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Introduction

Let p: E > B be a Hurewicz fibration from a compact Hilbert cube manifold E
to a compact polyhedron B. In this paper we construct the controlled Whitehead
space Wh(p: E > B) and the space of controlled pseudo-isotopies #(p:E > B)
which turns out to be homotopy equivalent to the loop space of Wh(p: E - B). The
homotopy groups of Wh(p: E > B) are the domain of controlled simple homotopy
theory. In particular, moWh(p: E - B) is the controlled Whitehead group. This is
explained as follows.

Recall that the problem of simple homotopy theory is to decide when a homotopy
equivalence f: K » L between compact polyhedra is a simple homotopy equivalence.
The Whitehead torsion 7(f) of f lies in the Whitehead group Wh(%s L) and is
equal to zero if and only if f is a simple homotopy equivalence (see [9]). Results
of Chapman [1] and West [19] relate this to Hilbert cube manifolds as follows:
7(f)=01if and only if fxid: K x Q- Lx Q is homotopic to a homeomorphism (Q
denotes the Hilbert cube). 1t follows that the problem of simple homotopy theory
is to decide when a homotopy equivalence between compact Hilbert cube manifolds
is homotopic to a homeomorphism.
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If we are given a fibration p: E - B as above, then the problem of controlled
simple homotopy theory is to decide when a controlled homotopy equivalence
f:M - E (where M is a compact Hilbert cube manifold) is homotopic with control
to a homeomorphism. By ‘control’ we mean arbitrarily small £ control in B. This
is explained further in the body of the paper. We can now state our first main result.

Theorem 1. If M is a compact Hilbert cube manifold and f: M - E is a controlled
homotopy equivalence, then there is a well-defined element 7(f) in m;Wh(p: E > B)
which vanishes if and only if fis p~'(e)-homotopic to a homeomorphism for every £ > 0.

A pseudo-isotopy on E is a homeomorphism h: E x[0,1]= E x[0, 1] such that
h|E x{0} is the identity. Pseudo-isotopies which move points an arbitrarily small
amount when measured in B are formed into the controlled pseudo-isotopy space
P(p:E- B) in Section 4. Here is our second main result.

Theorem 2. ?(p: E — B) is homotopy equivalent to the loop space Wh(p: E > B).

For the special case that p is a bundle projection over euclidean space with
compact Hilbert cube manifold fiber, Theorems 1 and 2 are essentially contained
in [14].

Our approach to controlled simple homotopy theory differs from the theories of
Chapman [5] and Quinn [17] in two aspects. First, we use Hilbert cube manifolds
in our definition rather than polyhedra. Second, we require that our controlling
map p be a Hurewicz fibration. The setting in [5] and [17] is much more general
Chapman [6] and Quinn [17] have also studied controlled pseudo-isotopies, again
in a more general setting.

In the uncontrolled setting, Hatcher [12] defined a Whitehead space Wh(K)) for
a compact polyhedron K and showed (using a result of Chapman [3]) that 2Wh(K)
is homotopy equivalent to the space of pseudo-isotopies on K X Q.

In a future paper we will develop a method due to W.C. Hsiang in order to study
the homotopy groups of Wh(p: E - B) and #?(p: E > B) where p is the projection
map of a locally trivial fiber bundle and B is a closed manifold. It will be shown
that Wh( p: E - B) is homotopy equivalent to the space of cross-sections of a certain
bundle whose fiber was the object of study in [14].

2. Approximate fibrations and other preliminaries

The Hilbert cube will be denoted by Q. Hilbert cube manifolds, or Q-manifolds,
are locally compact, separable metric spaces which are locally homeomorphic to
Q. For Q-manifold basics, including the notion of Z-sets, see [2].

In this section and throughout the rest of the paper we fix a Hurewicz fibration
p:E—> B (i.e., a map with the homotopy lifting property for all spaces) where E
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is a compact Q-manifold and B is either a compact polyhedron or a compact
topological manifold with a handle decomposition.

Let X and Y be compact metric ANRs, let f: X - Y be a map, and let £ > 0. We
say that f is an e-fibration provided that given any Z and maps G:Z x[0,1]> Y
and g:Z - X for which G(z, 0)=fg(z), then there exists a map G:Z x[0,1]> X
such that G~(z, 0)=g(z) and fé is g-close to G. If f is an e-fibration for every £ >0,
then f is an approximate fibration. Approximate fibrations were introduced in [10].

We will use A to denote the standard n-simplex for a given n. A fiber preserving
(f.p.) map is a map which preserves the obvious fiber over 4 (or over some other
n-cell). Specifically, if p: X > A, 0: Y= A4, and f: X > Y are maps, then f is f.p. if
gf = p. Usually the maps p and o will be understood to be some natural projections
and will not be explicitly mentioned. For fiber preserving Q-manifold results,
including sliced Z-set unknotting, see [7], [8] or [11].

We will need to use results about approximate fibrations from [15] and [16]. Here
is the main result from [16] (see [4] for the n =0 case).

Theorem 2.1. Let A and & > 0 be given. There exists a > 0 such that if M is a compact
Q-manifold and f: M X A - BXx A is an f.p. map so that f,: M > B is a 5-fibration for
each t in A and an approximate fibration for each t in JA, then there exists an f.p. map
f:MxA->BxA such that f is e-close toﬂf\anA =f|M xaa4, and f,: M > B is
an approximate fibration for each t in A.

We will also need a relative version of this result which we now state.

Addendum 2.2. If E is a Z-set in M and f | E x A = p xid, then we can further require
that f| E x A = p xid.

Proof. There is a relative version of Theorem 2.1 in [16]. As stated, it would imply
our Addendum if E = B x F where F is a compact Q-manifold and p = projection.
However, the proof in [16] works equally well if p: E > B is the projection map of
a locally trivial fiber bundle with compact Q-manifold fiber. To pass to the more
general case where p: E > B is only assumed to be fibration, use Q-manifold theory
tofindanf.p. map h: M x Qx4 > M x A close to projection such that h |MxQxaA
is projectionand h|: M X Q xint A > M X int 4 is a homeomorphism. By sliced Z-set
unknotting we may further assume that h|: E x {0} x 4 > M x A is the inclusion.

