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BOUNDED HOMEOMORPHISMS OVER
HADAMARD MANIFOLDS

C. B. HUGHES', L. R. TAYLOR! and E. B. WILLIAMS!

Abstract.

Let F be a closed topological manifold and let H be a Hadamard manifold (that is, a simply connected,
nonpositively curved, complete Riemannian manifold). We study the space of homeomorphisms on
the product F x H which are bounded in the H-direction. The main result is that the homotopy type
of this space of bounded homeomorphisms is independent of the metric on H. The proof is
accomplished by relating bounded homeomorphisms to controlled homeomorphisms, a notion
which depends only on the topology of H. The result is proved in the more general context of certain
spaces which need not be products with H, namely, manifold approximate fibrations over H.

Introduction.

Given two spaces over aspace B, say p;: E; — Band p,: E, — B, we consider two
notions of maps from E; to E, which are weaker than the traditional notion of
afibre map over B. The easiest to describe is bounded: if B is a metric space, a map
S+ E|, » E, is called bounded provided there exists a number ¢ such that d(p,(e),
fopy(e)) < cfor all e E,. The other type of map is controlled: given two spaces
over B as above, a controlled map between them is a map F: E; x [0,1) - E; so

. ; p.Flet) ft<1,
that the map F: E, x [0,1] — B defined by F(e, t) = ... . lscon-

{pl(e) ift=1

tinuous. Clearly, the notion of bounded depends on the metric of B, while just as
clearly, controlled does not.

Bounded maps figure prominently in work by Anderson and Hsiang, [2], (31,
whereas controlled maps figure prominently in work of Chapman, Ferry and
Quinn (with the precise definition given above first appearing in [8]). A remark-
able fact which has emerged from these two schools is that the obstructions to
solving a bounded problem usually agree with the obstructions to solving the
analogous controlled problem. For more information, consult the recent survey
by Ferry, Hambleton, and Pedersen [6].

! Partially supported by the N.S.F.
Received September 1, 1992.
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This paper gives an explanation for this observation. In general, a bounded
map is not controlled in any natural way, and a controlled map need not be
bounded. We introduce a third sort of map, the bounded, uniformly controlled
maps. These are both controlled and bounded, and so form an intermediate place
in which to compare the two theories. We show that if we consider B = R, the
simplicial spaces of controlled homeomorphisms, bounded homeomorphisms
and bounded, uniformly controlled homeomorphisms are all homotopy equival-
ent (in the case of manifold approximate fibrations).

Indeed, we will show somewhat more. Let H be any simply connected manifold
with a complete metric of nonpositive curvature, a so-called Hadamard manifold.
The Hadamard-Cartan theorem shows that H is diffeomorphic to R, but the
metric properties can be rather different. We will show that the simplicial spaces
of controlled homeomorphisms and bounded homeomorphisms are homotopy
equivalent for any Hadamard manifold (again, in the manifold approximate
fibration case). The equivalence of the bounded and the controlled theories is
established by equating (up to homotopy equivalence) bounded homeomor-
phisms with those homeomorphisms which can be extended continuously to
a sphere at infinity via the identity. This reduces the problem back to the
euclidean case.

One of our motivations for writing this paper is that in an earlier paper [8] (see
also [9]), we gave a classification of manifold fibrations over an i-dimensional
manifold with given fibre germ p: M — R’ (which is itself a manifold approximate
fibration) in terms of a lifting problem through a bundle with fibre BTop®
(p: M - RY), the classifying space of the simplicial group of controlled homeo-
morphisms on the fibre germ. Therefore, succesful application of our classifica-
tion theorem depends on an analysis of the homotopy type of the space of
controlled homeomorphisms on a manifold approximate fibration over R%. At
present, the only hope for numerical information lies in the methods of Weiss and
Williams ([14], [15], [16]). Their work, however, is concerned with bounded
homeomorphisms. This partially explains our interest in relating controlled
homeomorphisms to bounded homeomorphisms in the euclidean case.

