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In this paper, we prove that there exists a function a : N0 × R+ → N
such that for each ε, if G is a 4-connected graph embedded on a surface of
Euler genus k such that the face-width of G is at least a(k, ε), then G has a
2-connected spanning subgraph with maximum degree at most 3 such that the
number of vertices of degree 3 is at most ε|V (G)|. This improves results due
to Kawarabayshi, Nakamoto and Ota [11], and Böhme, Mohar and Thomassen
[4].
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1. INTRODUCTION

All graphs in this paper are simple, with no loops or multiple edges. A closed
surface means a connected compact 2-dimensional manifold without boundary. We
denote the orientable and nonorientable closed surfaces of genus g by Sg and Ng,
respectively. For a closed surface F 2, let χ(F 2) denote the Euler characteristic of
F 2. The number k = 2 − χ(F 2) is called the Euler genus of F 2. Let F 2

k denote a
closed surface of Euler genus k. It is well-known that for every even k ≥ 0, either
F 2

k = Sk/2 or F 2
k = Nk, and for every odd k, F 2

k = Nk. If a graph G is embedded on
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a surface so that every noncontractible closed curve intersects G at least k times,
we say the embedding is k-representative. The face-width or representativity is the
smallest nonnegative integer k for which the embedding is k-representative.

In 1931 Whitney [21] showed that 4-connected planar triangulations are hamilto-
nian, and in 1956, Tutte [20] proved that every 4-connected planar graph is hamil-
tonian. Almost thirty years later, Thomassen [18] (see also [5]) gave a short proof
of Tutte’s theorem and extended it to show that every 4-connected planar graph is
hamiltonian-connected, i.e., for any two distinct vertices u, v, there is a hamiltonian
path from u to v. There are many results inspired by these theorems of Whitney,
Tutte and Thomassen. While we cannot survey all such results, we mention some
that motivate the present paper.

Thomas and Yu [17] extended Tutte’s theorem to projective-planar graphs and
proved that every 4-connected projective-planar graph is hamiltonian. However,
Archdeacon, Hartsfield, and Little [1] proved that for each k there exists a k-
connected triangulation of some orientable surface having face-width k in which
every spanning tree has a vertex of degree at least k. In particular, such graphs are
far from having hamiltonian cycles. So a fixed connectivity or face-width or both,
independent of the surface, will not suffice for hamiltonicity on arbitrary surfaces.

If the surface is fixed and the face-width is large enough, then the situation is
different. The first results in this direction were by Thomassen [19], who examined
a generalization of hamiltonicity. A k-tree is a spanning tree of maximum degree at
most k; this generalizes the idea of a hamilton path, which is a 2-tree. Barnette [2]
showed that every 3-connected planar graph has a 3-tree. Thomassen [19] showed
that local planarity provides a similar result. He proved that a triangulation of a
fixed orientable surface with large face-width has a 4-tree. Ellingham and Gao [6]
modified the method of [19] to prove that a 4-connected triangulation of a fixed
orientable surface with large face-width has a 3-tree.

These results were improved by examining another generalization of hamiltonicity.
A k-walk is a spanning closed walk that uses every vertex at most k times; this
generalizes the idea of a hamilton cycle, which is a 1-walk. Jackson and Wormald [9]
noted that if a k-walk exists, then a (k+1)-tree exists. Gao and Richter [8] improved
Barnette’s result by showing that every 3-connected planar graph has a 2-walk. Yu
[22] improved the results of Thomassen and Ellingham and Gao by showing that
on a fixed surface, a 3-connected graph of large face-width has a 3-walk, and a
4-connected graph of large face-width has a 2-walk: the surface can be orientable
or nonorientable, and the graph need not be a triangulation. Yu [22] also verified
a conjecture of Thomassen [19] that every 5-connected triangulation of large face-
width on a fixed surface is hamiltonian. Kawarabayashi [10] improved the conclusion
here to hamiltonian-connected. Yu [22] posed the question of whether every 5-
connected graph (not just triangulation) of large face-width on a fixed surface is
hamiltonian, which is still unresolved. Thomassen [19] showed that for every surface
of Euler genus greater than 2 there are 4-connected triangulations of arbitrarily large
face-width that are not hamiltonian, so this would be best possible.

