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Manifold Approximate Fibrations Are
Approximately Bundles

C. Bruce Hughes®, Laurence R. Taylor! and E. Bruce Williams

(Communicated by Andrew Ranicki)

Abstract. In [4], we gave a classification of manifold approximate fibrations in terms of the
lifting problem for a certain bundle. Our description of this bundle in [4] is not particularly
illuminating, and one purpose of this paper is to give a more transparent description of it (see
Theorem 0.1). There are two obvious compatibility questions which we deal with in Theorems
0.2 and 0.3. As an application of these results we prove a topological tubular neighborhood
theorem (Theorem 4).

1980 Mathematics Subject Classification (1985 Revision): 57N15, 55R15, 55R65; S5RO05,
55R10, 57N20.

A manifold approximate fibration is a map p: M — B, where Band M are manifolds
and p is a proper map which has the approximate covering homotopy property.
Recall from [4] that manifold approximate fibrations over an i-dimensional
manifold B (with total space of dimension at least 5) are classified as follows. First
select a “fibre germ”: i.e., a manifold approximate fibration g: F - R’. Then
MAF (B), is roughly defined to be the simplicial set of manifold approximate
fibrations over B such that the inverse image of R’ (where R’ = B) mapping down to
[R! is a manifold approximate fibration which is controlled homeomorphic to ¢ or to

the “‘conjugate” approximate fibration §: F A, R j—» R where —1 denotes
multiplication by — 1 in the first coordinate. In the sequel we shall call g self-conjugate
iff ¢ and g are controlled homeomorphic.

When g is self-conjugate we constructed a bundle n: MAF (q) — BTop; and a
differential d: MAF (B), — Lifts(z: B — BTop;) where t is the classifying map for
the tangent bundle of B, and Lifts denotes the space of lifts of this map to the total

! Partially supported by the N.S.F.



310 C.B. Hughes, L.R. Taylor, E.B. Williams

space of our bundle . The Classification Theorems of [4, Theorems (1.4) and (7.12)]
imply that d is a homotopy equivalence. (If g is not self-conjugate, then we replace
BTop, by BSTop; and the result still holds.)

In [4] the homotopy type of the fibre of  is identified with BTop®(g), the classifying
space of the simplicial group of controlled homeomorphisms of g.

By [4,(12.2)], Top°(q) can be identified with the simplicial group of level-
preserving homeomorphisms of the mapping cylinder of ¢, denoted M(g), which
are the identity on the range copy of R'. Let Top'®**' (q) denote the simplicial group of
level preserving homeomorphisms of M (g) which leave the origin of the range copy of
R’ fixed. By the covering isotopy theorem for manifold approximate fibrations,
[4,14.3] and [5, 10.1], the natural map Top'***(q) — Top, is always onto STop; and
is onto all of Top, iff q is self-conjugate.

When ¢ is self-conjugate we have the corresponding map of classifying spaces,
BTop'®(q) — BTop; whose fibre is BTop*(q). (If q is not self-conjugate, then we
replace BTop; by BSTop; and the result still holds.) This suggests the main theorem of
this paper, which will be proved in § 3.

Theorem 0.1. Let dim F > 5. When q is self-conjugate there exists a differential from

MAF (B), to the simplicial set of lifts of B—"—» BTop, to BTop'**(q) which is a
homotopy equivalence. (If q is not self-conjugate, then we replace BTop; by BSTop, and
the result still holds.)

There are two compatibility questions. In [4] we constructed a map
MAF (B) —» Hur(B), which, roughly speaking, takes the associated Hurewicz
fibration. We can of course restrict this to MAF(B),. There is a monoid map
Top'**' (q) - Homeo(F) — G(F), where G(F) denotes the simplicial monoid of
self-homotopy equivalences of F. This map is given by restricting the level preserving
map of M(q) to the copy of F. Since Hurewicz fibrations over B with fibre F are
classified by maps into BG (F), we get another map MAF (B), — Hur(B).

Theorem 0.2. The above two maps MAF (B), — Hur(B) are homotopic.

For the other compatibility question, let ¥ be a compact manifold without boundary.
The projection p: ¥ x R' —» R’ is a manifold approximate fibration, which is the
fibre germ for any fibre bundle over B with fibre V. Hence we get a map
Bun(B), - MAF(B),, where Bun(B), is the simplicial set of fibre bundles
over B with fibre V. On the other hand, fibre bundles over B are classified by
maps of B into BHomeo(V). There is a simplicial group homomorphism,
Homeo (V) x Top; - Top""*(p), given by sending f X h to the level-preserving map of
M(p) which is fx h on VxR and h on R. Maps of B into BHomeo(V) are the

same thing as lifts of B BN BTop, to BHomeo (V') x BTop;, so we get another map
Bun(B), - MAF(B),.