It follows from [7] that p(pro_l) E X Q~ B is a locally trivial fiber bundle prOJec-
tion with Q-manifold fiber. Let f Mx(QxA-> BxA be an f.p. map such that f is
close to f(prO_]) f, is an approximate fibration for each t in A4, fIM X QXdA =
1 ,and f|Ex QxA=(pxid)(proj). Then set f=fh". 0O

A special case of the following theorem is the main result of [13]. That result,
together with a significant improvement, appears in [15] for finite dimensional
manifolds. The proof given in [15] also works for Q-manifolds and we now state
the result without further proof.
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Theorem 2.3. Let A and £ > 0 be given. If M is a compact Q-manifold and f: M x 4 x
[0,1]> Bx A x[0, 1]isanf.p. (over A x[0, 1]) map so thatf,: M - B is an approximate
fibration for each t in A x[0, 1], then there exists an f.p. homeomorphism H : M x 4 x
[0,1]1-> M x Ax[0, 1] such that H{ M x A x{0} =id and fH is e-close to f, x id where
fo=J|M x4 x{o}.

There are also two addenda which we will need. The proof of the first follows
from the proof of Theorem 2.3. The second follows from Theorem 2.3 and sliced
Z-set unknotting.

Addendum 2.4. There exists a 6 >0, 8 = 8(g, n), such that if we are additionally given
an fp. homeomorphism G: M xdA x[0,1]-> M x3A x[0, 1] such that G| M X 9A x
{0} = id and fG is 8-close to f,| x id, then we can further require H to satisfy H| M X a4 x
[0,1]=G.

Addendum 2.5. IfE is a Z-set in M and f | E x A x[0, 1]= p xid, then we can further
require that H|E x A x [0, 1]=id.

3. Controlled simple homotopy theory

We continue to let p: E - B denote a fixed Hurewicz fibration where E is a
compact Q-manifold and B is either a compact polyhedron on a compact topological
manifold with a handle decomposition. In this section we define the controlled
Whitehead space Wh(p: E -~ B) as a semi-simplicial complex, study its homotopy
relation from a geometrical point of view (Theorem 3.2), and define the torsions of
certain controlled homotopy equivalences to E to be in the homotopy groups of
Wh(p: E > B). As a result (Corollary 3.4) we obtain the proof of Theorem 1. In
addition, we define two more ‘spaces’ homotopy equivalent to Wh(p: E - B) which
will be useful in proving Theorem 2.

We first need some definitions. Let p: X -» 4 be a map (where X is compact
ANR), let f: X > EXA be an f.p. map and let £¢>0. We say f is an f.p. (pX
id)"'(&)-equivalence provided there exist an f.p. map g:ExA4->X and fp.
homotopies F: X x[0,1]-> X and G: ExAXx[0,1]-> E x A such that F,=id, F, =
gf, Go=id, G,=fg, and the diameters of (p xid)f{F({x}x[0,1])} and (pxid)
{G{y}x[0,1])} are less than ¢ for each x in X and y in E x A. If in addition X
contains E X 4, g is the inclusion, f|E X A =id, and F is rel E x A, then we say f
is an f.p. (pxid)™'(e)-sdr. In the case that n=0 (so that we can drop the f.p.
requirement) and f is a p~'(g)-equivalence for every £>>0, then we say that fis a
controlled homotopy equivalence.

Approximate fibrations enter into this work because of the following fact: a
homotopy equivalence f: X - E is a controlled homotopy equivalence if and only
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if pf: X > B is an approximate fibration [4, Proposition 2.3}. See [14, Lemma 2.1]
for an f.p. sdr variation.

We can now define the controlled Whitehead space. Fix a Z-embedding of
E x[0,1]in Q and identify FE with E x {0}. Then Wh(p: E - B) is the semi-simplicial
complex having typical n-simplices of the form f: M - E x 4 where

(1) We are given a projection p: M —> A of a locally trivial fiber bundle with

compact Q-manifold fiber,

(2) M is embedded in Q x A as a sliced Z-set,

(3) M contains E x A as a sliced Z-set,

(4) fis an f.p. (pxid) '(e)-sdr for every £ > 0.

As mentioned above, condition (4) can be reworded to state that f is an f.p. sdr
and (pxid)f: M- Bx 4 is an approximate fibration.

It is clear that Wh( p: E - B) satifies the Kan condition so that we may talk about
its homotopy groups. These groups are based at the projection E x[0,1]xA > E x4
which we will always denote by .

We now prove a technical lemma which will be useful in proving the results of
this section. Note that condition (4) is the only part which does not already follow
from the definitions.

Lemma 3.1. Let f: M — E X A represent a class [ f] in w,Wh(p: E > B). For every
€ >0 there exists an f.p. homotopy F,: M > M, 0= t=<1, such that

(1) Fy=1id and F, =/,

(2) F,|ExA=id for each t,

(3) the homotopy fF,:M—>ExA, 0<t=1, isa (pxid) '(e)-homotopy,

(4) fF,|: Ex[0,1]xa4 > E X34 is 7 (i.e., projection) for each t.

Proof. Recall that Mc QxA, M (Qxd(Ad)=E x[0,1]xd4, and f=7 on EX
[0,1]xaA. This is because f represents a class in w,Wh(p: E—> B). Let p: M- A
be the given fiber bundle projection. We can trivialize p by finding an f.p. homeo-
morphism k: E x[0,1]x A4 - M such that k=id on E x[0,1]x 3,4 where 4,4 is an
(n—1)-dimensional face of A. By using sliced Z-set unkotting we can further assume
that k =id on E x {0} x A.

Use Theorem 2.3 (with Addendum 2.5) to find an f.p. homeomorphism H: E x
[0,1]xA—> EXx[0,1]xA such that H=id on (Ex{0}xA)U(E x[0,1]x4d,4) and
(pxid)fkH is &-close to ( p xid)m. Here 8 >0 is chosen small with respect to &.