One way to tighten results on the existence of k-trees or k-walks is to bound
the number of vertices of high degree, or visited more than once. Kawarabayashi,
Nakamoto and Ota improved Thomassen’s result on 4-trees and Yu’s result on 3-
walks as follows (the bounds are best possible).
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Theorem 1.1 ([11]). For every non-spherical closed surface F 2 of Euler genus
k, there exists a positive integer N(F 2) such that every 3-connected N(F 2)-repre-
sentative graph on F 2 has a 4-tree with at most max{2k − 5, 0} vertices of degree
4, and a 3-walk in which at most max{2k − 4, 0} vertices are visited 3 times.

A further way to generalize hamiltonicity is as follows. A k-covering (sometimes
called a k-trestle) of a graph G is a spanning 2-connected subgraph of G with
maximum degree at most k. Hence a 2-covering is exactly a hamiltonian cycle. The
first result in this area was by Barnette [3], who showed that every 3-connected
planar graph has a 15-covering; this was improved by Gao [7], who showed that
every 3-connected graph on a surface with non-negative Euler characteristic has a
6-covering. Barnette showed this would be best possible. For arbitrary surfaces,
Sanders and Zhao [16] showed that 3-connected graphs on a fixed surface F 2 have
a K(F 2)-covering, where K is bounded by a linear function of the genus.

It is possible to obtain a result for graphs of large face-width on a fixed surface,
and at the same time bound the number of vertices of high degree. Kawarabayashi,
Nakamoto and Ota proved the following (the bounds “4k−8” and “2k−4” are best
possible).

Theorem 1.2 ([11]). For every non-spherical closed surface F 2 of Euler genus
k, there exists a positive integer N(F 2) such that every 3-connected N(F 2)-repre-
sentative graph on F 2 has an 8-covering with at most max{4k − 8, 0} vertices of
degree 7 or 8, among which at most max{2k − 4, 0} have degree 8.

The bound “8” in Theorem 1.2 is not best possible. Kawarabayashi, Nakamoto
and Ota improved this to 7, at the cost of increasing the number of vertices of large
degree, as follows (the bound “6k − 12” is best possible).

Theorem 1.3 ([12]). For every non-spherical closed surface F 2
k of Euler genus

k ≥ 2, there exists a positive integer M(F 2) such that every 3-connected M(F 2)-re-
presentative graph on F 2 has a 7-covering with at most 6k − 12 vertices of degree
7.

However, for each closed surface F 2
k with k > 2, there exists a triangulation with

arbitrarily large face-width having no 6-covering.
Now let us focus on 4-connected case. Recently, Böhme, Mohar and Thomassen

proved the following.

Theorem 1.4 ([4]). There exists a function a : N0 × R+ → N such that for
each ε > 0, if G is a 4-connected graph embedded on a closed surface of Euler genus
k such that the face-width of G is at least a(k, ε), then G has a 4-covering such that
the number of vertices of degree 3 or 4 is at most ε|V (G)|.

Kawarabayashi, Nakamoto and Ota were able to provide a linear bound on the
number of vertices of degree 4.

Theorem 1.5 ([11]). For every non-spherical closed surface F 2 of Euler genus
k, there exists a positive integer N(F 2) such that every 4-connected N(F 2)-repre-
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sentative graph on F 2 has a 4-covering with at most max{4k − 6, 0} vertices of
degree 4.

But the bound “4” in the above theorem is not best possible. The purpose of
this paper is to prove that the bound “4” can be improved to 3.

Theorem 1.6. There exists a function a : N0 × R+ → N such that for each
ε > 0, if G is a 4-connected graph embedded on a closed surface of Euler genus k
such that the face-width of G is at least a(k, ε), then G has a 3-covering (2-connected
spanning subgraph with maximum degree at most 3) such that the number of vertices
of degree 3 is at most ε|V (G)|.

But perhaps the bound on the number of vertices of degree 3 in the above theorem
is not best possible. The natural conjecture is the following.

Conjecture 1.1 ([11]). For every non-spherical closed surface F 2
k of Euler

genus k, there exists a positive integer M(F 2) such that every 4-connected M(F 2)-
representative graph on F 2 has a 3-covering with at most ck vertices of degree 3,
where c is a constant which does not depend on k.