Theorem 0.3. The above two maps Bun(B),, - MAF (B), are homotopic.
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This new description of our bundle is useful in describing maps between the space of
manifold approximate fibrations and other spaces. As an example, we will prove that
locally flat (topological) submanifolds have mapping cylinder neighborhoods (i.e.,
“topological tubular neighborhoods’’), and that these neighborhoods are essentially
unique. This result is originally due to R. D. Edwards [3]. E. K. Pedersen also proved
the existence of mapping cylinder neighborhoods as an application of his regular
neighborhood theory, [8, Theorem 15], and F. Quinn has obtained a significant
generalization [9, Theorem 3.1.1]. We then go on to analyze the full space of
embeddings of a given mapping cylinder neighborhood into the larger manifold
relative to the submanifold.

Theorem 0.4. (The Topological Tubular Neighborhood Theorem) Let M™ and N"**
be closed manifolds where n > 5 and k > 1, and suppose that M is a (topologically)
locally flat submanifold of N. Then

(1) there exists a manifold approximate fibration f: P — M, where P is a closed
(n + k — 1) — manifold, such that the mapping cylinder M (f) is homeomorphic to
a closed neighborhood of M in N by a homeomorphism which is the identity on M.
Moreover, f is unique up to controlled homeomorphism and the fibre germ of f is
projection w: R" x S* =1 — R". In addition,

(ii) the simplicial set Emb (M (f), N) of embeddings of M (f') into N which are the
identity on M is homotopy equivalent to Top*(f x 1dr).

For information on how to analyze the simplicial group of controlled homeomor-
phisms, see [4] and [11].

We thank Shmuel Weinberger for stimulating conversations on this material. In
a future paper with Weinberger we intend to extend some of the results of this paper to
topologically stratified spaces and give applications to topological group actions on
manifolds.

§ 1. Notation and definitions

Notation. All spaces will have compactly generated topologies and in our applica-
tions are usually seperable metric. Let ¢: F; — F, be a map between two spaces, and
let M (g) denote its mapping cylinder
F, x[0,1]1F,

(x,0) ~q(c)
(topologized by making the quotient topology compactly generated). Top'®®(q)
denotes the simplicial group of homeomorphisms of M (q) to itself which preserve the
mapping cylinder levels. That is, if n: M(q) — [0, 1] is the standard projection, then
a homeomorphism

h: M(q) - M(q) is in Top'*(q) iff hn~'(t)=n"'(¢) Vte[0,1].

Let B denote a fixed space with B paracompact.

M(g) =
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Definition of #,. Consider triples, E,, E,, f: E, - E,, where
(1) fori=1,2, p;: E; - Bis a fibre bundle with fibre F; and group Top(F);

(2) we have a commutative diagram

E1 __1_, E2
P1N Dy
B

and

(3) (locally trivial) for each x € B there exists a neighborhood, % of x in B such that,
if fe« denotes the restriction of f to p; (%) — p; ! (%), then there is a homeo-
morphism % X M(q) - M (f«) which is level preserving (in the sense that the
levels of the mapping cylinders are preserved) and

UXM(g) — M(f«)

NV
U

commutes (where the maps to % are the natural projections).

Let
g L E
Py < p
B

be another such triple. A map between them is a pair of bundle isomorphisms
h:E,—-Ef and h,:E,—> FE; and a level preserving homeomorphism
H: M(f) —» M(f") which is fibre preserving over B and which restricts to 4, (resp.
h,) at the “top” (resp. “bottom”) of the mapping cylinder. Maps can clearly be
composed.

Triples and maps as above form a category and one can easily choose embeddings
and extend to an #2-Top°” functor as in [4]. This means that for B = ¢ fixed and for
any space, X, a subspace of £, we associate the category of triples and maps over
Bx X with the additional conditions that E;c/2x X so that the composite
E;c/%x X - X is a bundle projection for i =1, 2. It can be checked that a map,
[+ X; = X,,induces a functor between the category associated to X, and the category
associated to X, by pulling the bundles back along f. By letting X run over the various
simplicies and letting f run over the various inclusions and degeneracies, one can
associate a simplicial set to an #2-Top°? functor. Note that this £2-Top®? functor
satisfies the Amalgamation Property so the resulting simplicial set is Kan. We let 2,
denote this £ 2-Top°? functor.
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Definition of #,. This is just the £ 2-Top°”? functor of bundles over B with fibre M (¢q)
and group Top'®"*(g).