We first began this work in response to a question of S. Weinberger, namely,
are bounded and controlled homeomorphisms over hyperbolic space essentially
the same? Of course, the positive answer to this question is a special case of our
results. We exploit our philosophical finding that “bounded equals controlied
over Hadamard manifolds” in forthcoming papers ([10], [11], [12]) to show that
certain forget control maps are split injective thereby establishing results related
to the Novikov conjecture. Finally, we mention the recent paper [1] by Ander-
son, Connolly, Ferry and Pedersen which uses one of our techniques to connect
bounded topology with a topologically invariant theory.
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Section 1. Statements of Results.

Let p: M — R be a manifold approximate fibration. Thus, pis a proper approxi-
mate fibration and M is a manifold with M = @ (see [8]). It is understood that R’
is endowed with the metric induced from the standard euclidean norm || - |J. Let
m = dim M.

A k-simplex of the simplicial set Top®(p: M — R') of bounded homeomorphisms
is a homeomorphism

h: M x A > M x A*
such that
M x A% b M x 4

Ak

commutes and such that there exists a ¢ > 0 so that ||p(x) — pph(x, )| < ¢ for
each (x,t) in M x A* where p;: M x 4* - M and p,: M x 4* — 4* are the
projections.

Recall from [8] that a k-simplex of the simplicial set Top®(p: — R') of control-
led homeomorphisms is a homeomorphism

h: M x 4% x [0,1)» M x 4* x [0,1)
such that
M x A x [0,1) 5 M x 4% x [0,1)
N
A€ x [0,1)
commutes, and the compositions
M x 4% x [0,1) 25 M x 4% x [0,1) 2% R x 4* x [0,1)
and
M X A% x [0,1) 25 M x 4 x [0,1) 255 R x 4% x [0,1)

extend continuously to maps M x 4* x [0,1]— R x 4 x [0,1] via p x id:
M x A* x 1 » R x 4* x 1.

THEOREM 1.1. If m = 5, then Top®(p:M — R') and Top®(p: M - RY) are
homotopy equivalent.

We remark that although in general there need not be a natural map between

3
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Top®(p: M — RY) and Top®(p: M — R’), we will describe one which gives the
homotopy equivalence in the special case that M = R’ x F and p is the projec-
tion (see Remark 3.8).

We next want to generalize these results by replacing R‘ by an arbitrary
Hadamard manifold H’. To accomplish this, we first generalize a result of
Anderson and Hsiang which we now recall.

Let F be compact and let Top®(R! x F) denote the simplicial set of homeo-
morphisms of R’ x F which are bounded in the R'-direction; that is, Top®
(proj: R® x F—R). Let S'"!'«F denote the join of ' and F and let
Top(Si~'*F,5 ") denote the simplicial set of homeomorphisms of §' ! * F
which restrict to the identity on §' ~*. There is a natural identification of R* x F
with (S°"'*F)\S""! and this induces a simplicial map Top®’(R' x F)—
Top(Si~1 « F,S " 1). The following result appears implicitly in [2].

THEOREM (Anderson-Hsiang). The natural map Top®(R' x F) —»
Top(S:~ 1« F,5~ 1) is a homotopy equivalence.

Recently, Madsen and Rothenberg have included a complete, elementary
proof of this Theorem (and an equivariant version) in [ 13]. Basically their idea is
to start with a homeomorphismin Top(S’~! * F, $*~ 1) and then to do a geometric
construction in the i different R-directions to obtain a homeomorphism which is
bounded in each of the R-directions, hence bounded in the R*-direction.

In this paper we give an alternative proof that applies to more general
situations. Instead of working in the R-directions, we achieve boundedness in the
radial direction and in the spherical direction. An advantage of this proofis that it
works when R is replaced by an arbitrary Hadamard manifold H'. Let
Top®(H x F)denote the simplicial set of homeomorphisms of H x F which are
bounded in the H-direction.

THEOREM 1.2. The natural map Top®(H x F)— Top(S'™ '+ F,5"1) is
a homotopy equivalence.