The bound “3” here would be best possible, as shown by Thomassen’s nonhamil-
tonian 4-connected triangulations of large face-width, mentioned earlier. If true,
Conjecture 1.1 implies a conjecture of Mohar [13] which says for every non-spherical
closed surface F 2

k of Euler genus k, there exists a positive integer M(F 2) such that
every 4-connected M(F 2)-representative graph on F 2 has a 3-tree with at most ck
vertices of degree 3, where c is a constant which does not depend on k.

However, Conjecture 1.1 seems to be difficult because it is closely related to
the conjecture of Nash-Williams [14] that every 4-connected graph in the torus is
hamiltonian. So far, we know from Sanders and Zhao [16] that every 4-connected
graph in the torus or in the Klein bottle has a 3-covering.

2. DEFINITIONS AND PRELIMINARY RESULTS

If P is a path containing vertices u and v, let P [u, v] denote the subpath of P
between u and v. If C is a cycle with a particular assumed direction, let C[u, v]
denote the subpath of C from u to v in the given direction.

A disk graph is a graph H embedded in a closed disk, such that a cycle Z of H
bounds the disk. We write ∂H = Z. An internally 4-connected disk graph or I 4CD
graph is a disk graph H such that from every internal vertex v (v ∈ V (H)−V (∂H))
there are four paths, pairwise disjoint except at v, from v to ∂H .

A cylinder graph is a graph H embedded in a closed cylinder, such that two
disjoint cycles Z0, Z1 of H bound the cylinder. We write ∂H = Z0 ∪ Z1. An
internally 4-connected cylinder graph or I 4CC graph is a cylinder graph H such
that from every internal vertex v there are four paths, pairwise disjoint except at
v, from v to ∂H . Note that an I4CC graph is not necessarily connected: Z0 and Z1

may lie in different components.
If G is an embedded graph and Z is a contractible cycle of G bounding a closed

disk, then the embedded subgraph consisting of all vertices, edges and faces in that
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closed disk is a disk subgraph of G. Similarly, if Z0 and Z1 are disjoint homotopic
cycles bounding a closed cylinder, then the embedded subgraph H consisting of
all vertices, edges and faces in that closed cylinder is a cylinder subgraph of G.
We write H = CylG[Z0, Z1] or just H = Cyl[Z0, Z1]. If the surface is a torus or
Klein bottle and Z0, Z1 are nonseparating, then this notation is ambiguous, but it
should be clear from context which one of the two possible cylinders we mean. We
define Cyl(Z0, Z1] to be the graph Cyl[Z0, Z1]−V (Z0), and define Cyl[Z0, Z1) and
Cyl(Z0, Z1) similarly.

The following is easy to prove.

Lemma 2.1. Suppose G is a 4-connected embedded graph. Any disk subgraph of
G bounded by a cycle of length at least 4 is I 4CD, and any cylinder subgraph of G
is I 4CC.

Suppose G is an embedded graph. If R = {R0, R1, . . . , Rm} is a collection of
pairwise disjoint homotopic cycles with Ri ⊆ Cyl[R0, Rm] for each i, and S =
{S0, S1, . . . , Sn−1} is a collection of disjoint paths with Sj ⊆ Cyl[R0, Rm] for each
j, such that Ri ∩ Sj is a nonempty path (possibly a single vertex) for each i and j,
then we say that (R,S) is a cylindrical mesh in G.

In two places in the proof of Theorem 1.6 (Steps 3 and 6) we will need to move
two consecutive cycles in a cylindrical mesh closer together, so that there are no
vertices between them. An arbitrary homotopic shifting of a cycle may not preserve
the existence of a mesh, so we need the following technical lemma.

Lemma 2.2. Suppose N is an I 4CC graph with ∂N = R0 ∪ R1 that has a cylin-
drical mesh ({R0, R1}, {S0, S1, . . . , Sn−1}).
(i) In N there are disjoint cycles R′

0 and R′
1 homotopic to R0 (with R′

0 closer
to R0) and pairwise disjoint paths S′

0, S
′
1, . . . , S

′
n−1, such that Cyl(R′

0, R
′
1) is

empty, each S′
j has the same ends as Sj, and R′

i ∩ S′
j is a nonempty path for

each i and j.
(ii) Moreover, if every component of Cyl(R0, R1) has at most two neighbors on R0,

we may take R′
0 = R0.