Definition of u. There is a function u: 4, - #, called the mapping cylinder
construction wich takes a triple

E, S, E, M(f)
P11 Py to l
B B
M(f)
Note, by the “local triviality” condition on f, that | isa bundle with fibre M (¢)
and group Top'*(q). B

Given a map (hy, h,, H) as above, H defines a bundle map from p(f) to u(f").

Indeed, an equivalent definition of the morphisms in 4, is pairs of bundle maps
h;: E;— E[,i=1,2, and a bundle map H: u(f) — u(f’) which restricts to h, at the
top and A, at the bottom of the mapping cylinders.

In the language of [4], p is a natural transformation of ¢ 2-Top?? functors.

§ 2. A construction

As we shall discuss in more detail shortly, Theorem 0.1 is equivalent to the statement
that a suitable version of the y map is a homotopy equivalence. We would therefore
like to produce a natural transformation of #2-Top°? functors which would be an
inverse to u. We will not succeed, but we will come close enough for our purposes.

Let p: E — Bbe a fibre bundle with fibre M (¢) and structure group Top'*** (¢). The
projection n: M (q) — [0, 1] induces a natural projection E — [0, 1] also denoted by
n (this uses the fact that the structure group is Top'**(q)). For each t€[0,1] let
E'= 1~ !(¢t) < E. Then p restricts to amap p’: E' — B which is a fibre bundle for each
te[0,1]. For 0<t<1, p': E'— B has fibre F, and group Top(F,) whereas
p°: E® > B has fibre F, and group Top(F,).

We begin by defining a deformation retraction d: E x [0, 1] — E which takes E x 1
into E°. [The idea is to push down along the mapping cylinder rays, but we must
work locally, which means that things must be pieced together, ...].

Let .# be an ordered set. Choose a locally-finite, open cover, {#,};. , of B and local

UxM(q) — E;
trivializations NV , where E;=p '(%), which are
,
Top'**® (q)-related on overlaps.
Let {x.};., be a partition of unity subordinate to {#;}. Thus, k;: B — [0,1],
suppk;=cl {x € B|k;(x) > 0} c %;, {supp k;}., is neighborhood-finite, and for each
x€B, Y, Kki(x)=1.
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For each ie #; xe B and s€ [0, 1], define ¢ (x): [0,1] — [0, 1] by

—5K; (%) if k,(x)<t<1
if0<t<k(x)

dmm={g

This in turn induces a map é;: Bx M(q) X [0,1] — B x M(q) X [0, 1] defined by

¢(x, [y, t1,8) = (x, [y, i (x) ()], 5) if yeF,, te[0,1]
5i (X, [yl S) = (x, [y]’ S) if yE F2

Since ¢f (x)(0) = 0, this is well-defined and continuous.
Note the following:
@) ¢ (x,z,5) =(x,z,s) where n(z") = c; (x)(n(2)),

(b) if xe B and «;(x) =0, then & (x, z, s) = (x, z, s) for all ze M(q) and all
se[0,1].

Now for each i€ ., define d;: E % [0,1] - E x [0,1] by

(1) d;|E; x [0, 1] is given as the composition

-1

h7 ' xid ¢
Ex[0,1] ——— #;x M(q) X [0,1] ———

a,x M(g) % [0,1] — " E,x[0,1],
(2) d;|(E— E,) x[0,1] = id, and note

i _ Ji—ski(p(@) k(@) <1<1
(i) modi(z,9)= {0 0%t % (p@)’

(ii) podi(z,5)=p(2).

That d, is well-defined and continuous follows from (b) above.

Defined: E x [0,1] — Easfollows. Foreach x € B, there exists a finite set, #, < .#,
and a neighborhood, ¥/, of x, such that ie #_ iff x,(y) =0 Vye¥..Leti,...,i
denote the elements in &%, with ordering i, <...<i. Let d(z,5) =
d, o...od, (z,5) € E, for some choice of #,), ¥},

The pairs £, ,), ¥, are not unique, but we want to prove that the map dis unique.
Let %,(2), ¥p(z be another such pair, and let d’(z, s) denote the resulting element of E.
Note Fi;) U Zp2)s iy O Yy 18 als0 a pair with the required properties, so it will
suffice to prove d'(z, 5) = d(z, s) under the additional assumptions that %, = %,
and ¥, < ¥,,- Now note that if je#' — %, then d;(z,5) =(z,5), so
d' (z,s) =d(z,s).