We also consider more general situations than just products H x F. More
specifically, let p: M — H be a manifold approximate fibration and let
m = dim M. Let H(co) denote the sphere at infinity of H. Then M can be
compactified by adding H(co) to get M = M U H(). The topology on M is
discussed in Section 4. Let Top®(p: M — H) and Top®(p: M — H) denote the
simplicial sets of homeomorphisms of M which are bounded in the H-direction
or, respectively, can be continuously extended to H(co) via the identity. By using
the controlled isotopy covering theorem for manifold approximate fibrations
(see the appendix, Section 6) we get the following version of Theorem 1.2.
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THEOREM 1.3. If m 2 5, then the inclusion Top®(p: M — H) — Top®(p: M — H)
is a homotopy equivalence.

The homeomorphism type of the pair (M, H(c0)) is independent of the metric
on H, as long as the metric is complete and of nonpositive curvature (see Section
4). Therefore, we have the following corollaries of Theorem 1.3.

COROLLARY 1.4. The homotopy types of Top®(H x F) and, more generally,
Top®(p: M — H) are independent of the metric on H (as long as the metric is
complete and of nonpositive curvature) if m = 5.

COROLLARY L.5. If m 25, Top®(p: M - RY) and Top®(p: M — H') are
homotopy equivalent for any i-dimensional Hadamard manifold H'.

The following result is a corollary of Theorem 1.1 and Corollary 1.4.

COROLLARY 1.6. If m = 5, then Top®(p: M — H) is homotopy equivalent to
Top®(p: M — H) for any Hadamard manifold H.

The authors thank Shmuel Weinberger for interesting conversations about the
material in this paper.

Section 2. Controlled vs. uniformly controlled homeomorphisms.

In this section we show that controlled homeomorphisms can be assumed to be
uniformly controlled. The main result (Theorem 2.2) holds over an arbitrary
manifold B. Adopt the following data for this section.

Data. Let p: M — B be a manifold approximate fibration with dim M =
m = 5and 0M = () = dB. Endow B with a fixed metric (i.e. a distance function d).

Let Top®(p: M — B) be the simplicial set of controlled homeomorphisms (see
[8] for a definition or replace R by B in the definition in Section 1). It is a Kan
simplicial group. We will denote a typical k-simplex by either

h: M x A% x [0,1) > M x 4% x [0,1)
or
he M x A*-> M x A4, 05t < 1.

DEFINITION 2.1. Top®®(p: M — B) is the simplicial subgroup of Top®(p:
M - B) consisting of those simplices

heMx A*>Mx 450t <1,
such that
(p x id g)h, converges uniformly to (p x idg)ast—17,
i.e. for alle > O there exists t, 0 < to < 1, such thatd(p x id)h(x),(p x id)(x)) < ¢
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forallt = toand for all xe M x A* (Here we are using d to denote the standard
metric on B x 4* induced by d on B and the standard metric on 4%.)

RemMARK. The controlled homeomorphisms produced by the proof of the
Controlled Straightening Theorem [8, Thm. 14.3] have the pleasant property
that they are uniformly controlied; i.e., the homeomorphisms are simplices of
Top®*(p: M — B). This fact will be used in the proof of the Theorem below.

THEOREM 2.2. The inclusion Top®*(p:M — B) = Top°(p: M — B) is
a homotopy equivalence.

PrOOF. Let h: M x A*> M x 4%, 0<t<1, denote a k-simplex of
Top®(p: M — B) such that h|M x 04*, 0 <t < 1, is a union of k + 1(k — 1)-
simplices of Top®*(p: M — B).

Define

p: M x A* x [0,1] > B x 4* x [0,1]

by p|M x 4% x [0,1) = (p x id)oh and p|M x 4* x {1} = (p x idsx). Then
pis a (4* x [0, 1])-parametrized family of manifold approximate fibrations. It
follows from the proof of the Controlled Straihtening Theorem [8, Thm. 14.3]
that there exists a continuous family of homeomorphisms

HoM x A x[0,1]1-M x A* x [0,1],0<s< 1,

such that
1) H, is fibre preserving over 4* x [0, 1] Vs,
2) Hy =id,
3) HJM x A* x {1} =id Vs,
4) HM x A% x {t} = h7 ' oh, Vs, t <1 where a,: [0,1) - [z, 1) is defined

t ifs=<t
b = N
y a(s) {s ifs>t
5) pH, converges uniformly to p x idgass— 1.

