symmetric signature
o*(W') = q¢'o"(W) € Lj(2[x][z,271]) .
Proof If W is a CW complex with a map ¢ : W——S! inducing
¢, = projection : (W) = 7 xZ — m(S') = Z

then the covering projection W'—W of the induced ¢-fold cover W' of W
induces the injection of fundamental groups

m(Wh = axZ —m(W) = 7 xZ; (g,2) — (g,29) .

The universal cover W' of W' is the universal cover W of W with the g-fold
7 X Z-action, so that as a Z[r][z, 27 !]-module chain complex

CW') = ¢'Cc(W) .

Similarly for the finiteness obstruction, Whitehead torsion, the fibring ob-
structions and the symmetric signature. i

The algebraic K-theory effect of wrapping up is given by :

Proposition 27.4 (i) The wrapping up of a CW ribbon (X,d) is a re-
laxzed CW band (X, d) which is transfer invariant: for every finite cover
q : S'——S' of S the pullback q-fold cover (X', d') is simple homotopy
equivalent to (X,d). The fibring obstructions of (X,d) are given by
oH(X,d) = —[X7], ®(X,d) = [XT]
e Whir x 2)'VV = Ky(z[r]) .
(i) A CW band (W, c) is simple homotopy equivalent to the wrapping up
(X,d) of a CW ribbon (X,d) if and only if it is relaved and there exist