If #,), ¥ are fixed, notice that we can take %, = %), ¥p5) = V(o) fOT any
y such that p(y) € ¥,,,,. Hence d is locally-continuous and therefore continuous.
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Note that d|(E°x[0,1]UEXx0)=id and that pod(z, s)= p(z). Since
{n(z)—s s<m(z)<1

Lieski(¥) =1, it follows that wod(z,5) = § 0<7n(@)<s

d(z,1) e E° for each z€ E.
Now consider the composite

; and that

idgx {t—1—1}

E'x[0,1]< Ex[0,1] ;Ex[(),1]—d—>E,

One can check that this map is level preserving and that restricted to E*! x 0 it lands
in E°. If welet f": E' » E° denote this map, we get a well-defined, continuous map,
m: M(f') — E which is level preserving.

Suppose that we have a bundle map, 4: E, — E,. Choose a local trivialization of E,
and a subordinate partition of unity. Order the partition. The above discussion
produces maps d;: E; - [0,1] — E; making the following square commute:

d
E x[0,1] —> E,
hx1dg | Lh

d
E,x[0,1] — E,.

The map 4 induces bundle maps, h': E{ — E} and h°o f{ = f; - h'. Hence we get
a bundle map, H: M(f{) - M(f,), and a commutative square

M) 2 E
H| |k

M) o E,.

Now suppose that E is a trivial M (g) bundle. Pick any ordered partition of unity and

use the global trivialization to induce local ones. In this case, d: Bx M(q) x [0,1] —
. x,[z,t—s]) fs<t<1

Bx M(q) is defined by d(x,[z¢],s)— {(x, [z, 0) fo<r<s and

f': Bx F, > Bx F, isidg X q. The map m is just the canonical map from M (idg x q)

to B x M(q) and, since we have compactly generated topologies, is a homeomor-

phism.

The last paragraph shows several things. First of all, it shows that we can use the
local trivialization of E to give a local trivialization of E*, E® and f" so that this triple
forms an object in 4,. It also shows that the map m: M(f') - E is a local
homeomorphism: indeed, m restricted over #; is a homeomorphism. Since m is also
fibre preserving, m is 1-1 and onto, so m is a homeomorphism.
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One can also check that d (and hence m) depends only on the ordered partition of
unity and the local trivializations.

Using this last remark, note that there is a relative version of our results. Suppose
that 4 < Bis an NDR pair. Suppose that we are given an ordered set ¢ indexing
a partition of unity subordinate to a local trivialization of E, = p~!(4). We can
extend the partition of unity as follows. There is a set ¢ with .# < ¢ and # can be
ordered so that the induced order on .# is the given one. Furthermore, we can find
local trivializations of E, extending the given ones over 4, and a subordinate partition
k;(x) if xed and je s
0 if xed but j¢s -

We can perform the y-construction, getting a bundle over B with structure group
Top'®(q) and fibre M(q) and then we can restrict this bundle to 4. We can also
perform the p-construction directly using our original data over A. It can be checked
that the resulting two bundles over 4 are isomorphic. Put another way, we have the
following relative result.

of unity, k;: B — [0,1], j€ # so that k;(x) =

f

E, — F,
Proposition 2.1. Let A = B be an NDR subspace. Let p, ~ « p, be a triple
A
over A and let M — B be a Top'** (q)-bundle over B with fibre M (q). Finally, suppose
that there is a Top'® (q) bundle isomorphism m: u(E,, E,, f) = M|,. Then, there
gL g

exists a triple, p, ~ « p, ; a bundle isomorphism m': u(E1, E;, f') - M; and an

B
isomorphism of triples, (h,, h,, H) between (E, E,,f) and (Ei, E;,f")|, so that
m' o u(hy, hyy H) = m.

Remarks.