Note that
pohoo HiM x A* x {0} converges uniformly to p x id as s = 1~ and that
H, M x 04* x {0} = hg*hy{M x 84" for all s.

It follows that hoo Hi|M x 4* x {0}, 0 < s < 1, is a k-simplex of Top “*(p:
M — B) which agrees with h, on 84*. Define g;: M x 4* x [0,1] > M x A*
x [0,11,0 < s <1 by

(hy(x, y),t) ifs <t
(h(x,y),t) ifs=t

Then g,- H; is a (k + 1)-simplex of Top®(p: M — B) connecting hoH, and
hyrel 94%,

gs(x, y,t) = {
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Section 3. Bounded and uniformly controlled homeomorphisms.

In this section we complete the proof of Theorem 1.1. This is accomplished by
introducing the group Top™**(p: M — B) of bounded, uniformly controlled
homeomorphisms and showing that it is homotopy equivalent to both the group
of controlled homeomorphisms (Corollary 3.3) and, also to the group of bounded
homeomorphisms in the special case B = R’ (Theorem 3.7). Adopt the following
data.

Data. Let p: M — B be a manifold approximate fibration, where B is
atopological manifold with a metricand 0M = @ = 0B. Letm = dim M. Mainly,
but not exclusively, we are concerned with the case B = R'.

DEFINITION 3.1. Top™®"(p: M — B) is the simplicial subgroup of Top®*(p:
M — B) consisting of those k-simplices

heMx A > M x 4% 0<t<1
such that there exists a f > 0 so that d((p x id)h,, p x id) < g for all ¢ in [0, 1).

LEMMA 3.2. The inclusion Top®*(p: M — B) =, Top®“(p: M — B) is
a homotopy equivalence.

ProOF. Let h: M x A4 > M x A*, 0 £t < 1, be a k-simplex in Top®*(p:
M - B) such that h,|M x d4*, 0 £t < 1, is in Top®*¥(p: M — B), say with
bound > 0.

Note that h,, 0 < r < 1, defines a family of homeomorphisms h,: M — M,
(s,)e 4* x [0,1).

By uniform convergence, there exists t,€[0, 1) such that d(ph,,p) < B for
each (s, t)e 4* x [to, 1).

Let r: 4% x [0,1) = 4* x [to,1) U 04* x [0, 1) be a retraction and define

E(s,t): M - M’ (S; t)EAk X [0’ 1)’ by i;(s,t) = hr(s,t)'

Then hy ,, defines a k-simplex in Top®**(p: M — R’) which equals h, over 4",
Moreover, if r,:id ~ r,0 < u < 1,is a homotopy rel 4° x [t,, 1), this can be used
to construct a homotopy connecting h and h rel 94*.

COROLLARY 3.3. If m = 5, then Top®(p: M — B) is homotopy equivalent to
Top®*“(p: M — B).

ProOF. Apply Lemma 3.2 and Theorem 2.2.

DEFINITION 3.4. The forgetful map a: Top>**(p: M — R) - Top®(p: M — R)
is defined by

a(h, 0 <t < 1)=hy
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Our goal in Theorem 3.6 is to show that « is a homotopy equivalence.

REMARK 3.5. Here is an example which shows that controlled homeomor-
phisms need not be bounded.

Define h,: R* = R, 0 <t < 1, by h(x) = (2 — t)x.
Then h,,0 < t < 1,is a controlled homeomorphism from idg: to itself, but each b,
is unbounded.

LEMMA 3.6. Let m 2 5. For every integer k = 0,1,2,... there exists ¢ > 0 so
that if p: M — R' is a manifold approximate fibration, dim M = m, and

M x A" > M x A*
is a k-simplex in Top®(p: M — R') with bound e, then there exists a k-simplex
b Mx AA>Mx A, 0<t <1,

in Top®**(p: M — R') such that hy = h.
Moreover, if we are additionally given

g M xoA4* > M x 04,05t < 1,
in Top®™**(p: M — RY) withg, = h|M x 04*, then we can additionally require that
h|M x 84* = g, for each t.