Proof. (i) Embed N in the plane with R1 as the outer face and R0 as an inner face,
with S0, S1, . . . Sn−1 directed outwards from R0 to R1, and with all cycles directed
clockwise. The proof is by induction on the number of vertices of Cyl(R0, R1). If
there are none we are finished. Otherwise, let T be a component of Cyl(R0, R1).
Since N is I4CC, T has at least two neighbors on one of R0 or R1.

Assume first that T has two neighbors on R0. The graph A consisting of R0, T ,
and all edges joining T to R0 has a block B containing R0 and at least one vertex
of T .

Suppose that some Si has a subpath with both ends in B but containing an edge
not in B. This path has a subpath P whose ends are in B and all of whose edges
and internal vertices are not in B. If an internal vertex of P belongs to R1, then
R1 ∩ Si is not a path, a contradiction, so V (P ) ∩ V (R1) = ∅. If both ends of P are
in R0, then R0 ∩ Si is not a path, a contradiction, so at least one end of P is in T .
It follows that all internal vertices of P belong to V (T )− V (B), and all edges of P
belong to E(A) − E(B). Thus, B ∪ P is a 2-connected subgraph of A larger than
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B, contradicting the fact that B is a block of A. Hence, every subpath of every Si

with both ends in B lies completely in B.
Let R∗

0 be the outer cycle of B. (The subgraph of N between R0 and R∗
0 may

contain vertices not in A or B, from components of Cyl(R0, R1) other than T , but
this does not affect our argument.) For each i, let ri be the first vertex of Si, let
si be the first vertex of Si that belongs to R∗

0, let ti be the last vertex of Si that
belongs to B (ti is necessarily also the last vertex of Si on R∗

0), and let ui be the
last vertex of Si. From above, each Si[ri, ti] lies entirely in B.

If si 6= ti, then by planarity, one of R∗
0[si, ti] or R∗

0[ti, si] lies on the same side of
Si[si, ti] as the interior of R0, and the other lies on the opposite side. Let Zi denote
the one on the opposite side, or let Zi = si = ti if si = ti. By planarity Sj [rj , tj ] does
not intersect Zi for any j 6= i. If Zi intersects Zj then at least one of si ∈ V (Zj),
ti ∈ V (Zj), sj ∈ V (Zi) or tj ∈ V (Zi) must hold, which contradicts the fact that
Sj [rj , tj ]∩Zi and Si[ri, ti]∩Zj are empty. Therefore, the paths S∗

i = Zi ∪ Si[ti, ui]
for 0 ≤ i ≤ n − 1 are pairwise disjoint, with R∗

0 ∩ S∗
i = Zi and R1 ∩ S∗

i = R1 ∩ Si

both being paths for each i.
Since Cyl(R∗

0, R1) has fewer vertices than Cyl(R0, R1), we may apply induction
to Cyl[R∗

0, R1], R∗
0, R1, S∗

0 , . . ., S∗
n−1, to obtain R′

0, R′
1, and paths S′′

0 , . . ., S′′
n−1.

Let S′
i = Si[ri, si] ∪ S′′

i for each i, then the required conclusion holds.
Similarly, if T has two neighbors on R1 then we may construct an R∗

1 and apply
induction to Cyl[R0, R

∗
1].

(ii) If every component of N − V (R0 ∪ R1) has at most two neighbors on R0,
then in the above T always has at least two neighbors on R1, and we can always
construct R∗

1 rather than R∗
0. The components of Cyl(R∗

0, R1) are subgraphs of the
components of Cyl(R0, R1), and so also have at most two neighbors on R0. Thus,
by induction we may take R′

0 = R0.

3. PROOF OF THEOREM 1.6

We divide the proof into ten steps. Since 4-connected graphs on the plane (and
hence on the sphere) or projective plane are hamiltonian [17, 20], we assume F 2

has Euler genus at least 2.

Step 1. Cylindrical meshes on handles. Let G and H be graphs, both embedded
on the closed surface F 2. We say that H is a surface minor of G if the embedding
of H can be obtained from the embedding of G by a sequence of contractions and
deletions of edges. The following deep result by Robertson and Seymour will be
used to guarantee that G contains certain cylindrical meshes.

