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Abstract

In 1976, Stahl and White conjectured that the nonorientable genus of Kl,m,n, where l ≥ m ≥
n, is

�
(l−2)(m+n−2)

2 � . The authors recently showed that the graphs K3,3,3 , K4,4,1, and K4,4,3

are counterexamples to this conjecture. Here we prove that apart from these three exceptions,
the conjecture is true. In the course of the paper we introduce a construction called a transition
graph, which is closely related to voltage graphs.

1 Introduction

In this paper surfaces are compact 2-manifolds without boundary. The orientable surface of genus

h, denoted Sh, is the sphere with h handles added, where h ≥ 0. The nonorientable surface of genus

k, denoted Nk, is the sphere with k crosscaps added, where k ≥ 1. A graph is said to be embeddable

on a surface if it can be drawn on that surface in such a way that no two edges cross. Such a drawing
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is referred to as an embedding. The genus g(G) of the graph G is the minimum h such that G can

be embedded on Sh. Likewise the nonorientable genus g̃(G) of G is the minimum k such that G can

be embedded on Nk. For convenience, we define the nonorientable genus of a planar graph to be

zero. An embedding of G on Sg(G) is called a minimal embedding for G, and one on N �g(G) is called

a minimal nonorientable embedding.

The problem of determining the genus of a graph, like many other problems in graph theory, began

in connection with the four-color problem. In 1890, Heawood [9] proposed a generalization of the

four-color conjecture to higher surfaces. He defined the chromatic number of a surface to be the

maximum chromatic number over all graphs embeddable in that surface. He then calculated an

upper bound for the chromatic number of a nonplanar surface, namely χ(Σ) ≤
⌊

7+
√

49−24c
2

⌋
, where

c is the Euler characteristic of Σ, and conjectured that each surface attained this lower bound.

Heawood’s conjecture was implied by the conjecture that the minimum genus of the complete graph

Kn is
⌈

(n−3)(n−4)
12

⌉
. In 1891, Heffter [10] proved it true for all n ≤ 12 and for the numbers n of

the form n = 12s + 7 where q = 4s + 3 is a prime number and the order of the element 2 in the

multiplicative group of integers (mod q) is either q − 1 or (q − 1)/2. After this very little progress

was made on Heawood’s conjecture until 1952, when Ringel proved that it is true for n = 13, and

then 1954, when he proved it true for all n ≡ 5(mod 12) [20, 17]. During the 1960’s several authors

contributed other cases (see [21]).The problem was finally settled in 1968 by Ringel and Youngs [22],

and the solution of the problem helped to establish topological graph theory as a major research

area. The corresponding nonorientable problem, that the minimal nonorientable genus of Kn is⌈
(n−3)(n−4)

6

⌉
, was solved in 1954 by Ringel [17], with one exception: the nonorientable genus of

K7 is 3 rather than the expected 2 [7]. For a thorough discussion of the Heawood problem and its

solution, see [21].

A related result from this period was Ringel’s 1965 solution of the genus problem for complete

bipartite graphs [18, 19]. He proved that the genus of Km,n is
⌈

(m−2)(n−2)
4

⌉
, and the nonorientable

genus of Km,n is
⌈

(m−2)(n−2)
2

⌉
. One natural extension of this result would be to complete tripartite

graphs. Equation (1) of the following conjecture was proposed by White [25]. Equation (2) was

proposed by Stahl and White [24].

Conjecture 1 [25, 24] The orientable genus of Kl,m,n, where l ≥ m ≥ n, is

g(Kl,m,n) =

⌈
(l − 2)(m+ n− 2)

4

⌉
, (1)

and its nonorientable genus is

g̃(Kl,m,n) =

⌈
(l − 2)(m+ n− 2)

2

⌉
. (2)

One observes that the conjectured value of the genus (respectively nonorientable genus) of Kl,m,n is

the same as the known value for the genus (respectively nonorientable genus) of Kl,m+n . In other
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words, Conjecture 1 claims that there exists a minimal embedding and a minimal nonorientable

embedding of Kl,m+n , each with enough “room” in the embedding to add edges which would trans-

form Kl,m+n into Kl,m,n. Unfortunately, the known minimal embeddings for the complete bipartite

graphs do not seem to have this property.

Ringel and Youngs [23] proved (1) true for Kn,n,n. White [25] proved that (1) is true for Kl,m,n

where m+ n ≤ 6, and for Kmn,n,n, where m,n ∈ N. Stahl and White [24] proved that (1) holds for

Kn,n,n−2 when n ≥ 2 is even, and for K2n,2n,n for all n ≥ 1. They also showed that (2) holds for

Kn,n,n−2 when n ≥ 2, and for Kn,n,n−4 when n ≥ 4 is even.

In 1991, Craft [4] used surgical techniques to prove (1) true if m + n is even and l ≥ 2m. He

also showed that if m + n is odd and p is the smallest integer which is at least m
2 and such that

p+ n ≡ 2(mod 4), then (1) is true provided l ≥ 4 max{p, n}+ 2.

Recently, the authors [6] showed that in fact (2) is not true for K3,3,3, K4,4,1, or K4,4,3. They also

showed that these are the only counterexamples with l ≤ 5 to either case of the conjecture.

In this paper we solve the nonorientable genus problem for Kl,m,n. The general idea of the proof is

as follows. First, we use a surgical technique we call the “diamond sum” to reduce the general case

Kl,m,n to the semisymmetric case Km,m,n. Second, we delete the smallest set of the tripartition and

try to find an embedding of the bipartite graph Km,m with n large faces, observing that afterwards

we may put the n vertices back into the embedding by placing one vertex in each of the n large

faces. Third, we use a construction called the “transition graph” to find the appropriate embedding

of Km,m. Because of limitations of the diamond sum, these techniques do not work in every case;

for some m and n we must also deal separately with the nonsymmetric case Km+1,m,n.

Section 2 contains notation and terminology and a brief explanation of the diamond sum technique.

Section 3 provides definitions and some preliminary theory for the transition graph construction.

In Section 4 we prove the main theorem, and finally in Section 5 we suggest some areas for further

research.

2 Preliminaries

In this section we lay out the necessary definitions and then briefly explain our main surgical tech-

nique.

2.1 Notation and terminology

For background in topological graph theory see [8] or [16].
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As previously mentioned, an embedding of a graph on a surface is a drawing of that graph on that

surface in such a way that no two edges cross. If a graph is embedded in such a way that each face

is homeomorphic to an open disk in the plane, then the embedding may be completely described

combinatorially using local rotations and edge signatures. A local rotation πv at the vertex v is a

cyclic permutation of the edges incident with v. An edge signature is a mapping λ from the edges

of a graph into {−1, 1}.

If an embedding is given entirely in terms of local rotations and edges signatures, we may calculate

the orientability of the embedding surface in the following way. An embedding is nonorientable if

and only if there is some closed walk in the embedded graph which encounters an odd number of

edges of signature −1.

2.2 The diamond sum

Here we describe our reduction technique, from [13]. The construction, in a different form, was

introduced by Bouchet [3], who used it to obtain a new proof of Ringel’s 1965 result [18, 19] on

the genera of complete bipartite graphs. A reinterpretation of Bouchet’s construction appeared in a

paper by Magajna, Mohar and Pisanski [14], and was described more fully by Mohar, Parsons, and

Pisanski [15].

Suppose Ψ1 : G1 → Σ1 is an embedding of G1 on the surface Σ1 and Ψ2 : G2 → Σ2 is an embedding

of G2 on the surface Σ2. Moreover, suppose that there exist vertices u ∈ G1 with n neighbors

u0, . . . , un−1, in this (local) clockwise order, and v ∈ G2 with n neighbors vn−1, . . . , v0, in this

clockwise order. Let D1 be a closed disk contained in a small neighborhood of st(u) = {u} ∪
{uu0, . . . , uun−1} that contains st(u) and intersects G only at u0, . . . , un−1. Define the closed disk

D2 containing st(v) in a similar way. Remove the interiors of D1 and D2 from the surfaces Σ1 and

Σ2, respectively, and identify the boundaries of Σ1 \ int(D1) and Σ2 \ int(D2) in such a way that ui

is identified with vi for all i, 0 ≤ i ≤ n− 1. Thus we obtain a new embedding Ψ of a new graph G

into the surface Σ1#Σ2, where # denotes the connected sum of two surfaces. G is obtained from

G1 \{u} and G2 \{v} by identifying ui with vi for all i, 0 ≤ i ≤ n−1. Of course the resulting graph

depends on the alignment of the ui and the vi. However, in this paper the ui (and likewise the vi)

end up being generic vertices from the same part of a bi- or tripartition, so we do not care about

their alignment. Thus we may call the operation on the graphs a diamond sum of graphs (with

respect to the vertices u and v), denoted (G1, u) ♦ (G2, v), and the operation on the embeddings a

diamond sum of embeddings (with respect to u and v), denoted Ψ1(G1, u) ♦ Ψ2(G2, v).