ProoF. Note that (p x id)h™: M x 4* > R x 4* and p x id: M x 4* >
R’ x A* are A*-parametrized families of manifold approximate fibrations which
are e-close.

It follows from [7] that, if ¢ is small, there exists a manifold approximate
fibration

q: M x 4% x [0,1] » R* x 4% x [0,1]

fibred over 4* x [0,1], withq|M x 4* x 0 = (p x id)h"*and g|M x A* x 1 =
p x id.

Moreover, we can take g|M x d4* x {0,1) = (p x id)g L.

By “controlled straightening” [8, Theorem 14.3], there exists a homeomor-
phism

H:M x A* x [0,1) > M x 4* x [0,1)

such that
i) H is fibre preserving over 4* x [0, 1),
i) HIM x A% x 0 =id,
iii) (p x id)H, converges uniformly to (p x id)h " tass—1".
Moreover, by a relative version, we can take
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H,|M x 04" = g;h™'|M x 84 for each s in [0, 1).
Then H;h, 0 < s < 1, is a k-simplex of Top®**(p: M — R’) with initial level h and
HAIM x 04* = g,.
THEOREM 3.7. If dim M 2 5, then the forgetful map a: Top®>**(p: M — R') —»
Top®(p: M — RY) is a homotopy equivalence.

PROOF. Let h: M x 4* > M x A* be a k-simplex in Top®(p: M — R') and let
g M x 04 - M x 94%, 0 < t < 1, be in Top®><*(p: M — R’) with initial level
go = h|M x 84 Let B > O be a bound for bothhand g,,0 <t < 1. Lete > O be
given by Lemma 3.6. Choose § > 0 small.

Define an isotopy

y: R x [0,1] = R’ x [0,1]

by y(x) =(1 — t + td)x for 0 <t < 1. By the Controlled Isotopy Covering
Theorem (see the appendix), there exists an isotopy

M x[0,1]- M x [0,1]

such that (p x id)I is d-close to y(p x id).
Define a homeomorphism j from

[(M x AU (M x 4% x [0,1))] x [0,1]
to itself by
JIM x 4% x [0,1] = I'(h x id)["~*
and
JIM x 84* x t x [0,1] = I'(g, x id)[~!|.

It follows that (p x id)j|M x 4* x 1is(26 + 3B)-close to p x id. If 6 > 0 was
chosen so that (26 + 8f) < ¢, then Lemma 3.6 can be used to find a k-simplex

JoMx A M x A4, 0<s< 1
in Top®™®*(p: M — R) such that j, = j|M x 4* x 1 and
JoeM x 04* =T, g, I'{! 0<s< 1.

Note that j{M x 84" x [0,1) x [0, 1] is a homotopy in Top>**(p: M — R)
from g, toj,|M x d4*and that a(j|) extends to a homotopy j from h to a(j;). Thus
a is surjective on homotopy groups. Moreover, since a null homotopy is also
given by a simplex with certain properties on the boundary, the above argument
shows that a is injective on homotopy groups and therefore is a homotopy
equivalence.
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PrOOF OF THEOREM 1.1. We have the following homotopy equivalences:

Top®>**(g: M - R) —2— Top’(p: M — RY)

(3.6)
fl (3.2)
Top**(p: M > RY) 5= Top®(p: M — RY)

ReMARK 3.8. In the special case that M = R’ x F and p: R! x F - R'is the
projection, we can describe a homotopy equivalence

y: Top?(p: M - R¥) -» Top‘(p: M — RY)

explicitly as follows.

Define 3,: R" = R, 0<t < 1,by y,(x) = (1 — t)x. Let I': R" x F - R’ x F be
¥, X idg.

Then if

hMx A5 M x A4*
is a k-simplex of Top®(p: M — RY), then
y(h) = (T, x id (7Y x idp),0 <t < 1,

is a k-simplex of Top®(p: M — RY).