Let 9Ax[0,1]= A be a boundary collar so that 44 is identified with
44 x{0}. Define j:Ex[0,1]x04x[0,1]-p (84 x[0,1]) by setting j=
kH[(H'k™'|p~'(34) X id[q,). Note that j| E x[0,1] x84 =id and that (p xid)fj
is (28)-close to ( p xid) . Think of j as giving a ‘controlled’ collar on p~ (a4} in M.

Define an f.p. homotopy G,: M > M, 0<1=<1, as follows. First, set G, =id on
M\p (34 x[0,1]). Then for (w,x,y,z) in Ex[0,1]xa4x[0,1], set
Gj(w,x,y,z)=j(w,(1—1)x+txz, y, z). Note that G,=id on E x A, (p xid)fG,, 0=
t=1,is a (28)-homotopy, and fG,| E x[0, 1] x4 = .
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Since fis an n-simplex of Wh( p: E - B), there exists an f.p. homotopy K,: M > M,
0=t=1, such that

(1) Ky=1id and K, =,

(2) K,|E x A =id for each ¢,

(3) fK,, 0=<t=<1,is a (pxid) '(8)-homotopy.

Finally, define F,:M > M, 0=t<1, by

G;, if0=<r<i
F=¢{K;_,°G, ifyst=?
JGss, iffsr=<1. O

We are now ready for the first main result of this section. It gives a geometric
interpretation of the homotopy relation in Wh(p: E -» B).

Theorem 3.2. Let f: M > E xA and g: N > E x A represent the classes [ f] and [g]
in w,Wh(p:E - B), respectively. There exists an £,>0, £,= g,(B, n), so that the
Jfollowing are equivalent:

Q) [f1=lgl;

(ii) for every € >0 there exists an f.p. homeomorphism h: M - N such that h =id
on (ExXAYU(EX[0,1]xdA) and gh is fp. (pxid) '(g)-homotopic to
frel(ExA)u (E x[0,1]xa4d);

(111) there exists an f.p. homeomorphism h: M - N such thath=id on EX A, gh=f
on Ex[0,1]x84, and (pxid)gh is gy-close to { pxid)f

Proof. We first show that condition (i) implies condition (ii}. Since [ f]1= [g] there
is an (n+1)-simplex in Wh(p:E - B) which we can represent by Ve M-
E xAx[0,1] where we have a fibering p: M > A x[0,1] and an embedding of M
in Qx4 %[0, 1] with the following properties (among others):

(1) f=fonp ' (4x{Oh=M

(2) f=gonp (ax{1)=N

(3) f=monp M (sAx[0,1]) = E x[0,1]x34 x[0, 1].

Trivialize p by finding an f.p. homeomorphism k: E x[0, 1]x A x[0, 1]~ M such
that k|E x[0,1]x34 x[0,1]=(k|E x[0,1]x 34 x{0})xid and use sliced Z-set
unknotting to get k=id on E x4 x[0, 1]. (Here and throughout the proof we are
assuming n=1. Then n =0 case is similar, but easier.)

Now use Theorem 2.3 to find an f.p. homeomorphism H: E x[0, 1]x A4 x[0,1]~>
E x[0,1]x A x[0,1] such that H=id on (ExAXx[0, 1)) U(E x[0,1]xAx{0}H v
(E x[0,1]x84 x[0,1]) and (pxid)ka is e-close to (p xid)((fklE x[0,1]x A4 %
10}) x id).

Let h be the homeomorphism given by the composition

M- E o, 14 (0} = Ex[0,11x4x{1)

H]| K|
—»Ex[O,l]xAx{l} — N.
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The asserted homotopy from f to gh at time t, 0=t =1, is given by the composition

M- B [0, 1]x A% {0} = E x[0, 11x 4 x {1}

zlE><[0,1]><A><{t}i‘>p"(A><{t})£|>E><A><{t}=E><A.

Since condition (ii) obviously implies condition (iii}, we are left with showing
that condition (iii) implies condition (i).

To this end use Lemma 3.1 to find an f.p. homotopy F,: M > M, 0= t=1, such that

(1) Fy=id and F, =/,

(2) F,|JExA=id,

(3) fF,, 0=t=1,is a (pxid)"'(8)-homotopy where § >0 is small,

(4) fF,|Ex[0,1]x04 =

Consider the homotopy ghF,:gh=f 0=t=1. It is rel Ex 4 and it is constantly
equal to 7 to E x[0, 1]x3A. Moreover, it is a (p xid)”'(2g,+ 8)-homotopy since
(pxid)ghF, is g,-close to (pxid)fF,.

Now let j: M x[0,1]> Qx A x[0, 1] be a sliced Z-embedding such that j =id on
(M x{0) U (ExAx[0,1])u(Ex[0,1]xa4x[0,1]) and j|M x{1} = h.

Define F: M><[0 11> M x[0,1] by settmg Fi(x, 1)= (F,_.(x),1). Define a
homotopy F,:id= F, 0=s<=1, by setting F.x, 1) ={F_,{x), ). Finally, define
G:j(Mx[0,1)]-> E x Ax[0, 1] by setting G =(gh xid)Fj~". Note that

{1) G=fon j{Mx{0})=M

(2) G=g on j(Mx{1})=N,

(3) G|ExAx[0,1]=id

(4) G|Ex[0,1]x34x[0,1]=m

We now want to use Theorem 2.1 to deform G to an (n+1)-simplex of Wh(p: E »
B) showing [ f]=[g]. For this, we need to show that G is an f.p. sdr with small
control in Bx 4 x[0, 1]. To this end, let g,:idy =g, 0=s5=1, be an f.p. homotopy
with small control in B X 4 coming from the fact that g is an n-simplex in Wh(p: E >
B). Then define G, :j(Mx[0,1)]->j(Mx[0,1]), 0<s=1, by G,=
j(h gk xid)Fj". Then G,:id=G, 0<s=1, and the homotopy GG, has small
(depending on 8§ and g,) diameter in Bx 4 x[0,1]. O

The following result gives a way to represent certain homotopy equivalences to
E x A by elements of 7, Wh(p: E - B).