(1) There are two topological group homomorphisms, restriction to top and bottom,
from Top'®** (q) to Top(F,) and Top(F,). Let G, = Top(F) be two subgroups, i = 1, 2,
and suppose that the two subgroups L; = {h e Top'*®(q)|h|F;e G}, i = 1,2, are
equal. Further suppose that the image of L = L, = L, in Top(F))is all of G;. Then the
above definitions and constructions go through for pairs of G; bundles with mapping
cylinder bundles having structure group L. For example, this happens if F, = R" and
the structure group is Top, and Top'*"* (¢) elements are required to preserve the origin
at the O-level. It also happens if F, and F, are oriented manifolds and all
homeomorphisms preserve the orientations.

(2) Ifabundle p: E — Bis fixed with fibre F, and group Top(F,), and %, is the subset
of #, with second bundle jp: E — B, and %, is the subset of £, whose natural
F,-subbundle is p: E — B, then p restricts to a map, ji: #, — #,, which is a bijection
on homotopy groups.
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§3. Proof of Theorem 0.1

The key to the proof is a special case of Remarks (2) and some results from [4]. We
begin by recalling that u: #, - %, is a homotopy equivalence of simplicial sets
and that classical bundle theory identifies %, with the simplicial set of maps
Maps(B, BTop'**'(q)). Indeed, in [4, Prop. 2.1], we construct a differential between
A, and Maps (B, BTop""**(q)) which we prove is a homotopy equivalence. Also recall
that 4, is the simplicial set of pairs of bundles over B with a map between the two
bundles.

Now restrict: let %, denote the sub-simplicial set of %, where the range bundle is
the tangent bundle of the manifold B’; and let #, denote the sub-simplicial set of &,
where the “bottom” bundle associated to the mapping cylinder bundle is the tangent
bundle. It can be checked that p restricts to a homotopy equivalence u: #, - %,.
A check of the definitions shows that 4, is identical with what we called MAF (B), in
[4,2.2]. Theorem 0.1 follows: it can be checked that our differential defines

BToplevel (q)

a homotopy equivalence between %, and Lifts /ﬁ l ; and it follows

B BTop,
from [4, Th. 2.2.2] that we have a homotopy equivalence between MAF (B), and
MAF (B),. These two results prove the theorem. O

One of the main results of [4] (and the starting point for this paper) was the
construction of a simplicial bundle, MAF (%;) — BTop,, and the construction of

MAF (%),
a homotopy equivalence, n: MAF (B), — Lifts| / ! . Furthermore, we
B-">s BTop,

have just finished describing MAF (B), as a space of lifts of the simplicial bundle
BTop'®(q) — BTop;. A natural question is the relation between these two bundles.
We construct a fibre map between them so that the induced map on the simplicial sets
of lifts is compatible with our identifications.

To begin, recall the simplicial bundle MAF (%,) — BTop; from [4, Examples,
p. 20]. The identity map, id: MAF (%;) - MAF (%)), is a lift of the bundle projection.
If we take any simplex in MAF (%,), and apply the assembly map, [4, bottom p. 22],
we get a bundle pair over our simplex. If we apply the u map to this pair, we get
a simplex of BTop'* (g). It can be checked that this map preserves boundaries and so
we get a simplicial map, A: MAF (%;), > BTop'* (q) such that

MAF@), -2 BTopei(g)
N/
BTop;

commutes. The result we want is
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Proposition 3.1. If B’ is an i-dimensional manifold, the composite

JMAF@),\ BTop'?(q)
MAF(B), —— Lifis| ! Lo nins| S !
B BTop, B BTop,

agrees with the map defined in this paper, where i* is the map induced by the fibre map
QA on the simplicial set of lifts.

The proof is a check of the definitions. O

§ 4. Proof of Theorem 0.2

Before discussing Theorem 0.2, we need a lemma, which in turn needs some material
from [4] which we recall. The simplicial set Hur(B) is actually a piece of
a bi-simplicial set, Hur(B),, ,, where it sits as the subset Hur(B),, ,. There is also
a simplicial set, Hur(B), ,, in which a k-simplex consists of two fibrations over
B x A, say E, and E,, and a fibre homotopy equivalence, f: E, — E,. There are two
boundary maps, Hur(B),, , — Hur(B),, ,, denoted 0, and 0, with 9;,(f) = E;. Both
0, and 0, are simplicial maps. There is a simplicial map s,: Hur(B),, , = Hur(B),, ,
with s, (E) = idg. Note s, is also simplicial and that 9, - s, is the identity. In [4, p. 32
last paragraph of proof of Lemma 7.8] we showed that s, is a homotopy equivalence,
so 0, and 0, are homotopic.