Lemma 3.1 (Robertson and Seymour [15]). Let M be a fixed graph embedded
on a closed surface F 2. Then, there exists a positive integer R(M) such that if G
has an R(M)-representative embedding on F 2, then G has M as a surface minor.

Suppose F 2 has Euler genus 2g or 2g + 1, where g ≥ 1. Let q ≥ 2 be an integer
so that 1/q ≤ ε. We can find a connected graph M embedded on F 2 that contains
g pairwise disjoint copies of Q = P7q+1 × C40 (“×” denotes Cartesian product), in
such a way that deleting the vertices of one C40 in each of the g copies results in
a planar or projective-planar graph. Take the representativity of G to be at least
max{4, R(M)}, with R(M) from Lemma 3.1. Then G has M as a surface minor,
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with pairwise disjoint subgraphs Q1, Q2, . . . , Qg of G contracting to the copies of Q
in M . Each Qi has pairwise disjoint cycles Ri0, Ri1, . . . , Ri,7q (in that order) and
paths Si0, Si1, . . . , Si,39 (in that cyclic order) such that each Rij contracts to one
of the C40 in a copy of Q, each Sik contracts to one of the P7q+1 in a copy of Q,
and ({Rij |0 ≤ j ≤ 7q}, {Sik|0 ≤ k ≤ 39}) is a cylindrical mesh in G. Deleting the
vertices of one Rij for each i from G results in a planar or projective-planar graph.

Step 2. Small cylinders. For each i, 1 ≤ i ≤ g, choose mi ∈ {0, 1, . . . , q − 1} so as
to minimize |V (Cyl(Ri,7mi

, Ri,7mi+7))|. Then |
⋃g

i=1 V (Cyl(Ri,7mi
, Ri,7mi+7))| <

|V (G)|/q ≤ ε|V (G)|. We will construct a 3-covering all of whose degree 3 vertices
lie in this set. To simplify our notation, we assume without loss of generality that
mi = 0 for each i, so we will be concerned with Cyl[Ri0, Ri7] for each i.

Step 3. Empty spaces for cutting. For each i, 1 ≤ i ≤ g, define X2i−1 = Ri0,
Y2i−1 = Ri1, Z2i−1 = Ri2, Z2i = Ri5, Y2i = Ri6, and X2i = Ri7. By Lemma 2.1 we
may apply Lemma 2.2 (i) to each cylinder Cyl[Yj , Zj], 1 ≤ j ≤ 2g, modifying the
paths Sdj/2e,k, 0 ≤ k ≤ 39, as specified by Lemma 2.2 to preserve the existence of
a cylindrical mesh. Thus, we may assume that Cyl(Yj , Zj) is empty for each j.

Step 4. Cut G into a planar or projective-planar subgraph and g cylinder subgraphs.

Define H = G −
⋃g

i=1 V (Cyl[Z2i−1, Z2i]), then H has g cylindrical faces, each
bounded by Y2i−1 and Y2i for some i. By cutting around each such cylindrical face,
and filling in the resulting pair of holes with two disks, we obtain an embedding of
H in the plane or projective plane, in which each cycle Yj , 1 ≤ j ≤ 2g, bounds a
face. Now V (G) is partitioned by H and Cyl[Z2i−1, Z2i], i ≤ i ≤ g. These are all
2-connected graphs, because if there were a cutvertex, either it would be a cutvertex
in G, or there would be a nonseparating simple closed curve intersecting G only at
the cutvertex, contradicting the fact that G is 4-connected and 4-representative.
For similar reasons, any 2-cut or 3-cut S in H must contain at least two vertices of
some Yj . Moreover, H −S has exactly two components, one of which is a subgraph
of Cyl(Xj , Yj ].