Theorem 3.3. There exists an €,>0, g,= go( B, n), such that whenever we are given
the following data:
(i) alocally trivial fiber bundle projection p : M - A with compact Q-manifold fibers;
(ii) anfp. (pxid)~'(e,)-equivalence f: M - E x A for which there is an f.p. homeo-
morphism k: E x[0,1]% 34 » p~'(84) such that fk =,



182 C.B. Hughes / Delooping controlled pseudo-isotopies

then there exists a well-defined torsion 7(f) in w,Wh(p: E - B) with the following
two properties:

() i [f]isin m,Wh(p:E > B), then 7(f)=[f1];

(it) there exists an &,> 0 such that for every € >0, € <g,, there exists a 6>0 so
that if fM—>ExA and g: N~ Ex A are fp. (pxid) '(8)-equivalence for
which 7(f) and 1(g) are defined, then v(f)=7(g) if and only if there exists
an f.p. homeomorphism h: M - N such that h|E x3A =id, gh|p '(04)=f
and gh is fp. (pxid) '(e)-homotopic rel p~'(64) to f.

>

Proof. We will just show how to construct 7(f) and then appeal to the proofs of
Proposition 3.5 and 3.6 in [14] for the proofs of the properties.

Given the data, let g: Ex 4 - M be an f.p. (pxid) '(&,)-homotopy inverse for
/. Approximate g by a sliced Z-embedding g: E x 4 > M such that §|E x a4 =id.
By standard techniques [18, p.31] we can regard ¢ as an inclusion map and find
an f.p. homotopy of f to f via a (pxid)~'(e')-homotopy (where ¢'> 0 is small if
£, 1s) so that f is an f.p. (pxid)~'(¢’)-sdr. Now embed M into Q x A with a sliced
Z-embedding j such that j|p~'(04) = k ""and j| E x A =id. Then define 7(f)=[fj ']
in 7, Wh(p: E - B).

We just mention briefly what [ 14, Proposition 3.5] says about the well-definedness
of 7(f). The definition does depend on k| E x {0} x 4, but is otherwise independent
of k. The definition of 7(f) is also independent of the choice of g. [.

Inthe case n =0, Theorem 3.3 is extremely simplified because we are not concerned
with what happens over d4. Theorem 1 in the introduction follows immediately
from the next result.

Corollary 3.4. If M is a compact Q-manifold and f: M - E is a controlled homotopy
equivalence, then 7( ) vanishes in m;Wh( p: E > B) if and only if fis p~'(&)-homotopic
to a homeomorphism for every ¢ > 0.

Proof. Suppose 7(f) vanishes. This means 7(f) =[] in 7,Wh(p: E - B) where
7: Ex[0,1]- E is projection. Let k: E x[0, 1] E be a homeomorphism close to
. By Theorem 3.3 there is a homeomorphism h:M - E x [0, 1] such that f is
p~'(8)-homotopic to wh where & > 0is small. Then kk is the desired homeomorphism
approximating f.

On the other hand, if f is p~'(e)-homotopic to a homeomorphism g for small
£>0 and k is as before, then kK 'g: M > E x[0, 1] is a homenomorphism which
shows, via Theorem 3.3, that 7(f)=[#=]. O

We are now ready to discuss two semi-simplicial complexes which turn out to be
homotopy equivalent to Wh(p: E - B) but are easier to work with in some circum-
stances.

The first of these complexes is denoted by ﬁl(p : E - B). Ithasatypical n-simplex
of the form f: M - E x A x[0, o) where:
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(1) we are a given a projection p: M > A x[0, 0©) of a locally trivial fiber bundle
with compact Q-manifold fiber;
(2} M is embedded in Q x A4 x[0, ) as a sliced (over 4 x[0, ©)) Z-set;
(3) M contains E X A x[0; o) as a sliced z-set;
(4) there is a decreasing sequence &, €, &, . . . of positive real numbers converg-
ing to 0 (called a controlling sequence for f) and an f.p. homotopy «: M x
[0,1]—> M such that «,:id=f, 0=t=<1, rel E x4 x[0,) and the diameter
of (p xid)f{a({x}x[0, 1])} is less than &, whenever the [0, ©©)-coordinate of
p(x) is greater than or equal to i
There is a natural way to define a map i:Wh(p:E—)B)—)\’N\h(p:E»B). Let
f:M > E x A be an n-simplex in Wh(p: E > B). It is not hard to see that f xid: M x
[0,0) > E x A X[0, ) is an n-simplex in \TV\h(p: E - B), and we define i(f) = f xid.

The next lemma shows that i*:rr,,Wh(p:E—>B)—>w"\l’\-/\h(p:E»B) is an epi-
morphism, and it will also be useful in the proof of Theorem 2. For notation, let
J:M - E xAx[0,00) be an n-simplex in \’V\h(p : E > B) as above and for each ¢ in
[0,00) let f;=f|:p (A x{t}) > ExAx{t}.

Lemma 3.5. There exists an integer N such that if t = N, then 7(f,) is defined and
iy7(f)=[f] in m,Wh(p: E > B).

Proof. Choose N large so that 5 (in the controlling sequence or f') is small with
respect to g, £, in Theorem 3.3. Using Theorem 2.1, we can find an f.p. homotopy
of fp ' (Ax[t,0)) rel(E x Ax[t,00))up '(ad x[t,9)) to a map g such that g is
an f.p. (pxid)~'(e)-sdr for every £ >0 and the homotopy from f to g becomes
arbitrarily small near infinity (when measured in Bx A x [0, c©)).

Note that [g]=7(f) in 7,Wh(p:E > B), so i,7(f;) =[g xidjx)]. Once g is
extended over [0,1t), it is clear that [g]=[g,xid] and [g]=[f]. The lemma
follows. [

Proposition 3.6. The map i:\TV\h(p: E->B)->Wh(p:E->B) is a homotopy
equivalence.