We make the following observations about this construction. First, if one of the embeddings Ψ1 or

Ψ2 is nonorientable, then so is the resulting embedding Ψ. Second, if we take G1 to be Kl,m,n and

take u ∈ V (G1) from the part of the tripartition with l vertices, and take G2 = Kk+2,m+n, with
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v ∈ V (G2) in the part of the bipartition that has k + 2 vertices, then (G1, u) ♦ (G2, v) yields the

graph G = Kl+k,m,n. In this case it is often true that if Ψ1 is an embedding of Kl,m,n satisfying

Conjecture 1, and if Ψ2 is a minimal genus embedding of Kk+2,m+n, then Ψ is an embedding of

Kl+k,m,n satisfying Conjecture 1. The details of when this works are discussed in [13].

For the purposes of this paper, the important case is the following:

Theorem 2 [13] If Kl,m,n satisfies (2) from Conjecture 1 then so does Kl+k,m,n provided that at

least one of k, l, or m+ n is even. �

3 Transition Graphs

The goal of this section is to introduce the transition graphs and to build enough of a theoretical

foundation so that we can use them. Transition graphs are closely related to voltage graphs. In

fact, a transition graph is really just the medial graph of an embedded voltage graph. Dan Archdea-

con [1] obtained some results by placing voltages and currents on the edges of medial graphs. Our

construction differs from Archdeacon’s in that our voltages do not end up on the edges of the medial

graph, but the vertices (because, in a sense, the voltage assignment is performed before the medial

graph is constructed). For background on voltage graphs, see [8]. In this paper we shall represent

embedded voltage graphs by an ordered pair (G→ Σ, α), where G→ Σ represents an embedding of

the directed graph G on the surface Σ, and α is a voltage assignment to the directed edges of G.

Here we will include two results from [8] about voltage graphs which will be useful later. First,

given an embedded voltage graph, it would be nice to calculate the Euler genus of the surface of

the derived embedding without explicitly calculating the derived graph. Theorem 3 accomplishes

such a calculation. Second, Theorem 4 gives a method for determining orientability of a derived

embedding.

Theorem 3 [8] Let C be the boundary walk of a face of size k in the embedded voltage graph

(G → Σ, α). If the net voltage on the closed walk C has order n in the voltage group Γ, then there

are
|Γ|
n faces of the derived embedding Gα → Σα corresponding to the region bounded by C, each with

kn sides. �

Theorem 4 [8] Let (G→ Σ, α) be an embedded voltage graph. Then the derived surface is nonori-

entable if and only if there is some closed walk W in the base embedding G→ Σ such that a traversal

of W encounters an odd number of edges with −1 signature, and the net voltage on W equals the

identity. �
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3.1 Transition graphs

As previously mentioned, transition graphs are closely related to embedded voltage graphs (in fact,

they are equivalent!). In a transition graph, though, the emphasis is slightly different. In the case

of a voltage graph and its derived graph, vertices correspond to vertices and edges to edges. On the

other hand, vertices of a transition graph correspond to edges of the derived graph, and edges of

the transition graph correspond to consecutive pairs of edges (“transitions”) in the local rotations

of the derived graph. Vertices of the derived graph do not appear directly in the transition graph;

local rotations at vertices of the derived graph, though, correspond to closed trails in the transition

graph.

The advantage of the transition graph is mostly visual. For instance, in the transition graphs used

for the proof of the main theorem in this paper, one can determine the number and sizes of the

derived faces at a glance. Contrast this situation with that of embedded voltage graphs, in which

one must trace faces and compute net voltages to determine face sizes in the derived embedding. A

similar state of affairs occurred in the proof of Heawood’s conjecture, where the main tools used were

not embedded voltage graphs, but embedded current graphs: although the constructions are dual to

one another, in the context of Heawood’s conjecture current graphs are more readily manipulated

and verified than voltage graphs.

Because of the close relationship with voltage graphs, we have tried to keep the terminology similar.

The reader may refer to Figure 1 for an example of a transition graph and corresponding embedded

voltage graph. The formalism follows.

Definition 5 A transition graph G = (D,C, λ, α) consists of the following:

1. a digraph D such that at each vertex both the indegree and the outdegree are equal to 2;

2. a collection C of directed closed trails C0, . . . , Cn−1 partitioning E(D);

3. at each vertex of D an ordering Ci → Cj of the two∗ directed closed trails incident with that

vertex;

4. a function λ : V→ {−1,+1};

5. a function α from V into a (usually finite) group Γ.

∗ In the case that there is only one directed trail C incident with a vertex u, then C meets u twice.

Suppose u is the head of e− and f− and u is the tail of e+ and f+ , where e−, e+ are consecutive

edges of C, and f−, f+ are consecutive edges of C (and possibly e− = f+ or e+ = f−). Then at u

we fix an ordering, without loss of generality {e−, e+} → {f−, f+}. �
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We call Γ the voltage group and α the voltage assignment.

While we may obtain a derived embedding directly from a transition graph, it may be more helpful

to explain instead how to get back to the corresponding embedded voltage graph. The embedded

voltage graph (H → Σ, β) that corresponds to a given transition graph G = (D,C, λ, α), has vertex

set V (H) = {vi|Ci ∈ C}, and edge set E(H) = {ei|ui ∈ V (D)}. Incidence in the voltage graph is

calculated in the following way. If the vertex ui ∈ V (D) is incident with the two directed closed

trails Cj and Ck, where Cj → Ck is the ordering of the trails at ui, then the edge ei runs from

vj to vk in the voltage graph. If ui ∈ V (D) is incident with only the directed trail Cj, then the

corresponding edge ei ∈ V (H) is a loop at vj ∈ V (H). The voltage β(ei) in the voltage graph is the

same as the voltage α(ui) in the transition graph. The edge signature of ei in H is just λ(ui). If

Ci = ui0ui1 . . . uil−1 in G, then the local rotation at vi ∈ V (H) is (ei0ei1 . . . eil−1). [See Figure 1.]

1
a

3
f

f

a b

c

de

1

2

3

2

d

e

cb

Figure 1: A transition graph and corresponding embedded voltage graph. Double
slash marks through a cycle C0 near a vertex u (incident with trails C0 and C1)

are used to signify that C1 → C0 at u; at vertices incident with only one trail, the
double slashes also determine which edges are to be paired. The ‘x’ on the edge d

and on the vertex d represents a signature of −1.

If we want to recover the faces of a derived embedding of a transition graph, we may reword

Theorem 3 in the language of transition graphs. We calculate the boundary walks of a transition

graph G = (D,C, λ, α) by the boundary traversal procedure: start by walking along a forward edge

e = ui → uj in D. Next, there are two forward edges leaving uj; take the one that is not in the same

directed trail of C as e. [If uj is incident with only one directed trail of C, then take the forward

edge leaving uj which is not linked with e.] Continue in this manner until e is reached once more,

with the following exception. If a vertex uk ∈ V (D) is encountered with λ(uk) = −1, then begin

traversing edges in the negative direction until another −1 signature is encountered. The resulting

walk is called a boundary walk of the transition graph, and each directed edge of the transition graph
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is in exactly one boundary walk (possibly up to reversal). Also, each vertex of the transition graph

is in at most two boundary walks (corresponding to the fact that each edge of an embedded voltage

graph is in at most two faces).

The net transition on a boundary walk

W = ej0ui0ej1ui1 . . . ejl−1uil−1ej0

is

α(ui0)ε0 · α(ui1)ε1 · · ·α(uil−1)εl−1 ,

where εj is calculated in the following way. If ejk and ejk+1 are in directed trails Ca and Cb,

respectively, and if at uk the trails are ordered Ca → Cb, then εk = +1. If the trails are ordered

Cb → Ca, then εk = −1. If there is only one directed trail incident with uik , then ejk is either a

member of the “head” pair or the “tail” pair of edges at uik . If the latter, then εk = +1; if the

former, then εk = −1.

Theorem 6 Let F be a boundary walk of size k in the transition graph G. If the net voltage on the

closed walk F has order n in the voltage group Γ, then there are
|Γ|
n faces of the derived embedding

Gα → Σα corresponding to the region bounded by F , each with kn sides. �

3.2 Transition graphs for minimal embeddings of Kl,m,n

All the voltage graphs that we need in the proof of our main theorem are loopless two-vertex voltage

graphs with all edges directed from left to right. The two vertices correspond to the two parts of a

bipartition of Km,m. Moreover, all our voltage groups are cyclic groups Zm, and every voltage occurs

exactly once. In the derived graph, therefore, every vertex in one part of the partition is joined to

every vertex in the other part of the partition. Thus we can eliminate much of the generality found

in the previous section.