Moreover, if y is used to fill-in the square in the proof of Theorem 1.1, then the
resulting diagram commutes up to homotopy and we have a homotopy equival-
ence.

Section 4. Bounded homeomorphisms over Hadamard manifolds.

In this section we give proofs of Theorem 1.2 and Theorem 1.3. Throughout this
section H will denote a Hadamard manifold of dimension i > 1. Most of our
terminology concerning Hadamard manifolds comes from [5] and [4]. Fix
apoint xoin H and let exp: R’ — H denote the exponential map at x,. Then exp is
a homeomorphism and preserves radial distances. Letd: H x H — [0, oo)denote
the distance function induced by the Riemannian structure on H.

Let H(oo) denote the sphere at infinity and let H = H U H(co) with the cone
topology [5]. Extend d to H so that d(x,y) = oo if x, ye H,x % y, and x or y in
H(). Foreach xe H, x # xq, let y,: R U {+ 00} — H be the unique (unit speed)
geodesic such that y.(0) = x, and 7,(t) = x where t = d(x,, x).

Let S(x,) be the unit sphere in the tangent space H, . For each v in S(x,) and
e > 0, the cone of axis v and angle ¢ is

~ the angular distance between v and x
C(v,e) =<xeH: .
measured from x, is less than ¢
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(see [5, Definition 2.2]). If, in addition, r > 0 is given, the truncated cone of axis
v and radius r is

T(v,e,r) = C(v,e)\{xe H: d(x¢,x) < r}.
We will need the following result of Eberlein and O’Neill:

THEOREM 4.1. [5, Prop. 2.6]. The set of truncated cones that contain x in H(oo)
is a local basis for the cone topology at x.

If veS(x0), € > 0,and r = s > 0, then we define an annular sector
A(v,&,5,1) = T(v,6,5)\ T(v,¢,7).

For ¢ > 0, B(x,, ¢) denotes the ball of radius ¢ about x,. Note that B(xq, &) =
exp (B(0, ) where B(0, ¢) is the e-ball about 0 in R,

Throughout this section M will denote a manifold of dimension m (without
boundary)and p: M — H will denote a proper map. We will assume that p is the
projection of a fibre bundle or that p is an approximate fibration and m = 5. This
is because we will need p to have the controlled isotopy covering property.

The simplicial set Top®(p: M — H) of bounded homeomorphisms on M has
k-simplices which are homeomorphisms h: M x A* - M x A*such that his fibre
preserving over 4* and there exists a constant B > 0 with d(pp, h(x), pp;(x)) < B
for all x in M x A* where p;: M x 4* — M is projection.

We now compactify M by adding H(co) to M. That is, let M = M U H(c0).
Extend pto j: M — H by setting p| H(c0) = id. Now give M the coarsest topology
which makes j continuous. Since p is a quotient map, M is a subspace of M.

The topology of the pair (M, H(c0)) depends only on M, p and the topology of
(H, H(c0)). Since [5] shows that the topology of (H, H(0)) is independent of the
metric on H (as long as the metric is complete and of nonpositive curvature), the
topology on (M, H(o0)) is independent of the metric on H. For example, if
M = H x F and p is projection, then M is the join §'~! x F. This is because the
pair (H, H(co)) is homeomorphic to (B’, $' ).

A homeomorphism h: M x A*¥ - M x A*is extendible if h extends to a homeo-
morphism A: M x 4* - M x A* by setting | H(00) x 4* = id. The simplicial set
Top®(p: M — H) has k-simplices which are extendible homeomorphisms h:
M x A* > M x A* which are fibre preserving over 4*.

LemMA 4.2. Top®(p: M — H) = Top*(p: M — H)

PrOOF. This follows immediately from the “intensive property” of [5, p. 50].
That the cone topology satisfies this condition follows from [5, Prop. 2.9].