Proof In light of Lemma 3.5, it only remains to show that iy:m,Wh(p: E—->B)->
™, Wh(p E - B) is a monomorphism. Let [ f] and [g] be classes in 7, Wh(p: E » B)
such that i ([f])=1i.([g]). By going sufficiently close to infinity in an (n + 1)-simplex
of Wh(p: E > B) which connects i, ([ /]) and i ([g]), we can find a map which can
be deformed using Theorem 2.1 to an (n+ 1)-simplex of Wh(p: E > B) connecting
[fland [g]. O

The next result shows that we can essentially disregard the sliced Z-embedding
of M in Qx A4 %[0, ) in the definition of Wh(p E - B). A similar result holds for
Wh(p: E - B) by Theorem 3.2.
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Lemma 3.7. Let f: M —> ExAXx[0,0) and g: N> E xAx[0,) be two n-simplices
in W\h(p : E > B) for which there is an f.p. homeomorphism h: M - N such that
h|E x A x[0, ) =id and gh =f. If f and g represent classes in w"\lN\h(p : E > B), then
they represent the same class.

Proof. Recall that M and N are embedded in Qx4 x[0,c0), and since f and g
represent homotopy classes, we have f=7 =g on

M (QxdAX[0,0))=EX[0,1]x84 x[0,00)=Nn(QxdA %[0, 0)).

It follows that h|:E x[0,1]xaAX[0,00)>E x[0,1]x9A x[0,) is an f.p.
homeomorphism which affects only the [0, 1]-coordinate of any point and h|E x
{0} x a4 x[0, c©) =id. It follows from an Alexander trick that there is an f.p. isotopy
hoiid=h|, 0<s<1, rel Ex{0}xdA4 x[0, ).

Use relative sliced Z-set unknotting to find an f.p. isotopy H,;: Q x A x[0, c0) >
QxAx[0,00), 0=s=1, such that Hy=id, H,|M =h, H,|E X A x[0, ) =id, and
H,|E x[0,1]x84 x[0, ) = h,.

Define a sliced Z-embedding j: M x[0,1]-> Qx A x[0,0)x[0,1] by setting
j(x, s)=(H,(x),s). Let M =j(Mx[0,1]) and define f: M - E x A x[0, 0) x[0, 1]
by settingfz (fxid)j~". This gives an (n+1)-simplex in VV\h(p: E - B) which shows
that f and g represent the same class in wn\lN\h(p :E-B). O

We now define a semi-simplicial complex Wh( p: E > B) which incorporates the
freedom granted by Proposition 3.7 into its definition. A typical n-simplex of
Wh(p: E - B) is an equivalence class [f] represented by an n-simplex f: M -
E x A %[0, c0) of \TV\h(p : E > B). Another such n-simplex g: N-> E x A x[0, o) of
\TV\h(p:E - B) is equivalent to f if there is an f.p. homeomorphism h: M - N such
that h| E x A x[0, 00) =id and gh = f. There is a natural ‘quotient’ map q: \TV\h(p cE>
B)—>Wh(p: E - B) defined by q(f) =[f]. Lemma 3.7 implies that the induced map
g, on homotopy groups is a monomorphism. Since g,, is obviously an epimorphism,
we have the following result.

Proposition 3.8. The map q:Wh(p:E- B)>Wh(p:E—-B) is a homotopy
equivalence.

The careful reader will have observed that we have only shown that the induced
maps, i, and g,, of Propositions 3.6 and 3.8 induce bijections between path
components and isomorphisms between higher homotopy groups when these
homotopy groups are based at the projection = However, we need to show that
these maps are isomorphisms for arbitrary basepoints. There are at least two ways
around this. First, one can rework our proofs with minor modifications to allow for
arbitrary basepoints. Second, one can observe that in the sequel we only need that
the induced maps, i and (2q, between loop spaces are homotopy equivalences.
Since these loops are based at 7, this follows from the proofs we have already given.
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4. Controlled pseudo-isotopy theory

In this section we will define the space ?(p: E > B) of controlled pseudo-isotopies
on p: E - B, the fibration of the previous sections. We also show how to represent
certain pseudo-isotopies on E X A by elements of 7,,?(p: E -» B). This is analogous
to the torsion construction in the previous section. Finally, we will discuss the group
structure on 7,?(p: E - B).

Let h: Ex[0,1]xA—> Ex[0,1]xA be an f.p. (over 4) homeomorphism. For
each t in A, let h,=h|: E x[0, 1]x{t}> E x[0, 1]x{t} and continue to let 7: E x
[0, 1]1- E denote projection (we also use 7 to denote projection E x[0,1]x 4> E %
A). If €>0, we say h is an n-parameter e-pseudo-isotopy on p:E - B provided
h|E x{0}x A =id and d(pwh,, pm)<e for each t in A.

An n-parameter controlled pseudo-isotopy on p: E - B is a homeomorphism h: E X
[0,1]x A x[0,00)—> E x[0,1]x 4 %[0, ) such that

(1) his f.p. over AX[0, ),

(2) h|E x{0}x 4 x[0,0)=id;

(3) there is a decreasing sequence &, €,, €, . . . of positive real numbers converg-
ing to 0 (called a controlling sequence for h) such that for each integer i =0,
h|:Ex[0,11xAx{u}> Ex[0,1]1x A x{u} is an n-parameter &;-pseudo-
isotopy on p: E - B whenever u=1.

Let ?(p: E -~ B) denote the semi-simplicial complex of controlled pseudo-
isotopies on p: E - B, that is, the n-simplices are n-parameter controlled pseudo-
isotopies on p: E - B. This complex satisfies the Kan condition and the homotopy
groups willl be based at the identity E x[0,1]»> E x[0, 1].

The next proposition shows how to turn an e-pseudo-isotopy into a controlled
pseudo-isotopy if ¢ is small enough.