First, let us establish a notational convenience. Since our voltage graphs have no loops, all directed

trails are in fact directed cycles. [A directed trail of a transition graph corresponds to a local rotation

about a vertex of an embedded voltage graph, and a vertex of a transition graph corresponds to

an edge of a voltage graph. The only way a local rotation can contain the same edge twice is for

that edge to be a loop.] Also, since all our voltage graphs contain two vertices, their corresponding

transition graphs each contain exactly two cycles. In the future, let us therefore agree that such

transition graphs should each have one cycle depicted with solid edges, and one cycle depicted by

dashed edges. Moreover, since all edges of the voltage graph are directed from left to right, let us

adopt the convention that the orientation in the transition graphs with n = 2 is always from solid to

dashed. Let us also agree to draw the vertex vi solid if λ(vi) = −1 and open otherwise. Finally, since

all our voltage groups are cyclic and our voltage assignments bijective, we shall find it most helpful
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to draw the vertices of the transition graphs in a circular pattern, with the voltage assignments

increasing by increments of one as the vertices are followed in the clockwise direction. [See Figure

2.] If a transition graph (with cyclic voltage group Zm of order m and bijective voltage assignment)

is drawn in such a manner, let us call it a cyclic m-transition graph. Also, for simplicity of notation

we shall simply label each vertex in a cyclic m-transition graph by its image under α.

0

34

5

6

2

1

0

4
3

5

2

1

6

Figure 2: A cyclic 7-transition graph and corresponding voltage graph

Here we obtain some specific applications of Theorem 6.

Let G be a cyclic m-transition graph. Suppose G has a boundary walk W = (i, i+k, i, i−k, i). Then

W has net transition 0 and length 4, and therefore corresponds to m facial 4-cycles in the derived

embedding. We shall denote such boundary walks “4-cycles of type V.” An example is shown in

Figure 3(a). Note that the edge orientations and the vertex signatures of a 4-cycle of type V do not

necessarily have to be as in Figure 3(a).

Now suppose G has a boundary walk W ′ = (i, i + k, j + k, j, i). Then W ′ has net transition 0 and

length 4, and therefore corresponds to m facial 4-cycles in the derived embedding. Denote such

boundary walks “4-cycles of type X.” An example is shown in Figure 3(b). Note that the edge

orientations and the vertex signatures of a 4-cycle of type X do not necessarily have to be as in

Figure 3(b).

Let m be even and let G be a cyclic m-transition graph with a boundary walk W ′′ = (i, i + m
2 , i).

Then W ′′ has net transition m
2 and length 2, and therefore corresponds to m

2 facial 4-cycles in the

derived embedding. Denote such cycles “4-cycles of type I.” An example is shown in Figure 3(c).

Note that the edge orientations and the vertex signatures of a 4-cycle of type I do not necessarily

have to be as in Figure 3(c).

Finally, let G be a cyclic m-transition graph with a boundary walk F = (i, i + 1, i). Then F has

net transition 1 and length 2, and therefore corresponds to a single facial cycle of length 2m. Call

such cycles “hamilton cycles of type H.” An example is shown in Figure 4. Note that the edge
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even)m(

i

i−k

i+k

j+k

j

i

i+k

i

i+m/2

(a) (b) (c)

Type−V  4−cycle Type−X  4−cycle Type−I  4−cycle

Figure 3: Three classes of four-cycles

orientations and the vertex signatures of a hamilton cycle of type H do not necessarily have to be

as in Figure 4.

More generally, if G is a cyclic m-transition graph with a boundary walk F ′ = (i, i + k, i),where

gcd(k,m) = 1, then F ′ has net transition k and length 2, and therefore corresponds to a single facial

cycle of length 2m.

i+1
i

Figure 4: A type H hamilton cycle

We have a nice analog of Theorem 4 for cyclic m-transition graphs.

Theorem 7 Let G be a cyclic m-transition graph. Then the derived embedding is nonorientable if

and only if there is some sequence of vertices (n0, n1, . . . , nk−1), where k is even, such that an odd

number of the ni’s have λ(ni) = −1, and n0 − n1 + n2 − n3 · · · − nk−1 = 0 in Zm. �

3.3 Partial transition graphs

We first need to introduce the concept of a relative embedding. Let G be a graph, and let F be a

collection of closed walks F0, . . . , Fk from G such that each edge of G appears at most twice in F.
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At each vertex x of G, construct the graph Gx in the following way. V (Gx) = {ue|e ∈ E(G) and

e = xy for some y ∈ V (G)}, and we join two vertices ue, uf in Gx by one edge for each Fi ∈ F

containing either ef or fe as a subwalk. If for all x ∈ V (G), the graph Gx contains no cycle which

is not spanning, then we call F a relative embedding.

In some of the cases in the proof of our main theorem, our embeddings are not symmetric enough

to be completely described using transition graphs, but they do possess enough symmetry to be

“almost” completely described by transition graphs. In these cases, we use “partial” transition

graphs; i.e., transition graphs missing a few edges. They are, as usual, (partial) cyclic m-transition

graphs. Instead of containing a solid and a dashed cycle, partial (cyclic) transition graphs contain

some solid paths, and some dashed paths, representing partial local rotations at each derived vertex.

Thus, while transition graphs give rise to derived embeddings, partial transition graphs give rise to

derived relative embeddings.

Definition 8 A partial transition graph G = (D,C, λ, α) consists of the following:

1. a digraph D such that at each vertex both the indegree and the outdegree are at most 2;

2. a collection C = {C0, . . . , Cn−1} such that each Ci is a “partial directed closed trail”, i.e., a

set of pairwise vertex-disjoint directed trails, and the Ci partition E(D);

3. at each v ∈ V (D) such that d+(v) = d−(v) = 2 an ordering Ci → Cj of the two∗ directed

closed trails incident with that vertex;

4. a function λ : V → {−1,+1}, together with the following restrictions: if λ(v) = +1, then

d+(v) = d−(v); if λ(v) = −1 then both d+(v) and d−(v) are even;

5. a function α from V into a (usually finite) group Γ.

∗ In the case that there is only one directed trail C incident with a vertex u, then C meets u twice.

Suppose u is the head of e− and f− and u is the tail of e+ and f+ , where e−, e+ are consecutive

edges of C, and f−, f+ are consecutive edges of C (and possibly e− = f+ or e+ = f−). Then at u

we fix an ordering, without loss of generality {e−, e+} → {f−, f+}. �

When we construct part of an embedding using partial transition graphs, we still need to know some-

thing about the orientability of the embedding. In this case, we need a slightly weaker hypothesis

than that in Theorem 7, and we are willing to accept a weaker conclusion. We use the following.

Theorem 9 Let G be a partial cyclic m-transition graph. Suppose that there is some sequence of

vertices (n0, n1, . . . , nk−1), where k is even, such that an odd number of the ni’s have λ(ni) = −1,

n0 − n1 + n2 − n3 + · · · − nk−1 = 0, and for each 0 ≤ i ≤ k − 1, ni and ni+1 are in the same

component of one of the partial directed closed trails Cj. Then the relative embedding represented by

G is nonorientable. �
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The theorem is true because the hypotheses guarantee that we can find an orientation-reversing path

in the derived relative embedding. That is, in the derived embedding there is a closed walk with an

odd number of edges of signature −1. We omit the details.

4 Main Result

We are now prepared to prove the main theorem:

Theorem 10 The nonorientable genus of the complete tripartite graph Kl,m,n, where l ≥ m ≥ n,

is
⌈

(l−2)(m+n−2)
2

⌉
, except for K3,3,3, K4,4,1, and K4,4,3, each of which has nonorientable genus⌈

(l−2)(m+n−2)
2

⌉
+ 1. �

Proof: The exceptional cases K3,3,3, K4,4,1, and K4,4,3 were handled in [6]. For the rest, the proof

is by induction on l, using Theorem 2.

Claim 11 Theorem 10 is true for the case m + n even, m > n ≥ 1. �

Proof Suppose m + n is even, where m > n ≥ 1. We prove the basis case l = m, i.e., we find the

required embedding for Km,m,n. The claim then follows for l > m by Theorem 2.

Let G be the cyclic m-transition graph with solid edges i → (i + 1) for all values of i (modulo m),

dashed edges i→ (i − 1) for all values of i (modulo m), and signatures of −1 on the vertices n+ 1,

n + 3, . . . , m − 1. [See Figure 5.] Then G contains n type-H hamilton cycles and (m−n)
2

type-V

4-cycles, implying that the derived embedding Gα → Σα (where Gα is Km,m) consists of m(m−n)
2

facial 4-cycles and n facial hamilton cycles. Applying Euler’s formula, we see that Σα is a surface

of genus (m−2)(m+n−2)
2 . We see that Σα is nonorientable by applying Theorem 7 to the sequence of

vertices (n, n+ 1, n, n− 1).