Lemma 4.1 Let X be a simplicial set, and let f, and f; be two simplicial maps
X — Hur(B). Suppose that for each simplex x€ X, we have a fibre homotopy
equivalence

hy: fo(x) = f1 (%)

so that the resulting map X — Hur (B),, , is simplicial. Then f, and f, are homotopic.
The proof if clear from the above discussion.

Next we recall what we want to prove and introduce some notation. Let MAF (B)
denote the simplicial set we called %, above, where we change notation to be able to

display the manifold B. There is a map MAF(B) — Bun(B) which takes the
mapping cylinder bundle and remembers the sub-bundle obtained by restricting to
the top of the mapping cylinder (Bun(B) is the simplicial set of bundles over B). Of
course we can forget the bundle and just remember that it is a fibration, so we get
amap MAF (B), - Hur(B). We have another map of MAF (B), into Hur (B), namely
take the associated fibrewise Hurewicz fibration of each simplex.

Theorem 0.2 states that these two maps are homotopic. The proof occupies the
remainder of this section.
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The differential from Theorem 0.1 gives a commutative square

M - dM)
*) l !
BxA* — Bx A*

where d(M) — B x A* is the sub-bundle of the mapping cylinder bundle given by
restricting to the top. Let & (M) (resp. & (d(M))) be the result of applying the fibrewise
Hurewicz fibration construction, [4,9.1] to the MAF M — Bx A* (resp.
d(M) - B x A%). Then we have a commutative square of fibre maps

M - dM)

EM) - &WAM))

All these maps are simplicial, and the top right object is the image of our first map into
Hur(B). The bottom left object is the image of our second map into Hur (B). The
right-hand vertical map is well-known to be a fibre homotopy equivalence. It follows
from Lemma 4.1 that we are done if we can prove that the bottom map is also
a fibre-homotopy equivalence. Note the square is a homotopy fibre square since both
vertical maps are homotopy equivalences. Hence, to prove that the bottom map is
a homotopy equivalence, it will suffice to prove that the top map, iy,;: M — d(M), is
a homotopy equivalence. The remainder of this section is devoted to proving this.

We begin by noting that i,,: M — d(M), has a left inverse. To see this, recall that

d(M) < BxMxg*

(**¥) l l
x4 <= BxBxA*

is a pull-back, so we get a map d(M) — M by projection, which is easily seen to have
the property that the composite M — d(M) — M is the identity.
Next, consider the square obtained by restricting to the fibre germ:

Fx A > M

! !
Rix 4¥ — BxA*

By [4, 12.15], the homotopy fibre of F x A* - R x A* maps to the homotopy fibre of
M — B x A* by a homotopy equivalence. Hence, it suffices to prove the desired result
for the special case in which Bis R'. In this special case, diagram (***) has B = R’and
M some open manifold homotopy equivalent to F. The bottom horizontal map in the
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square is a homotopy equivalence and the square is a pull-back, so the top horizontal
map is also a homotopy equivalence. By the definition of the map d(M) — M, it is
a homotopy equivalence. Since this map is a left inverse to the map i,;: M — d(M), iy,
is also a homotopy equivalence, and we are done.

§ 5. The proof of Theorem 0.3

The proof is an easy chase through the definitions to identify the mapping cylinder
bundle if one starts with a fibre bundle.

§ 6. The topological tubular neighborhood theorem

We will use the following notation for the remainder of the paper. Let M" and N"**
denote manifolds as in Theorem 0.4 and let n: R" x §*~! — R" be projection. Recall
that Top?** is the simplicial group of homeomorphisms of R"** which leave the
standard copy of R” invariant and leave the origin fixed, whereas Top, , ., is the
simplicial subgroup of homeomorphisms which leave R" fixed.

Since M (m) is naturally homeomorphic to R" x B¥, there is a restriction map

@: Top*(n) = Top, n+x

which incorporates an identification of R" x B* with R"**. The first step in the proof
of the theorem is to use a result of Anderson and Hsiang to identify the homotopy
fibre of ¢.

Lemma 6.1. The homotopy fibre of g is the simplicial group C*(R" x S*~1) of bounded
concordances on R"x Sk~ 1,

Proof. Anderson and Hsiang [2] have shown that the homotopy fibre of the
stabilization map

o: Top"(lR"X Sk—l) - TOpb([R"+1 X Sk—l)

is CP(R"x S*~1), Here Top® denotes the simplicial group of bounded homeomor-
phisms. We will show that ¢ and ¢ are equivalent (up to homotopy) and hence have
the same homotopy fibre.