Proposition 4.1. There exists an € >0, ¢ =¢(B,n), so that if h: Ex[0,1]xA->
E x[0,1]1x A is an n-parameter e-pseudo-isotopy, then there is a homeomorphism
H:Ex[0,1]xAX%[0,00)> E X[0,1]x A4 X[0, o) such that:
(1) His f.p. over A x[0, 00);
(i1) H=id on (E x{0}x A x[0,0))u(Ex[0,1]x 4 x{0});
(iii) (h xid)H is an n-parameter controlled pseudo-isotopy.

Proof. Given h: Ex[0,1]xA4-> Ex[0,1]x 4 as above, note that (pXxid)wh is ¢-
close to (pxid)m and (pxid)wh|E x{0}x A =pxid=(pxid)w|. It follows from
[16] that there is an f.p. (over 4 X[0, 1]) approximate fibration g: E x[0,1]x A x
[0,1]» B x4 x[0,1] such that:

(1) gl Ex[0,1]1xA4x{0}=(pxid)wh;

(2) g|Ex[0,1]1xAx{1}=(pxid)m;

(3) gl Ex{0}x A x[0,1]=pxid;

(4) gl Ex[0,1]1x A x{u} is &'-close to ( p xid)wh for each u in [0, ) where the

size of £'> 0 depends on the size of &.
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It follows Theorem 2.3 that there exists a homeomorphism H : E x [0, 11x A4 x
[0,1]- E x[0,1]x 4 x[0, 1] such that:

(1) His f.p. over A %[0, 1];

(2) H=id on (Ex{0}x 4 x[0,1]) U (E x[0,1]x 4 x {0}):

(3) ((pxid)mhxid)H is m-close to g where w >0 is as small as we need.

The homeomorphism H is defined to be H on Ex[0,1]xAx[0,1] and we
continue this construction to define H on E x[0, 1]x 4 x[1, 2], then E x[0,1]x 4 x

[2,3], etc. OO

There are two addenda that we will need. Their proofs follow from the proof of
Proposition 4.1.

Addendum 4.2. If h|E x[0,1]xd4 =id, then H can be constructed so that H|E x
[0,1] x84 x[0, 0} =1id.

Addendum 4.3. For every £ >0 there exists a §>0, 8 =8(B, n, £), such that if h is
an n-parameter 8-pseudo-isotopy, then H can be constructed so that (h xid)H has a
controlling sequence beginning with .

The following proposition shows that the construction in Proposition 4.1 is
well-defined.

Proposition 4.4. There exists an ¢>0, e =¢e(B, n), so that if h:Ex[0,1]x4 >
E x[0,1]1x A is an n-parameter e-pseudo-isotopy with h|E x[0,1]x04 =id and
H:Ex[0,1]xAx[0,00)> Ex[0,1]xA4X[0,0) is a homeomorphism such that:
(1) H is f.p. over A x[0, ©);
(i) H=id on (Ex{0}x4 x[0,0))u(E %x[0,1]xad4 x[0,20))U(E x[0,1]x
4 x{0});
(iii) (hxid)H is an n-parameter controlled pseudo-isotopy with a controlling
sequence beginning with ¢,
then the class of (hxid)H in w,%?(p: E - B) is independent of H.

Proof. If H'is another homeomorphism satisfying the three conditions above, then
we can use the techniques in the proof of Proposition 4.1 to find an (n+1)-simplex
in P(p: E - B) connecting (h xid)H and (h xid)H' which will show [(hxid)H]=
[(hxid)H'] in m,?(p: E~>B). O

We will now define the torsion of certain pseudo-isotopies. For a fixed n, let
€ = e(B, n) be given by Proposition 4.4 and let § = (B, n, £) be given by Addendum
4.3 and assume 6=<¢g. Let h: Ex[0,1]xA—> Ex[0,1]xA be an n-parameter 8-
pseudo-isotopy such that k| E x[0,1] x84 =id. By the propositions above we can
find a homeomorphism H: E x[0,1]x 4 x[0,00)> E x[0, 1] x 4 X[0, c©) such that:

(1) H is f.p. over A x[0, 0);
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(2) H=id on (E x{0}xA4x[0,%0))u (E x[0,1]xa84 x[0,00))u (E x[0, )X
4 x{0});
(3) (hxid)H is an n-parameter controlled pseudo-isotopy with a controlling
sequence beginning with &.
Define the torsion v(h) of h to be the class of (hxid)H in =,?(p: E - B). Note
that 7(h) is well-defined (i.e., independent of H) by Proposition 4.4.
The next result of this section shows that 7(h) is invariant under a small {(measured
in B) isotopy of h. The proof uses the techniques of the propositions above and is
left to the reader.

Proposition 4.5. There exists a y>0, y=y(B, n), such that if h, h': E x[0,1]x 4 -
E %[0, 1] x 4 are two n-parameter 8-pseudo-isotopies (where & comes from the definition
of torsion) such that h=id=h' on E x[0,1]x3A and h and h' are +y-isotopic
rel(E x {0} x A)u (E %[0, 1]x8A4) when measured in B, then (h) = t(h').

Composition of maps induces a group structure on m,#?(p:E > B). The final
result of this section shows that this group is abelian.

Proposition 4.6. m,?(p: E - B) is an abelian group where the group operation is
induced by composition of pseudo-isotopies.

Proof. It suffices to show that if g h:Ex[0,1]-> E x[0, 1] are two e-pseudo-
isotopies, then 7(gh} = 7(hg) if ¢ > 0is small enough. To thisend,let S: Ex[0,1] > E
be 2 homeomorphism quite close to projection and let E, = S(E x[0,3]) and E, =
S(E x[3,1D).

Use Z-set unknotting to find a small (measured in E) isctopy of h rel E x {0} to
h' where h'|S(E x{0}) x[0, 1]=id. Then slide along the interval direction in S(E x
[0,1]) to find a small isotopy of k' rel E x {0} to h"” where h"| E, x[0, 1]=id. If the
isotopies are small enough, then 7(h") = r(h).