To illustrate this case in more detail, Figure 6 depicts an embedded two-vertex voltage graph and the

corresponding transition graph for the case m = 7, n = 3. The walks (0, 1, 0, 6, 0) and (5, 6, 5, 4, 5)

are 4-cycles of type V; the walks (1, 2, 1), (2, 3, 2), and (3, 4, 3) are hamilton cycles of type H. For

convenience, if Km,m has bipartition {x0, . . . , xm−1}∪{y0, . . . , ym−1}, let us say that an edge of the

form xiyi+k (subscripts mod m) has slope k. Then, for instance, the edge in the voltage graph of

Figure 6 with voltage assignment 0 corresponds to all edges of slope 0 in the derived graph. Also,

the vertex of the transition graph labeled with voltage 0 corresponds to all edges of slope 0 in the

derived graph. The solid edge 0→ 1 in the transition graph of Figure 6 means that at each vertex

xi on the left side of the bipartition of the derived graph (see Figure 7), there is a face containing

both of the edges xiyi and xiyi+1. The fact that (0, 1, 0, 6, 0) is a boundary walk of the transition

graph means that at each vertex xi of the derived graph, there is a facial cycle xiyixi−1yi−1xi−1−6,

where of course xi−1−6 = xi. These particular facial cycles are shown in Figure 7(a). Likewise the
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Figure 5: Transition graph for the case m+ n even
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34

Figure 6: An embedding of K7,7 with 3 hamilton cycles

faces corresponding to the boundary walks (5, 6, 5, 4, 5), (1, 2, 1), (2, 3, 2), and (3, 4, 3) are shown in

Figure 7, parts (b), (c), (d), and (e), respectively.

This completes the proof of the claim. �

Claim 12 Theorem 10 is true for the case m = n ≥ 1.

Proof We again prove the basis case l = m by examining Km,m,m, and the claim for Kl,m,m then

follows for l > m by Theorem 2. K1,1,1 and K2,2,2 are planar. We must treat n = 3 as a special
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Figure 7: The explicit faces corresponding to Figure 6.

case. K3,3,3 does not conform to Equation 2 (see [6]); thus we must use K4,3,3 as a basis case for

our induction. An embedding of K4,3,3 on N4 can be found in [6].

For n ≥ 4, the construction from 4.1 with m = n does give an embedding of Kn,n,n, but that

embedding turns out to be orientable. A transition graph H corresponding to that embedding is

shown in Figure 8(a).

(b)(a)

n−2

n−1
0

1

2 n−2

n−1 1

2

0

Figure 8: A transition graph, and a partial one, for Kn,n
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To obtain the desired nonorientable embedding, we simply modify the orientable one corresponding

to H in the following way. First, we define the partial transition graph G to be the one obtained by

removing solid edges (n− 2)→ (n− 1), (n− 1)→ 0, 0→ 1, and 1→ 2 and removing dashed edges

2 → 1, 1 → 0, 0 → (n − 1), and (n − 1) → (n − 2) from the transition graph H (see Figure 8(b)).

Next, we explicitly choose hamilton cycles in the bipartite graph Kn,n which together use the edges

with slopes 2 and n − 2 once each and the edges with slopes n − 1, 0, and 1 twice each. Moreover,

we choose them in such a way that they cannot be given a consistent orientation. We deal with each

residue class modulo 4 separately.
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x 2

x

x

x

x

3

4
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y

y

y

y

y6
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4
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1

0

(d)(c)(b)(a)

x

y

y

y

x

n−2

n−1

n−3

x

n−3

n−2

n−1

Figure 9: Facial walks for Kn,n, n ≡ 0(mod 4)

First, suppose n ≡ 0(mod 4). If n ≥ 8, Figure 9 shows the additional facial cycles we add to the

partial embedding given by G. The cycles (a), (b), and (d) from Figure 9 are clearly hamiltonian.

To check cycle (c), begin tracing the cycle starting with the edge x0y0 and then y0x2. Observe that

after x2 the cycle begins a regular pattern, and traces (on the x side)

x5, x6, x9, x10, . . . , x4s+1, x4s+2, . . .

Since n− 3 ≡ 1(4), the walk will contain the vertices xn−3, xn−2, x1, after which it will proceed to

the x vertices whose subscripts are congruent to 3 and 4 (modulo 4). Thus we see that (c) is indeed

a hamilton cycle.

To verify that each vertex has a valid local rotation it is enough to check that the local rotation

about each vertex contains no 2-cycle and no 3-cycle. We must check the vertices x0, x1, x2, y0,

y1, and y2, and then (because of symmetry) we need only check two other vertices from each part

of the bipartition, say x3, x4, y3 and y4. If the local rotation at a vertex v contains a 3-cycle, the
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support of that 3-cycle must consist of the edges of slopes n − 1, 0, and 1, which would imply that

at v there is a transition 2 ∼ (n − 2). Inspection shows that no such transition occurs. A 2-cycle

in the local rotation at v means that at some vertex v there is a pair of consecutive edges {va, vb}
which appears in two of the faces given by Figure 9. Again, inspection shows that such a situation

does not occur.

To verify nonorientability, observe that the cycles in Figure 9(a) and Figure 9(b) both contain the

edges x1y0 and x3y3, and in any orientation of the cycle in (a) these two edges must have opposite

left-to-right orientations, while in any orientation of the cycle in (b) they must have the same left-

to-right orientation. Therefore the cycles in (a) and (b) cannot be given a consistent orientation,

and the embedding is consequently nonorientable. This completes the case where n ≥ 8. For n = 4,

one may omit the transition graph and use the four hamilton cycles given in Figure 9.

Next suppose n ≡ 1(mod 4), n ≥ 5. Figure 10 shows the facial cycles we add to the partial embedding

given by G. Again, (a), (b), and (d) are clearly hamiltonian. One may verify the hamiltonicity of (c)

just as in the case n ≡ 0(mod 4). Verification of nonorientability is exactly the same as in the case

n ≡ 0(mod 4), since cycles (a) and (b) are essentially unchanged from that case. One verifies that

local rotations are valid, and the case n ≡ 1(mod 4) is completed for all n ≥ 5.
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n−3y
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y

Figure 10: Facial Walks for Kn,n, n ≡ 1(mod 4)

The cycles for the case n ≡ 3(mod 4) where n ≥ 7 are given in Figure 11. This case is similar to

cases n ≡ 0(mod 4) and n ≡ 1(mod 4).

Finally, suppose n ≡ 2(mod 4), n ≥ 6. For this case, we use the cycles given in Figure 12. Cycles (a)
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Figure 11: Facial walks for Kn,n, n ≡ 3(mod 4)

and (b) are clearly hamiltonian, and it is not difficult to verify that cycles (c) and (d) are as well.

For nonorientability, the edges x3y3 and x6y5 must be have opposite left-to-right orientations in any

orienting of (a), and the same left-to-right orientation in any orienting of (b). This completes the

case n ≡ 2(mod 4) where n ≥ 6, and the proof of the claim. �

Claim 13 Let m be odd and let n ≥ 4 be even. Then there is an embedding of Km,m,n on the

nonorientable surface of genus
⌈

(m−2)(m+n−2)
2

⌉
. �

Proof A nonorientable embedding of K5,5,4 on N11 may be found in [6]. Suppose m ≥ 7 is odd and

n ≥ 4 is even. We begin with the partial transition graph shown in Figure 13(a). We remark that for

some vertices in the derived graph, orientations may be reversed on the component labeled B. This

is because, in the terminology of Section 3.3, for each vertex v in the derived relative embedding

corresponding to Figure 13, the graph Gv has two components, namely, those corresponding to the

components labeled A and B in Figure 13. Thus, for such a v, the components of Gv are independent

in terms of their orientations as parts of a local rotation at v, since either end of the component

corresponding to A could still be connected to either end of the component corresponding to B.

Since gcd(2,m) = 1, the boundary walk F0 = (0, 2, 0) corresponds to one facial hamilton cycle in

the derived embedding. The boundary walks Fi = (i, i + 1, i), where 2 ≤ i ≤ n − 2, are hamilton

cycles of type H. The boundary walks Di = (i, i + 1, i, i − 1, i), where i = n, n + 2, . . . ,m − 3 are

4-cycles of type V. The edges linking m−1 and 1 represent the hamilton cycle consisting of all edges

of slopes m−1 and 1 in the relative embedding; for reference, we label this boundary walk F1. Thus
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Figure 12: Facial walks for Kn,n, n ≡ 2(mod 4)

our partial transition graph yields n−1 facial hamilton cycles (corresponding to the Fi) and m−3−n
2

facial 4-cycles (corresponding to the Di).