Recall that a radial compactification argument due to Anderson and Hsiang [1]
shows that Top®(R"*!x S*~1) is homotopy equivalent to Top(S" * S* ! rel S")
(see also [7]). Also, one-point compactification yields an identification of Top,, , .,
with Top(S™ * S*~ ! rel S™).

Note that Top(n) = Top'® (R"x B*rel R"x 0) where “level” refers to the
invariance of the R"xS*~! for 0<¢<1. A homotopy equivalence
Top®(R"x S*~1) » Top®(m) is explicitly constructed in [5, Remark 3.7]. On
the  other hand, restriction gives a homotopy  equivalence
Top'e'(S" '« B*rel S" "1 % 0) - Top(S" ' » S* ' rel "~ ') because the fibre is
contractible by an Alexander trick. By Anderson-Hsiang again, there is a homotopy
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equivalence Top?(R"x S*~1) — Top(S"~! * S*~!rel S"~1). Putting these equival-
ences together gives Top®(n) ~ Top'*'(S" ' * B¥rel S" ! % 0).

Using these facts we can give more useful descriptions of both ¢ and . After
writing B* = S* 1 x 0, there is a forgetful map (which forgets “level”)

A: Top™*e (S" '+ B¥rel S" 1 x0) - Top(S" ' *S* 14 0rel S" 1 %0).
Let
r:Top(S" '+ S* 140rel S" 1% 0) - Top(S" '+ S* 'rel S" 1)

be the restriction map. Let S° = {0,1} and let
Z:Top(S" % S* 'rel S" 1) — Top(SO* S" '+ S¥ lrel SO+ S" 1)

be the suspension map. Then ¢ is essentially (i.e., up to homotopy) X oro A
Now factor X as the composition of two coning maps, 2 = ¢, o ¢,, where

Co: Top(S" '+ S*¥ 1rel S" 1) - Top(S" ' *S* 1 x0rel S" ' x0)
and

cy: Top(S™" 1+ S* " 1x0rel S" ! % 0)
— Top(S°*S" 'xS* lrel SO+ S"°1).

Then g is essentially ¢, o 4.

Thus, we want to show ¢, 4 >~ Zr1. But the Alexander trick gives a homotopy
Id ~ ¢yr and hence, ¢, A ~ ¢c,cori=2rA. O
We will also need the following result.

Lemma 6.2 There exists a homotopy fibre square

BTOp:+k BTOpleve‘(R" +1 X Bk)

! !
BTopn -_— BTopn+l

where the vertical maps are induced by restrictions and the lower horizontal map is
induced by stabilization.

Proof. First note that the map Top, — Top, ., is homotopic to the composition
a c
Topn - TOP(S") - Topn+l‘

where a is induced by one-point compactification and c is induced by coning.
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Form the pull-back

g TOplwel([R" +1 % Bk)

l l
Top(S™) —— Top, .,

Thus, a vertex of & consists of a vertex H of Top™ ¢ (R"*!x B*) such that
H|R"*1x 0 =cone(h) for some (uniquely determined) homeomorphism
h:S"—> S".

Let Top(S"* S* 'inv S") be the simplicial group of homeomorphisms of
S"x S*~1 which leave S" invariant. Then there is a fibration

Top(S"x S* " 'rel S —— Top(S"*S* linv S”)
1
Top(S™)

which we claim is fibre homotopically equivalent to & — Top(S"). To see this
consider the fibration
Top*(R"*1x S~ 1) —— 7

l
Top (S™)

where 2 is the simplicial group whose typical vertex consists of a pair (H, #) where
H:R"*1x §k~1 5, R"+1x §k~1 and h: $" —» S™ are homeomorphisms such that

H

[R"+l><Sk_l Pn+1xsk-—l
! !
RA+1 cone (h) Rr+1

boundedly commutes (where the vertical maps are projections). Note that 4 is unique
once it exists.
We claim that there are maps of fibrations

TOp(S"* Sk—l I'Cl Sn) P Topb(an+1 X Sk—l) N Topleuel([Rn+l X Bkrel [R"+1 X 0)

1 !
Top(S"* S* " 1inv S") « 2 - &
N l N
Top(S™)

The horizontal map coming out of Top®(R"*! x $* 1) is explicitly constructed in [5,
Remark 3.7]. The horizontal maps coming out of & are just extensions of the natural
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maps coming out of Top?(R"*! x S¥~1). As in the proof of Lemma 6.1 the maps
coming out of Top?(R"*! x §¥~!) are homotopy equivalences by [1] and [5].
Therefore, we have a homotopy fibre square