Likewise, find g" such that 7(g)=7(g") and g”
and 7(gh)=r(hg). O

E,x[0,1]=id. Then g"h"=h"g"

5. The homotopy equivalence 2(p:E > B)= 2Wh(p: E - B)

In this section we establish Theorem 2 by defining a map a:P(p:E-> B)->
NWh(p: E - B) and proving that a is a homotopy equivalence. Since Wh{p: E > B)
and Wh(p:E—» B) are homotopy equivalent by Section 3, it will follow that
P(p:E-> B) and QWh(p: E > B) are homotopy equivalent.

We begin by defining a. Let E=E x[0,1]x A x[0,0) and let h: E > E be an
n-simplex of ?(p: E - B). We first need a canonical homotopy h,:id=h,0=<s=1,
To this end, extend h via the identity to get h:Ex [—1,1}x 4 %[0, )~
Ex[—1,1]1xA4x[0,0). Let r: ExRxAx[0,0)- E be the retraction induced by
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the retraction R - [0, 1] which collapses (—c0, 0] to 0 and [1, +o¢) to 1. For0<s=<1,
let @,: EXRxAxX[0,00)> ExXRxA4Xx[0,) be the homeomorphism induced by
the homeomorphism R->R which takes x to x—1+s. Then define h;E‘—»E by
setting h, = rO;'he, | E. Note that h.iid=h, 0=ss=1, rel Ex{0}x A4 x[0,0) and
that h is f.p. over 4 x[0, o). This is called the canonical homotopy from id to h.

Recall that we have fixed a Z-embedding of E x[0, 1] into Q. Define a map
h: E><[0 1]- Qx4 x]0, OO)X[O 1] by setting h(x s) = (hy(x), s). Note that # is
fp over Ax[O ) x[0,1], A=id on (E x{0}x A x[0,00)x[0,1]u (E x{0}), and
h=honE x{1}.

Approximate h by a sliced Z-embedding j: E x[0, 1]-> Qx4 %[0, ©0)x
[0, 1] rel(E x {0} x 4 x [0, 20) x [0, 1]) U (E x {0, 1}). Let M = j(E x[0, 1]) and define
f:M - ExA4x[0,0)x[0,1] by setting f = wi;j" where we are using 7: E X [0, 1] >
E x4 %[0, ) to denote projection as usual.

Finally, define a:?(p: E > B)> QWh(p: E - B) by setting a(h) =1

Proposition 5.1. a:P(p: E~> B)> QWh(p: E > B) is well-defined.

Proof. The only arbitrary choice made in the defintion of a(h) was the embedding
J. But this is already allowed in the definition of 2Wh(p: E —» B). Therefore, we are
only left with showing that f is a loop in Wh(p: E - B). Since f | E x{0, 1} = 7, we
only have to show that f has the correct controlled sdr property.

For this, define h,:E x[0,1]1- E x[0,1], O0=su=1, by setting h(x,s)=
(h.(x),s). And define m,:E x [0,1]- E x [0,1] by setting 7, (w, X, ¥,z 5)=
(w, (1—u)x, y, z, 5) for (w, x, y, z, s) in Ex[0,1]x 4 X[0, ) x[0, 1]. Finally, define
fuiM-> M by f, =j77,ﬁ,‘j‘1. Then f,:id=f, 0= u =1, shows that f is an n-simplex
in QWh(p: E-> B).

The next result deals with the group properties at the level of path components.
Proposition 5.2. o, : 7, ?(p: E > B)~> m,2Wh(p: E > B) is a group homomorphism.

Proof. Represent two classes in wy?(p: E—> B) by 7(h) and 7(g) where h and g
are e-pseudo-isotopies, € >0 small. Using the notation in the proof of Proposition
4.6, we can assume that h| E, x[0, 1]=id and g| E, %[0, 1]=id. In definining &, 7(h)
and a,7(g), the canonical homotopies are used to construct maps h, g:E x[0,1]x
[0,1]-> E x[0,1]x[0, 1] (these are the 0-level of maps E x[0, 1]x[0,c0)x[0, 1]~
E x[0,1]%[0, ) x[0, 1]). These maps satisfy k| E, x[0,1]x[0, 1]=id and g| E, X
[0,1]x[0,1]=id.

The relevant fact is that §ﬁ(=ﬁ§) is the map arising from the canonical homotopy
id==gh when defining a,7(gh). We will show that

a,t(gh)= a,7(h) a,7(g)

where the multiplication on the right hand side arises from the loop space structure.
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Find a sliced Z-embedding j: E x[0, 1]x[0, 1]> Q %[0, 1] with image M such
that j=id on (E x{0}x[0,1])u (E x[0,1]1x{0}) U ((E,n E,)x[0,1]%[0,1]) and
j=gh on Ex[0,1]x{1}. Then a,t(gh)=7(f) where f: M > E x[0,1] is defined
by f=mghj .

Define k: E x[0,1]x[0,1]> E x[0, 1]x[0, 1] by
(proj h(x, y,2t), t) if 0sr=<}

1

k )=
(x 1) {(projg?(h(x,y),zt—l),t) if jst=1.

Define f~:M—>E><[O,1] by f=7rkj-1. It is clear that T(f)=r(f) and 7(f)=
a,m(h) - a,7(g). O

Our goal is to show that a:P(p: E—> B)>QWh(p:E~ B) is a homotopy
equivalence. For this we need to show that a,: m,?(p: E > B)> m,QWh(p: E > B)
is an isomorphism for each choice of basepoint. However, the proof of the proposi-
tion above shows that we can just concern ourselves with the usual basepoints: the
identitiy for ?(p: E > B) and the projection for 2Wh(p: E > B). We will do this
in the next two propositions to complete the proof of Theorem 2.

Proposition 5.3. a,:7,?(p: E~ B)> m,22Wh(p: E -> B) is a monomorphism.