To this relative embedding we add faces with facial walks given in Figure 13(b). Now Figure 13(b)

depicts m−1
2

four-cycles on the left; on the right, we would like to have a facial walk of length

2m + 2 where we will put one of the vertices of the third part of the tripartition, but we must be

careful about the way we define the transitions at xm−1 and ym−1. Define the transitions at xm−1

to be (m − 2) → (m − 1) and 1 → 0. If m ≡ 1(mod 4) then define the transitions at ym−1 to be

0→ (m− 1) and 1→ (m− 2); if m ≡ 3(mod 4) then define the transitions at ym−1 to be 0→ 1 and

(m − 1)→ (m − 2). We claim that these constraints give us a facial walk of length 2m+ 2.

To verify that we do indeed get such a walk, suppose m ≡ 1(mod 4). Begin tracing the walk with

the edge ym−1x1 and then x1y2. Following this path, we encounter (on the x side) vertices

x1, x4, x5, x8, x9, . . . , x4s, x4s+1, . . .

until we come to xm−4, then

ym−3, xm−1, ym−2, x0, ym−1, xm−1, y0, x3,

whence we proceed to x2, x3, . . . , which clearly gives us the single long walk we want. The case

m ≡ 3(mod 4) is similar.
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Figure 13: A partial transition graph and some facial walks for m odd, n ≥ 4 even

Now we have m−3−n
2 + m−1

2 facial four-cycles, n−1 facial hamilton cycles, and 1 facial walk of length

2m + 2. An application of Euler’s formula shows that such faces yield an embedding on a surface

with the conjectured genus, provided the local rotations are valid. A partial rotation at each vertex

is given by the partial transition graph. This partial rotation consists of two transition paths, which

we have labelled A and B in Figure 13(a). A has endpoints 0 and m−2, and B has endpoints m−1

and 1. But we observe that in the supplementary faces we have given in Figure 13(b), the additional

transitions at any vertex are either 0↔ 1 and (m− 2)↔ (m− 1) or 0↔ (m− 1) and (m− 2)↔ 1.

In any case, we are connecting endpoints of A with endpoints of B, giving us a cycle. Thus we have

a valid embedding.

Finally, nonorientability is seen by applying Theorem 9 to the sequence of vertices (n−2, n−1, n, n−
1).

Claim 14 Let m be odd and let n = 2. Then there is an embedding of Km,m,n on the nonorientable

surface of genus
⌈

(m−2)(m+n−2)
2

⌉
. �

Proof Appropriate minimal nonorientable embeddings for K3,3,2 and K5,5,2 are found in [6]. An

appropriate minimal nonorientable embedding of K7,7,2 can be found in the appendix.

For m ≥ 9, this case is similar to the previous one. Again we start with a partial transition graph
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Figure 14: Partial transition graphs for m odd, n = 2

and supplement with explicit facial walks. In fact, the supplementary facial walks are again the ones

in Figure 13(b). We must alter the partial transition graph, though, to one which yields only one

hamilton cycle.

There are two partial transition graphs shown in Figure 14. As in the discussion related to Figure

13, for some vertices in the derived graph, orientations may be reversed on the components labeled

A. Part (a) corresponds to the case m ≡ 3(mod 4),m ≥ 11, and part (b) corresponds to the case

m ≡ 1(mod 4),m ≥ 9. In both cases, k is chosen so that gcd(k + 1,m) = 1 (m is odd, and k + 1 is

either m − 2 or m − 4) and k ≡ 2(mod 4). Thus the boundary walk (0, k + 1, 0) corresponds to a

single hamilton cycle in the derived embedding. Moreover k
2

is odd, so k
2

+ 1 and k are both even, so

that we may decompose the portion of the partial transition graph between k
2 +1 and k into 4-cycles

of type V, as shown in Figure 14. Also k
2 − 2 is odd, so we may similarly decompose the portion of

the partial transition graph between 1 and k
2
−2 into 4-cycles of type V. (m−1, k

2
, k, k

2
−1,m−1) is

a four-cycle of type X, as is ( k2 ,
k
2 + 1, k2 − 1, k2 − 2, k2 ). As in the previous case, the partial transition

graph consists of two paths, labelled A and B, in both the solid and the dashed edges (the dashed

paths are slightly different from the solid ones, but their endpoints are the same). The endpoints of

these paths are as in the previous case, so the local rotations are all valid. Thus we have constructed

an embedding of Km,m such that one face is a hamilton cycle, one face is of length 2m + 2, and all

other faces are 4-cycles. Applying Theorem 9 to the sequence of vertices ( k2 ,
k
2 +1, k2 +2, k2 +1) gives

nonorientability, and Euler’s formula shows that the genus is as conjectured. �
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Claim 15 Theorem 10 is true for the case m odd, n even.

Proof The previous two claims verify the result for l = m, i.e., Km,m,n. However, in the case of

m odd, n even, Theorem 2 does not produce all the desired embeddings of all Kl,m,n from those

of Km,m,n. In this case, we also need embeddings of Km+1,m,n in order to obtain embeddings for

Kl,m,n for all l. Thus, we need embeddings of the complete tripartite graphs K2s+2,2s+1,2t (t ≤ s),

and we have embeddings of the graphs K2s+1,2s+1,2t (t ≤ s). The case K4,3,2 is found in [6]. The

cases K6,5,2 and K8,7,2 are found in the appendix.

We handle the remaining cases by brute force; given the embedding of K2s+1,2s+1,2t constructed

above, we add one vertex, add some crosscaps, and add edges. Specifically, the conjectured genus of

K2s+2,2s+1,2t is ⌈
(2s + 2− 2)(2s+ 1 + 2t− 2)

2

⌉
= 2s2 + 2st− s

and the known genus of K2s+1,2s+1,2t is

⌈
(2s + 1− 2)(2s+ 1 + 2t− 2)

2

⌉
=

⌈
2s2 + 2st− 2s− t+

1

2

⌉
= 2s2 + 2st − 2s − t+ 1.

Thus we may add

(2s2 + 2st − s) − (2s2 + 2st − 2s− t+ 1) = s + t− 1

crosscaps.

Consider the embedding of K2s+1,2s+1 with 2t facial walks of length at least 2s + 1, where t ≥ 2,

given in section 4. Let m = 2s + 1, n = 2t. As in Figure 13(b), let us call the vertices in

the first part of the partition x0, . . . , xm−1, and the vertices in the second part of the parti-

tion y0, . . . , ym−1. Now of the 2t large faces, 2t − 1 of them are hamilton cycles and the other

(the one on the right in Figure 13 (b)) has boundary of length 2m + 2. Call this long walk

W . Add 2t − 1 vertices v1, . . . v2t−1 into the 2t − 1 hamilton cycle faces, add a vertex v0 into

W , and draw the appropriate edges so that we now have a minimal nonorientable embedding of

K2s+1,2s+1,2t. Now W has an edge e = xm−1ym−1. Since xm−1 and ym−1 appear twice each on

W , when we add edges from v0 to the vertices of W we may choose to draw edges v0 ∼ xm−1

and v0 ∼ ym−1 to the occurrences of xm−1 and ym−1 on W away from e. Thus, in our embed-

ding of Km,m,n there is a facial 5-cycle F , either v0x0ym−1xm−1y0v0 or v0xm−2ym−1xm−1y0v0,

depending on the value of m (mod 4). Once we add the vi’s, the local rotation at xm−1 becomes

ym−1vi1y1vi2y2vi3y3 . . . yn−3vin−2yn−2yn−1yn . . . ym−4ym−3v0ym−2vin−1y0ym−1. [See Figure 15.]

We want to add one vertex x∗ to the x-class, and connect it with all y− and v− vertices. We place

x∗ in the facial 5-cycle F , and connect it with all y− and v−vertices in that face. That leaves m− 2

y−vertices and n − 1 v−vertices to be reached, for a total of 2s + 2t − 2 vertices. Since we may

add s + t − 1 crosscaps, it is enough that we reach two new vertices with each crosscap. We may

21



vi 1

y1

vi 2

y2

vi 3

3y

v0

vi n−1

y
0

ym−1

v
0

ym−4

y
m−3

ym−2

y
n−3

vi n−2
yn−2yn−1

yn

m−1
x

F

Figure 15: Rotation at xm−1

do so by “skipping” every other face, as in Figure 16. In this way we reach, successively, vi1 and

y1, then vi2 and y2, and so on, until we get to vin−2 and yn−2, then yn−1 and yn,. . . , ym−4 and

ym−3; next we skip v0 and reach ym−2 and vin−1 with the final crosscap. So after adding these

crosscaps, F becomes part of one large face with all y−vertices and all v−vertices on the boundary.