Top(S"* Sk—l inv Sn) —_ TOp'evel(Pn+l X Bk)

! !
Top(S™) LN Top, +,

To finish the proof, note that there is a fibre square

Top:** —— Top(S"*S* 'inv Sn)

! . !
Top, —— Top(S™)

where the upper horizontal map is also induced by one-point compactification. 0O

Proof (of Theorem 0.4 part i)). Let 4, (M) be the set of k-neighborhoods of M as
studied by Rourke and Sanderson [10]. Thus, an element of A4/ (M) is represented by
a pair (i, Q) where Q is an (n + k)-manifold and i: M — Q is a locally flat embedding.
Two such (i, Q) and (i’, Q') are equivalent if there is an embedding 4: Q — Q' defined
in a neighborhood of i(M) such that hi = i’.

The mapping cylinder construction defines a map u: 1 MAF (M), - A, (M) as
follows. If f: P - M is a manifold approximate fibration with fibre germ =, then

u({l fD =[G M(f))] where i: M - M(f) is the natural inclusion. Our goal is to
show that u is a bijection.

The first step is to observe that there is a commuting diagram

ToMAF(M), _* | 4 (M)
dl le
1o MAF (M) —— (M)

with the following explanations. As in the proof of Theorem 0.1, MAF (M) is the
simplicial set of certain bundle pairs over M with fibre M () and d is the differential
which is a homotopy equivalence. Here .#; (M) is the set of equivalence classes of
bundle pairs over M with fibre R"** which have t,, as the subbundle. Rourke and
Sanderson [10, Prop. 3.1] describe a map e: A, (M) — #;(M) and use immersion
theory to prove that it is a bijection. Recall the definition of e. If i: M — Q is a locally
flat codimension k embedding, then e([i, Q1) = [14| M, 1) ].

In order to define v: ny MAF (M) — N (M), let p: E - M represent a class in

no MAF (M). Since the fibre of this bundle is homeomorphic to R"x B¥, and the
structure group is Top'”®'(R" x B¥), and the natural subbundle is t,,, it follows that
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p: E - M contains a bundle pair of the type occurring in .#; (M). Then v([ p]) is that
bundle pair. It is not hard to see that the diagram commutes.
The second step is to observe that there is a commuting square

v

o, MAF (M) LR (M)
!
}BTop’“"e'(n) . BTOP:+k
r
o Lifts /; ! —— m, Lifts //1 !
M —— BTop, M —— BTop,

where the vertical maps are the classification maps, and hence, equivalences. The map
r is induced by restriction

Toplevel(n) - TOp:+k .
The fibres of the bundles

BTop'**®(n) and  BTop'**

l !
BTop, BTop,

are BTop‘(n) and BTop, , ., respectively. The map 7 on total spaces induces the map
¢: Top°(m) — Top,, ,+; on loops of the fibres. This map was studied in Lemma 6.1.
Since m; CP(R"x S* 1) =0 for 0 < i< n—1 by [1], it follows that the homotopy
groups of the fibre of BTop'"®' (n) — BTop!** vanish through dimension x. It follows
that r is a bijection.

That u is a bijection follows by putting the two diagrams together. 0O

Proof (of Theorem 0.4 part ii)). First note that &#4,,(M(f), N) is homotopy
equivalent to the simplicial set, Imm, (M (f), N), of immersions of M(f) into
Nrel M. This is because any such immersion is an embedding when restricted to
a sufficiently small neighborhood of M in M ( /) and any such neighborhood contains
a natural copy of M (/). Now immersion theory [6] implies that Imm,, (M (f), N)is
homotopy equivalent to the simplicial set Aut(zy|M rel t,) of bundle automor-
phisms of 75| M rel t,,. Then standard bundle theory implies that Aut(ty| M rel 7)) is
homotopy equivalent to the loop space of

i BTopr+*
Lifts| -~ l
M- BTop,

where the loops are based at the lift which classifies 7| M.
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Analogously, we have previously shown [4] that Top°(fxid;) is homotopy
equivalent to the loop space of

BToplevel([Rn +1 5 Bk)
A
Lifts 7 !
M~ B Top, +,

where the loops are based at the lift which classifies f X id,.

To complete the proof, observe that Lemma 6.2 implies that these two spaces of
lifts are homotopy equivalent. 0O
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