Proof. Let h: E > E be an n-parameter controlled pseudo-isotopy representing the
J- But this is already allowed in the definition of 2Wh(p:E - B). Therefore, we
are only left with showing that f is a loop in Wh(p: E > B). Since f | E x {0,1}=m,
we only have to show that f has the correct controlled sdr property.
Since [ f]1=[] there is an (n+1)-simplex in @Wh(p: E - B) given by G: M-
E x A x[0,00)x[0,1]" where (among other properties):
(1) there is a bundle projection p: M - 4 x [0, ) x [0, 1]
(2) ExAx[0,0)x[0,11Pc M < QxAx[0,0)x[0,1]%
(3) if A=(34x[0,0)x[0,1]°) U (4 x[0,0)x{0,1}x[0,1]) U (A x[0, ) x
[0, 11x{0}), then p '(A) = E x[0, 1] x A;
(4) p (A x[0,0)x[0,1]x{1} = M;
(5) G=id on E x A x[0, ) x[0, 1]%
(6) G=m on 5 '(A);
(7) G=fon M.
Since p is trivial, we can use sliced Z-set unknotting to find an f.p. homeomorphism
k:E x[0,1]>> M such that:
(1) k=id on (Ex{0} x4 x[0,00)x[0,1]*) U (E x[0,1]xa4 x[0,0)x [0, 1]*)u
(E x[0,1]x A4 x[0,00)x{0}x[0,1])U(E X[0, 1]x 4 %[0, 00)x[0,1]x{0});
(2) k=j on Ex[0,1]xA4AX[0,00)x[0,1]x{1}.
Use Theorem 2.3 to find an f.p. homeomorphism g: E x (0,117~ E x [0, 177 such
that:
(1) g=id on the sets listed above where k =id and k =j;
(2) the map (p xid)Gkg: E x[0,1]’> Bx A x [0, ) %[0, 1] is close to ( p xid)#
with the ‘closeness’ becoming arbitrarily small near infinity.
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Finally, consider the homeomorphism H : E x[0,1]~ Ex [0, 1] which is defined
to be the restriction of kg to E x {1} x[0, 1]. Note that:
(1) H=id on (Ex{0}xAx[0,00)x[0,1]) U (E x[0,1]%x84 x[0,0)x[0,1])u
(E x[0,1]x A x[0, ) *x{0});
(2) H=h on E x[0,1]%x 4 x[0, ) x{1};
(3) (pxid)mH = (pxid)w(kg|)=(pxid)G(kg|) which is close to (p xid) .
It follows that H is an (n+1)-simplex in ?(p: E - B) showing [A]=[id]. O

Proposition 54. a,:7,?(p: E > B)-> m,QQWh(p: E > B) is an epimorphism.

Proof. Recall from Section 3 that there are isomorphisms Qi 7, Q2Wh(p: E—> B)~>
7.02Wh(p: E> B) and Qq,: 7. (2Wh(p: E > B)> 7, QWh(p: E > B). Thus, let
f: M- E xA4x[0, 1] represent the class [ f] in 7, Q2Wh(p: E > B) where:

(1) Mc QxAx[0,1] as a sliced Z-set;

(2) f=idon ExAX[0,1]c M,

(3) f=mon Mn(Qxa(Ax[0,1]))=E x[0,1]xa3(4 x[0,1]);

(4) fis an f.p. (pxid)'(&)-sdr for every £>0.

As we have done before, we can find a trivializing homeomorphism k: E X [0, 1] x
AX[0,1]—> M such that k=1id on (E x{0}x A x[0,1])u (E x[0,1] x84 x[0,1]) U
(E x[0,1]x 4 x{0}).

Also, use Theorem 2.3 to find an f.p. homeomorphism g: E x[0,1]x A x[0,1]->
E x[0,1]x 4 %[0, 1] such that g =id on the set indicated above where k =id and
(pxid)fkg: Ex[0,1]x A x[0,1]-> Bx 4 x][0, 1] is e-close to ( p xid)# for a given
small £ > 0.

Consider the homeomorphism h: E x[0,1]x A4~ E x[0,1]x A4 which is defined
to be the restriction kg|E x[0,1]x 4 x{1}. Note that h=id on (Ex{0}x4)u
(Ex[0,1]x084) and h is an n-parameter £-pseudo-isotopy. If ¢ is small enough,
then 7(h) is defined in 7,2(p: E > B). We will complete the proof by showing that
aym(h) = (2g,)(2i) ([

Recall that 7(h) is defined to be [(h xid) H] where H is a certain homeomorphism
on E. Next recall the notation used for defining a,7(h). The canonical homotopy
id=(hxid)H is used to define a map h:E %[0, 1]—>l§ x[0,1]. We then need a
sliced Z-embedding j: E x[0, 11> Q x A x[0,0) x [0, 1]. To this end let H:E x
[0,1]~ E x [0, 1] be the f.p. homeomorphism such that I:IIE x {0} =id and ﬁ{ﬁ X
{1} = H which arises by phasing H out to the identity. Then set j = (kg x id) H. (Note
that [0, c0) and [0, 1] have been interchanged.)

Let f=mhj ': M x[0,0) > E x Ax[0,1]x[0, ). Then a,r(h)=[f] Let f'=
f | M x {0}. We will complete the proof by showing 7(f”) = [ f]. This suffices because
[f1= (02q,)(Q2i,)7(f') by Lemma 3.5 and therefore a,7(h) = [f1= (2q N 2iJ[f].

In order to show that 7(f'})=[f], we will show that f’ is f.p. homotopic to
frel(ExAX[0,1]) U (E x[0,1]%xd(A4 %[0, 1])) via a homotopy which is small when
measured in Bx A x[0,1]. To this end, let F,:id=f, 0=<t¢=<1, be the homotopy
given by Lemma 3.1. Let hy = ﬂl E x[0,1]x A x {0} x[0, 1]. It is the map which arises



C.B. Hughes |/ Delooping controlled pseudo-isotopies 191

from the canonical homotopy from id to h. Note that f'= mhog 'k ™', Our desired
homotopy is mhog 'k 'F,: f'=f, 0=<r=<1. Note that (pxid)mh,g 'k 'F, is close
to (pxid)mwg 'k 'F, because of the nature of the canonical homotopy. And (p X
id)wg 'k~'F, is close to ( p xid)fF, because of the way g was chosen. Finally, the
homotopy ( p xid)fF, is small because of the way F, was chosen. (O
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