Now we may connect x∗ with all remaining y− and v−vertices and we have the desired embedding

of K2s+2,2s+1,2t, t ≥ 2.

Observe that in the above proof, the fact that enables us to reach two new vertices with each added

crosscap is the following. If we step from face to face about xm−1 from the face F to the next

occurence of a face containing the vertex v0 (in either direction), we will take an odd number of

steps. This fact is guaranteed by the partial transition graph of Figure 13, because the appearances

of v0 about xm−1 correspond to the “gaps” in the partial transition graph. But the gaps are an

odd distance apart in the local rotation at xm−1 because the component labeled B in the figure

corresponds to one hamilton face in the embedding of K2s+1,2s+1, which, after adding the third part

of the tripartition, creates two triangular faces incident with xm−1.
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Figure 16: Adding crosscaps around xm−1

One may see that the same situation is present in either of the partial transition graphs of K2s+1,2s+1

with 2 facial hamilton cycles given in Figure 14. That is, the components labeled A correspond to odd

distances about xm−1 between consecutive faces containing v0, where v0 is the vertex corresponding

(as above) to the long cycle from Figure 13(b). The component labeled A in Figure 14(b) is similar

to the component labeled B in Figure 13(a), which we covered above. For Figure 14(a), we observe

that the edges (m − 4) ∼ 0 correspond to a hamilton facial cycle in the derived embedding, and

so will contribute two triangular faces once we add the third part of the tripartition; the edges

(m − 2) ∼ (m − 3) and similarly the edges (m − 3) ∼ (m − 4) correspond to facial 4-cycles in the

derived embedding, and thus each contribute one face about xm−1. Then there are exactly four

faces about xm−1 that lie strictly between the faces containing xm−1 and v0, so that those faces are

at an odd distance (about xm−1) as claimed. Thus we may add crosscaps as in the case t ≥ 2, and

obtain the required embeddings of Km+1,m,n, completing the proof of the claim. �

Claim 16 Theorem 10 is true in the case m ≡ 2(mod 4), n odd. �

Proof We again prove the basis case l = m by examining Km,m,n, and the claim then follows for
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l > m by Theorem 2. Any Km,m,n with m ≤ 2 is planar. A minimal nonorientable embedding of

K6,6,1 is shown in the appendix.
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Figure 17: Transition graph for m ≡ 2(4), m ≥ 6, n = 1

Suppose m ≡ 2(mod 4), m ≥ 10, and n = 1. Write m = 2s, where s is odd. The transition graph

for this case is shown in Figure 17, where k is some even number between 0 and s. Observe that

the boundary walks (0, s, 0), (k, s+ k, k), and (k + 1, s+ k+ 1, k+ 1) are 4-cycles of type I, and the

segments of the graph from 0 to k, k+1 to s, s+1 to s+k−1, and s+k+2 to m−1 = 2s−1 all have

even length, and hence may be filled out with 4-cycles of type V (as in Figure 17). The boundary

walk (s + k + 1, s + k + 2, s + k, s + k − 1, s + k + 1) is a four-cycle of type X, and the boundary

walk (2s − 1, s+ 1, 2s− 1) corresponds to a hamilton cycle since gcd(s − 2, 2s− 1) = 1. Applying

Theorem 7 to the sequence of vertices (s + k, s+ k + 1, s+ k + 2, s+ k + 1) gives nonorientability.

(The preceding proof may be adapted to any n, 1 < n ≤ m − 5. We simply change the signature

on the middle vertex of (n − 1)/2 of the 4-cycles of type V (i.e., change the vertex from solid to

open or vice versa). This transforms those (n− 1)/2 4-cycles of type V into n− 1 hamilton cycles of

type H. Euler’s formula verifies the embedding is on the conjectured minimal nonorientable surface.

However, we handle all cases n ≥ 3 in another way below.)

Now suppose m ≡ 2(mod 4), m ≥ 6, and suppose that n ≥ 3 is odd. Write m = 2s where s is

odd. The transition graph for the case n = m − 1 is shown in Figure 18. The boundary walk

(0, s, 0) is a 4-cycle of type I. The segments of the graph from 2 to s and from s + 1 to 0 are filled

in with hamilton cycles of type H. The boundary walk A = (1, s + 1, 1, 2, 1) has net voltage s + 1
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Figure 18: Transition graph for m ≡ 2(4), m ≥ 6, n = m − 1

and length 4; gcd(s + 1, 2s) = 2, so A corresponds to 2 cycles of length 4 · s, that is, two hamilton

cycles. Thus the transition graph in Figure 18 gives a total of n hamilton cycles and m
2 four-cycles.

Euler’s formula verifies that this embedding has the conjectured genus. For 3 ≤ n < m − 1, replace

the type-H hamilton cycles two at a time by type-V four-cycles, starting with (3, 4, 3) and (5, 4, 5)

(as above, this is effected by changing the signature on the vertex the two type-H cycles have in

common–for example, we start by changing vertex 4 from open to solid). Applying Theorem 7 to

the sequence of vertices (1, 2, 3, 2) gives nonorientability.

This completes the proof of the claim. �

Claim 17 Theorem 10 is true in the case m ≡ 0(mod 4), n odd, n ≥ 3. �

Proof As usual, we prove the basis case l = m by examining Km,m,n, and the claim then follows

for l > m by Theorem 2. Recall that K4,4,3 does not conform to Equation 2. It is handled in [6].

Thus we need to use K5,4,3 and K6,4,3 as bases for the induction in place of K4,4,3. An embedding

for K5,4,3 satisfying Equation 2 is provided in [6]; one for K6,4,3 is provided in the appendix.

Suppose m ≡ 0(4), m ≥ 8, n ≥ 3. For the case n = m − 1, we begin with the the partial transition

graph found in Figure 8. For 3 ≤ n < m − 1, we replace the type-H hamilton cycles two at a time

with 4-cycles of type V. Then we supplement the resulting partial transition graph with m
2 4-cycles

and 3 hamilton cycles as shown in Figure 19 for the case m = 12. One may check that all local

rotations are valid. For nonorientability, observe that the edges x0y1 and x1y0 must have the same
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Figure 19: Facial walks for K12,12,n, n odd, n ≥ 3

left-to-right orientation in any orienting of the cycle in Figure 19(b), and opposite orientations in

any orienting of the cycle in Figure 19(c). Euler’s formula shows that the genus of this embedding

is as in Equation 2. This completes the proof of the claim. �

Claim 18 Theorem 10 is true in the case m ≡ 0(mod 4) and n = 1. �

Proof We prove the basis case l = m by examining Km,m,1, and the claim then follows for l > m

by Theorem 2. Recall that K4,4,1 does not conform to Equation 2. It is handled in [6]. Thus, we

must use K5,4,1 and K6,4,1 as bases for the induction. An embedding for K5,4,1 satisfying Equation

2 is provided in [6]; one for K6,4,1 is provided in the appendix.

Suppose m ≡ 0(mod 4), m ≥ 8, and n = 1. For this case we must use a more complicated

construction. To outline the proof, we first find a minimal embedding of the bipartite graph Km,m

with the property that the vertices in one part of the partition all “see” each other. Next, we

perform a diamond sum of this embedding with a minimal embedding of Km,3 to get a minimal

genus embedding of Km+1,m. Finally, we connect one of the “m + 1” vertices with all the others,

giving us Km,m,1.

Let us say Km,m has bipartition (U, V ) where U = {u0, . . . , um−1} and V = {v0, . . . , vm−1}. We
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want to find a minimal embedding Π of this graph so that for any pair of vertices ui, uj in U , there

is some face of Π containing both ui and uj. This is not so hard using transition graphs. For

instance, let G be a cyclic m-transition graph with solid edges representing the rotations of the V

side, and dashed edges representing the rotations of the U side. Suppose also that there is a solid

edge j ∼ (j + k) in G which is part of the boundary walk A. Such a solid edge implies that for each

i = 0, . . . ,m− 1 the vertex vi−j is adjacent to ui and ui+k in some face corresponding to A. Thus,

vertex ui is in a face with the vertex ui+k if there is a solid edge in the transition graph of “length”

k, i.e. one of the form j ∼ (j + k) for some j. Thus, for the embedding we want, it suffices to find

a cyclic m-transition graph G such that for every k, 1 ≤ k ≤ m/2, there is an edge j ∼ (j + k) for

some j, and such that every face in the derived graph is a 4-cycle.

In addition (for reasons that will become clear), we would like there to be two solid edges of length

m/2 that are an odd distance apart in the solid hamilton cycle.