Our main goal is to show that the inclusion Top®(p: M — H) = Top®(p:
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M — H) is a homotopy equivalence. We will do this by factoring the inclusion
through another simplicial set as follows.
If x, y are in H, define the radial distance from x to y to be

d(x,y) = llexp ™' ()l — llexp™ (M)l

where | - || denotes the standard norm on R’. A homeomorphism h: M x 4* —
M x A* is radially bounded if there exists a constant B > 0 such that

d(ppi h(x),pp1(x)) < B forallxin M x 4%

Let Top*"(p: M — H) denote the sub- simplicial set of Top®(p: M — H)
consisting of those extendible homeomorphisms which are, in addition, radially
bounded. (Note that rotations about x, are radially bounded but not extendible.)
Since exp ~ ! is distance nonincreasing, it follows that every bounded homeomor-
phism is radially bounded and we have inclusions

i: Top®(p: M — H) - Top®*(p: M —» H)
and
j: Top**(p: M - H) > Top®(p: M — H).
The first step is to achieve a spherical bound.

THEOREM 4.3. The inclusion i: Top®(p: M —» H)— Top®"(p: M - H) is a
homotopy equivalence.

Proor. Since Top®(p: M — H) and Top®*(p: M — H) are Kan simplicial sets,
it suffices to show that i induces an isomorphism on homotopy groups. To this
end let h: M x 4*— M x A* be a k-simplex in Top®*(p: M — H) such that
h|M x 04" represents the union of k + 1 (k — 1)-simplices of Top®(p: M — H),
say with bound B. By using a collar neighborhood of §4* in 4*, we may assume
that there is a neighborhood N of 84* in 4* such that h|M x N is bounded by B.
For notational convenience we will assume that the radial bound on his less than
1/2 and that B < 1. Extend hto b: M x 4* - M x A"

Our goal is to construct an isotopy g,:id ~ §,0 S u £ 1,on M x A*such that

i) g, is fibre preserving over A* for each u,

ii) §,|M x 04* = id for each u,

iii) g, 'hg, is a k-simplex of Top®'(p: M — H) for each u (with radial
bound < 1/2),

iv) g~ 'hg is bounded.

Conditions i) and ii) will follow from the construction. Conduction iii) is achieved
by constructing each g, so that it is a radial expansion. We’ll describe where
condition iv) comes from below.
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Choosing ¢;. Foreachj = 1,2,3,... choose ¢; > 0 such that for every vector in
the unit tangent sphere S(x,),

diam [C(v, 2¢;) N 0B(x¢,j + 1)] < 1.

Choosing V;. Foreachj = 1,2,3,... choose a finite set ¥; = S(x,) such that the
collection {C(v, ¢;)|ve V}} covers H.

Now we will achieve condition iv) above by constructing § to satisfy the
following.

For every x in M x A* there exists a jin {1, 2, 3, .. .} and a v in ¥} such that
ppi1(x) and pp, §~ ' h(x) are both in A(v, 2¢j,j — 1,j + 1). Note that the triangle
inequality implies that

diam [A (v, 2¢;,j — 1,j + 1)] 5.

Choosing r;. We claim that for every j = 1,2,3,. .. there exists r; > 0 such that
for each ve V,

h(p~ (T(v,&;,7;)) x 4%) = p~H(T(v, 2¢;,r; — 1)) x 4~

Moreover, we can define the r; inductively so that r; > max {j,r;-; + 2}. To
verify this claim, select for each v in ¥; a neighborhood U, of C(v, ¢;) n H(c0) in
H such that

h(p~1(U,) x 4* < p~1(C(v, 2¢;) x 4*).

Using compactness and the fact that C(v,¢;) N H(o0) = ﬂ T(v, ¢;, 1), there exists

r>0
r, > Osuch that T(v,¢;,r,) < U,. Nowletr; > max {j,rj-y + 2,r,|ve V;} and use
the fact that h has radial bound 1.

We now proceed to construct §,. First let a: [0, 00) — [0, 00) be the PL
homeomorphism such that foreachj = 1,2, 3,.. ., o takes [j — 1,5] linearly onto
[r;—1,7;] (Where ro = 0).

Let u: 4* - [0, 1] be a map such that u~*(0) = d4* and 4\ N <= p~*(1). We
represent points in R! x 4* by (sy, t) where s€ [0, + o0), yeS' ™!, and te 4*.