We handle the problem in two cases, namely m ≡ 0(mod 8) and m ≡ 4(mod 8). First, let m = 8s,

s ≥ 1. The transition graph for m = 16 is shown in Figure 20. In general the transition graph is

constructed as follows. We begin with a 4-cycle of type V having boundary walk (0, 4s+1, 0, 4s−1, 0).

Clearly this walk will yield solid edges of length 4s− 1. Next we construct a 4-cycle of type X with

boundary walk (4s − 1, 1, 4s+ 1, 8s− 1, 4s − 1), in which the 1 ∼ (4s − 1) and (4s + 1) ∼ (8s − 1)

edges are solid. This walk handles the solid edges of length 4s − 2. We continue in this fashion as

in Figure 20, until the 4-cycle of type X with boundary walk (s− 1, 3s, 7s+ 1, 5s, s− 1) (with solid

edges (s − 1) ∼ 3s and 5s ∼ (7s + 1) of length 2s + 1) has been drawn. Next we construct 4-cycles

of type I with boundary walks (s, 5s, s) and (3s, 7s, 3s), whose solid edges have length 4s = m/2.

Then we resume the construction of the progressively smaller 4-cycles of type X, finishing with the

one with boundary walk (2s − 1, 2s, 6s+ 1, 6s, 2s− 1) in which (2s − 1) ∼ 2s and (6s + 1) ∼ 6s are

solid. Now for each k, 1 ≤ k ≤ 2s − 1 and 2s + 1 ≤ k ≤ 4s − 1, we have a solid edge j ∼ (j + k)

for some j. For the solid edges of length 2s, we construct a 4-cycle of type V with boundary walk

(4s, 6s, 4s, 2s, 4s). A quick inspection verifies that the solid edges and the dashed edges each form

a hamilton cycle. It remains to orient each cycle, and assign vertex signatures; ones analogous to

those in Figure 20 will do. Finally, the solid edges of the two 4-cycles of type I are at a distance of

4s − 1 in the solid hamilton cycle (where by the distance between two edges we mean the distance

of their corresponding vertices in the line graph).

Suppose m = 8s + 4, s ≥ 2. The transition graph for m = 36 is shown in Figure 21. In general

we construct the desired cyclic m-transition graph in the following way. We begin with a 4-cycle

of type X, with boundary walk (0, 4s + 2, 4s + 3, 1, 0), in which the 0 ∼ (4s + 2) and 1 ∼ (4s + 3)

edges of length 4s + 2 are solid. This handles the edges of length m
2

= 4s + 2. Next we construct

a 4-cycle of type X with boundary walk (0, 4s + 5, 4s + 4, 8s + 3, 0) in which the 0 ∼ (4s + 5) and

(8s + 3) ∼ (4s + 4) edges of length 4s − 1 are solid. This handles the solid edges of length 4s − 1.
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Figure 20: Transition graph for K16,16,1

Next we construct a 4-cycle of type X with boundary walk (8s + 3, 4s + 6, 4s + 5, 8s + 2, 8s + 3)

in which the 0 ∼ (4s + 5) and (8s + 3) ∼ (4s + 4) edges are solid. This handles the solid edges of

length 4s− 3. We continue in this manner, constructing 4-cycles of type X whose solid edges have

odd length, until we have drawn the edges of length 3. Then we do the same thing with the even

edges, beginning with (1, 4s+ 1, 4s+ 2, 2, 1), with solid edges 1 ∼ (4s+ 1) and 2 ∼ (4s+ 2), of (even)

length 4s. We make one exception, though, when constructing the even edges. Namely, when we

construct the 4-cycle of type X (s+ 1, 3s+ 1, 3s+ 2, s+ 2, s+ 1), we draw the edges of length 1 (i.e.,

(s + 2) ∼ (s + 1) and (3s + 2) ∼ (3s + 1)) solid, and the edges of length 2s (i.e., (s + 1) ∼ (3s + 1)

and (s+ 2) ∼ (3s+ 2)) dashed. At this point we have drawn solid edges of length k for each odd k,

1 ≤ k ≤ 4s− 1, and each even k, 2 ≤ k ≤ 4s+ 2 except for k = 2s. We then draw a 4-cycle of type

X with boundary walk (4s+ 3, 6s+ 3, 6s+ 4, 4s+ 4, 4s+ 3), in which the edges (4s+ 3) ∼ (6s+ 3)

and (4s + 4) ∼ (6s + 4) of length 2s are solid. This handles the solid edges of length 2s. Finally,

we draw a 4-cycle of type X with boundary walk (2s+ 1, 6s+ 4, 6s+ 5, 2s+ 2, 2s+ 1), in which the

edges of length 4s+ 1 are solid.

It is easy to see that the dashed edges yield a hamilton cycle: almost all dashed edges are of the

form j ∼ (j + 1). The solid edges are a bit more difficult, but the reader is encouraged to verify

that they indeed form a hamilton cycle. It remains to fix an orientation on the cycles and to assign

a signature to the vertices. One may choose an orientation and a signature in an analogous way to
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that shown in Figure 21. Finally, the two solid edges of length 4s+ 2 are at a distance of 2s+ 1 in

the solid hamilton cycle.
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Figure 21: Transition graph for K36,36,1

This construction fails for m = 12. A special transition graph for m = 12 is shown in Figure 22. The

graph has the required properties: all faces of the derived embedding are 4-cycles, all edge lengths

occur, two solid edges of length m
2 appear at an odd distance apart (namely, 3).
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Figure 22: Transition graph for K12,12,1

Now we have the desired embedding Π of Km,m such that all faces are 4-cycles, and such that

1. for any pair of vertices ui, uj in U , there is some face of Π containing both ui and uj, and

2. there are two faces containing the vertices ui and ui+m/2, which are an odd distance apart in

the local rotation at ui+m/2.
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In particular u0 and um/2 share two faces. Now let Π′ be a minimal genus embedding of Km,3.

Suppose the three vertices in the second part of the partition of Km,3 are x, y, and z. Let G =

Km,m and G′ = Km,3, and perform the diamond sum Π(G, um/2) ♦ Π′(G′, z). The resulting

embedding is a minimal genus embedding of Km+1,m, where the part with m + 1 vertices consists

of U \ {um/2} ∪ {x, y}. We claim that we may add edges u0x, u0y, and u0ui for all i, 1 ≤ i < m/2

and all i, m/2 < i ≤ m − 1. Certainly we may add all u0ui edges by condition (1) above. Now

consider the embedding Π with respect to the vertex um/2. There exist two facial four-cycles

I1 and I2 containing both u0 and um/2. Without loss of generality say I1 = u0vj1um/2vj2 and

I2 = u0vj3um/2vj4 . Moreover, since we identify the neighbors of z with the neighbors of um/2, there

exist facial walks J1 = zvj1p1vj2 and J2 = zvj3p2vj4 in Π′, where pi is either x or y for i = 1, 2.

Then in Π ♦ Π′, we have new facial walks u0vj1p1vj2 and u0vj3p2vj4 . Now in Π′, the vj ’s have only

the neighbors x, y, and z. Moreover, all the faces in Π′ are four-cycles. Thus, if we follow the faces

around z in, say, the clockwise direction, z sees alternately x, y, x, . . .. But by condition (2) above

the facial cycles I1 and I2 in Π were an odd distance apart in the local rotation at um/2, and it

follows that p1 6= p2. Thus we may add the edges u0x and u0y, as claimed. Nonorientability is easy

to see from the transition graph G. [Alternatively, we may just insist that the embedding of Km,3 is

nonorientable.]

This completes the proof of the claim. �

And that completes the proof of Theorem 10. �

5 For further study

The most obvious direction for further research is to complete the corresponding orientable conjecture

for the complete tripartite graphs. We have made some progress on this problem. In particular, we

have verified Equation 1 for Kl,m,n, l ≥ m ≥ n, in the following cases (where the ordered pair (a, b)

represents the case m ≡ a(mod 4), n ≡ b(mod 4)): (0, 0), (0, 2), (1, 1), (2, 0), (2, 1) (except for the

case n = 1), (2, 2), (2, 3), and (3, 3).

Another direction for further research is to consider complete p-partite graphs for p > 3. The

conjectured value of the genus of Kl,m,n comes directly from Euler’s formula, and from assuming

a maximal number of faces in the embedding (particularly a maximal number of triangles). It is

easy, in the case of Kl,m,n, to calculate an upper bound on the number of triangular faces: namely,

2mn. The assumption that 2mn triangular faces may be realized in some embedding of Kl,m,n yields

exactly Conjecture 1. For Kp,q,r,s, one may calculate an upper bound on the number of triangular

faces in an embedding by using a linear program. Doing so, one obtains the following lower bounds

on the genus of G = Kp,q,r,s, where p ≥ q ≥ r ≥ s:
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1. If p ≥ q + r then g(G) ≥
⌈

(p−2)(q+r+s−2)
4

⌉
and g̃(G) ≥

⌈
(p−2)(q+r+s−2)

2

⌉

2. If p ≤ q + r then g(G) ≥
⌈

(p+s−2)(q+r−2)
4

⌉
and g̃(G) ≥

⌈
(p+s−2)(q+r−2)

2

⌉

In [11] Jungerman proved that the genus of Kn,n,n,n is (n − 1)2 for n 6= 3, and in [12] Jungerman

proved that the nonorientable genus of Kn,n,n,n is 2(n − 1)2 for n ≥ 3. Both results realize the

lower bound supplied in (2) above. On the other hand, it is also shown in [12] that K2,2,2,2 has no

embedding on the Klein bottle, so that for this graph (2) above is not tight. Bouchet has obtained

several results about embeddings of complete equipartite graphs. Among these results is a new proof

of the fact that g(Kn,n,n,n) is (n− 1)2 when n is not a multiple of 2, 3 or 5. [2].

Finally, define the join of two graphs G and H, written G + H, to be the graph with vertex set

V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ {xy|x ∈ V (G), y ∈ V (H)}. In the proof of Claim

18 we constructed minimal nonorientable embeddings of complete bipartite graphs K4s,4s with the

property that for any two vertices ui and uj in a predermined side U of the partition, there is a face

Fij containing both ui and uj. Clearly this can be extended to an embedding of K4s+K4s by simply

putting the edge uiuj in the face Fij for all i 6= j. We have obtained similar constructions for K2s,2s,

when s is odd, so that for any even m, it is true that g̃(Km + Km) = g̃(Km,m). Since Km,m is a

subgraph of Km+Km, it is always true that g(Km+Km) ≥ g(Km,m) and g̃(Km+Km) ≥ g̃(Km,m).

Based on face size considerations and Euler’s formula, we make the following conjecture.

Conjecture 19 Let m ≥ 2. Then

g(Kl +Km) =





⌈
(l−2)(m−2)

4

⌉
= g(Kl,m), if m ≤ l + 1

⌈
(m−3)(m+2l−4)

12

⌉
, if m ≥ l + 1

(3)

g̃(Kl +Km) =





⌈
(l−2)(m−2)

2

⌉
= g̃(Kl,m), if m ≤ l + 1

⌈
(m−3)(m+2l−4)

6

⌉
, if m ≥ l + 1

(4)

6 Appendix: Small cases

In this section we give those embeddings not obtained by the general construction. The embeddings

appearing in this appendix were found by a computer search, and the format in which they appear

here is the format in which the program outputs them. A description of the format is followed by

the embeddings themselves.

6.1 Description of the embeddings

Let us suppose Kl,m,n has tripartition (X = {x1, x2, . . . , xl}, Y = {y1, y2, . . . , ym}, Z = {z1, z2, . . . ,

zn}). Then it may be regarded as the union of a complete bipartite spanning subgraph H ∼= Kl,m+n
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with bipartition (X,Y ∪ Z) and a complete bipartite subgraph J ∼= Km,n with bipartition (Y, Z).

From this point of view, the complete tripartite genus conjectures are just strengthenings of Ringel’s

results on complete bipartite graphs. The conjectures say that if l ≥ m ≥ n then g(Kl,m,n) =

g(Kl,m+n) and g̃(Kl,m,n) = g̃(Kl,m+n). In other words, we can find an embedding of H ∼= Kl,m+n

with the genus specified by Ringel’s formula, in such a way that the edges of the J ∼= Km,n can

be added in the same surface, as chords of the faces. (Unfortunately, the embeddings of complete

bipartite graphs given by Ringel do not seem to allow us to do this.)

So, we specify our embeddings of Kl,m+n below by describing an embedding of H ∼= Kl,m+n , along

with the faces in which the edges of J , having the form yizj , are to be inserted. The upper part

of each description is an l × (m + n) table describing the embedding of H. The rows represent the

vertices of X and the columns represent the vertices of Y ∪ Z, with a vertical line dividing Y from

Z. Each cell represents an edge of H, and contains two letters denoting the two faces to which

the edge belongs (faces start at ‘a’). Since the embeddings below do not require facial walks with

repeated vertices, we can determine each facial cycle from the table. The lower left part of each

description is an n ×m table describing the embedding of J . The rows represent the vertices of Z

and the columns represent the vertices of Y . Each cell contains one letter denoting the face of H

into which the edge yizj is to be inserted. Since the embeddings below contain only 4- and 6-cycles

as faces, and we insert edges incident with at most half of the vertices of a given face, we do not

need to worry about edges crossing when more than one is inserted in a given face, which happens

in some cases. The lower right part of each description lists a sequence of faces (not guaranteed to

be minimal) that can be used to prove nonorientability.

y1 y2 y3 z1 z2

x1 ab ac de bd ce
x2 af ag dh dg fh
x3 bi ci hj bj ch
x4 fi gi ej gj ef
z1 b g j gdbifa
z2 f c h

Figure 23: Illustration of embedding format

To illustrate, in Figure 23 we see the description of an embedding of K4,3,2 on N3, with labels added.

The face ‘b’ of H, for example, has facial walk (x1z1x3y1) from the upper part, and from the lower

part we see that the edge y1z1 of J is to be inserted in this face. Rotations around each vertex in

H can be generated from the upper part of the description: for example, around vertex x1 we can

see that the faces occur in cyclic order (abdec) so the vertices appear in order (y1z1y3z2y2). The

sequence ‘gdbifa’ shows that the embedding is nonorientable, as follows. Assume an orientation of

faces exists, so that each edge is oriented once in each direction. Call the direction from X to Y ∪Z
down, and the opposite direction up. The edges of each face must be oriented alternately up and
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down. Without loss of generality we may orient x2z1 up in ‘g’, so it must be down in ‘d’. Then x1z1

must be up in ‘d’ and down in ‘b’, x3y1 must be down in ‘b’ and up in ‘i’, x4y1 must be down in ‘i’

and up in ‘f’, and x2y1 must be down in ‘f’ and up in ‘a’. But now x2y2 is down in both ‘a’ and ‘g’,

a contradiction.

6.2 Embeddings not covered by the general constructions

K6,4,1 on N6

ab ac bd ce de
af ag df gh dh
bi cj bk ck ij
fl gm fm eg el
in mo mn ho hi
ln jo kn ko jl
l j d h hdbi

K6,4,3 on N10

ab ac bd ce df eg fg
ah ai dh ej dk ek ij
bl cm bn co fo lm fn
hp iq hr oq op gr gi
ps mt ru ju pt mr js
ls qt nu qu kt kl ns

p t d o qujecmt
l m r e
s i n j

K6,5,2 on N10

ab ac bd ce df eg fg
ah ai dh ej dk ek ij
bl cm bn co fo lm fn
hp iq hr op oq gr gi
ls qt rt ju qu lr js
ps mt nt pu ku km ns

l m r e k oqukdblsp
s i n j f

K6,6,1 on N10

ab ac bd ce df eg fg
ah ai dh ej dk ek ij
bl cl bm cn fo no fm
hp ip hq nr qr gn gi
ls lt qu ju kq kt js
ps pt mu ru or ot ms
s i m j f g qkdblsph
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K7,7,2 on N18

ab ac bd ce df eg fh gi hi
aj ak dj ek dl em hn ln hm
bi co bo cp fq gr fr gp iq
is ks tu kt lv mw vw il mu
jx yz jt tA vB xB nv ny zA
xC oz oD pE qC rx rE pD qz
sC sy uD AE BC wB wE yD uA

i y D p l g n BvldbisCx
i z u A q m h

K8,7,2 on N21

ab ac bd ce df eg fh gi hi
aj ak dj ek dl em hn ln hm
bo co bp cq fr gs fs gp qr
jt kt ju kv lw sv sw il iu
ox oy xz qA zB my nB nA mq
tC tD pE vF rG vG EF pC rD
CH yI uz FJ wz yJ wF CI uH
xH DI xE AJ BG GJ BE AI DH
C I p A l g n zwldbox
H D u q r m h
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Graphen, Comment. Math. Helv. 45 (1970) 152-158.

[24] S. Stahl and A. T. White, Genus embeddings for some complete tripartite graphs, Discrete

Math. 14 (1976) 279-296.

[25] A. T. White, The genus of cartesian products of graphs, Ph.D. thesis, Michigan State University,

1969.

[26] A. T. White, The genus of the complete tripartite graph Kmn,n,n, J. Combin. Theory 7 (1969)

283-285.

35