Define g: R’ x 4* = R x 4* by g(sy, t) = ([u(®)a(s) + (1 — u(t))s]y.t). Then
g induces §: H x 4* — H x A* defined by

G = (exp x idg)ogo(exp ™! x idx).

Also set g,(sy,t) = (1 — w)s + u[u()a(s) + (1 — p@®)s])y,t), 0 <u < 1. Then
g.:id ~ g is an isotopy and induces an isotopy §,: id =~ §.

We can now finish the construction of §,. In the case that p: M — H is a fibre
bundle projection (trivial of course), simply choose an isotopy g,: id ~ § of
M x A*suchthat (p x id u)g, = gu(p x idg)and §,|M x 04* = id for each u. In
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the case that p: M — H is a manifold approximate fibration, simply use the
Controlled Isotopy Covering Theorem (Section 6) to get an isotopy with
(p x idx)g, close to G, (p x id 4x).

The next step is to achieve a radial bound. The proof of the following theorem
is the argument used in [13] to achieve boundedness in an R-direction.

THEOREM 4.4. The inclusion j: Top*'(p: M — H)->Top*(p:M - H) is
a homotopy equivalence.

Proor. We show that j induces an isomorphism on homotopy groups.

Let h: M x A* - M x A*be a k-simplex of Top®(p: M — H) such that for some
neighborhood N of 64* in 4%, h|M x N is radially bounded, say by 1.

Choosel =r; <r, <r; <...inductivelyso thatr; - co asi — oo and so that

P~ (B(xo,mi-1)) x 4 = h[p™ (B(xo,ri)) X 4] = p™H{(B(xo, 7+ 1)) X A4*

foreachk = 1,2, 3,.... Moreover, assume k < r,.

Let g: H x 4* > H x A* be a homeomorphism, constructed in a similar
fashion as § in the proof of Theorem 4.3, so that g(B(xq.k) x N) for each
k,g|H x 04* = id and g only moves points in the radial direction. Again there
will be an obvious isotopy ¢,: id ~ g which can be covered (or approximately
covered) by an isotopy §,:id ~ §,0 S u < 1,0f M x 4*

If this is done correctly, then the following conditions will be satisfied:

i) g, if fibre preserving over 4* for each u,

i) §,JM x 04* = id for each u,

ili) g, 'hg, is a k-simplex of Top®(p: M — H) for each u,

iv) §~1hg is radially bounded (by the number 3).

Section 5. An Example.

We give an elementary example which shows that Top®(p: X — R!) need not be
homotopy equivalent to Top®(p: X — RY)if p: X — R! is not a manifold approxi-
mate tibration.

Let X = {(x,y)eR?|y =0, or xeZ and 0 £ y £ 1}. Define p: X — R! by
p(x, y) = x. Then it is straightforward to see that Top®(p: X — R!)is not connec-
ted, whereas Top®(p: X — R%) is contractible.

Section 6. Appendix: The controlled isotopy covering theorem.

THEOREM 6.1. Let g: M — B be a manifold approximate fibration, dimM = S,
OM =0 = 0B. Let h: B x [0,1]— B x [0,1] be an isotopy. Then there exists
a continuous family of isotopies

by M x [0,1] > M x [0,1],0 < s < 1, such that
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1) hy =id
2) (@ x id[o,”)ﬁs converges to h(q x idjo ;) as s - 17,

REMARK. By an isotopy we mean in particular that h|B x 0 =id and

h )M x 0 = id for all s.

Proor. Consider f: M x [0,1] > B x [0, 1] defined by
f =h(g x idjo,1)-

Then f is a [0, 1]-parametrized family of manifold approximate fibrations.

By the proof of [8, Cor. 14.4] there exists a homeomorphism
H: M x[0,1] x [0,1) > M x [0,1] x [0,1)

such that

Si

1
2
3

4

[=))

9

i) H is fibre preserving over [0,1] x [0, 1),

i) HIM x [0,1] x 0 = id,

iii) HIM x 0 x [0,1) =id,

iv) if H; = H|M x [0,1] x s, then (g x idyo,;;) H, converges uniformly to f.
mply set fi, = H,.
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