Now for 1 ≤ j ≤ 2g, add a vertex vj in each face of H bounded by Yj , joining
vj to each vertex of Yj that is adjacent in G to a vertex of Zj. Let H ′ be the
resulting graph embedded in the plane or projective plane. Since H is 2-connected,
so is H ′. Consider any minimal cutset S′ of H ′ with |S′| ≤ 3. If S′ contains no
vj , it is a cutset in H , using two vertices of some Yj . Let T be the component
of H − S′ contained in Cyl(Xj , Yj ]. Since G is 4-connected, vj and T are part of
the same component of H ′ − S′. But then there is a nonseparating simple closed
curve intersecting G only at S′, contradicting the fact that G is 4-representative.
Therefore S′ contains some vj . Then S = S′ − {vj} is a cutset in H , so |S| = 2,
and both vertices of S belong to some Yk. Since S′ is minimal, vj is adjacent to
vertices in more than one component of H ′ − S′, so k = j. Thus, we have proved
that H ′ is 3-connected, and any 3-cut S′ in H ′ consists of some vj and two vertices
on Yj . Moreover, H ′ − S′ has exactly two components, one of which is a subgraph
of Cyl(Xj , Yj ].

Step 5. Tutte cycle. A Tutte cycle C in a graph G is a cycle so that every component
of G − V (C) has at most three neighbors on C. If C′ is a cycle in G, then a Tutte
cycle with respect to C′ in G is a Tutte cycle C with the added property that any
component of G−V (C) containing a vertex of C′ has at most two neighbors on C.
We construct a Tutte cycle in H ′ to form the skeleton of our 3-covering of G. Some
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care is required to avoid getting a 3-cycle, or a cycle restricted to the disk subgraph
of H ′ bounded by Xj for some j.

Since q ≥ 2, there is w ∈ V (G) at distance at least two from
⋃g

i=1 Cyl[X2i−1, X2i].
Let ww1, ww2, . . ., wwk be the edges around w in cyclic order, where k ≥ 4. Since
the embedding of G is 3-representative, there is a cycle W in G, and hence in H ′,
containing w1, w2, . . . , wk in that order, bounding a closed disk containing all faces
incident with w. The cycle W ′ = ww1 ∪W [w1, w3]∪w3w is a face of G−ww2 and
also of the planar or projective-planar embedding of H ′ − ww2. Since H ′ − ww2 is
2-connected, by [20] (if H ′ is planar) or [17] (if H ′ is projective-planar) we can find
a Tutte cycle C with respect to W ′ in H ′ −ww2 through ww3. If w2 /∈ V (C), let A
denote the component of H ′ − ww2 − V (C) containing w2, which has at most two
neighbors on C.

Suppose C is a 3-cycle. Then C is a cycle in G. Since G is 4-representative and
4-connected, C is contractible and does not separate G. In other words, C is a face
of G, so it must be ww3ww4w. But now A contains the successor of w4 on W , the
predecessor of w3 on W , and w1 which is adjacent to w, so A has three neighbors
on C, a contradiction. Therefore, C is not a 3-cycle.

If w2 /∈ V (C), restoring ww2 to H ′ − ww2 adds at most one neighbor on C to
the component A, which therefore has at most three neighbors on C. Thus, C is a
Tutte cycle in H ′.

Let T be a component of H ′ − V (C). Since C is a Tutte cycle in H ′ and H ′

is 3-connected, T has a set S′ of exactly three neighbors on C. Since C is not a
3-cycle, S′ is a cutset. From above, S′ consists of vj and two vertices of Yj , for some
j, and H ′ − S′ has exactly two components: T , and another component T ′ that
contains C − S′. Moreover, one of T or T ′, call it T1, is a subgraph of Cyl(Xj , Yj ].
By choice of w, w is not adjacent to a vertex of S′, so w ∈ V (C − S′). However,
w /∈

⋃g
i=1 V (Cyl[X2i−1, X2i]), so w, and hence C −S′, are not in T1. Thus, T1 = T ,

so that T is a subgraph of Cyl(Xj , Yj ].
Such a T cannot contain any vertex vk, so C contains all vertices v1, v2, . . . , v2g.

Step 6. Absorb vertices not used by C into the cylinders. Let T denote the set of
components of H ′ − V (C), and for each j, 1 ≤ j ≤ 2g, let Tj be the set of such

components that are adjacent in H ′ to vj . From above, T =
⋃2g

j=1 Tj , and each
T ∈ Tj is adjacent to two vertices yT , y′

T ∈ V (Yj), where we may assume that
Yj [yT , y′

T ] ∩ V (T ) 6= ∅. There is a face fT in Cyl[Xj , Yj ] incident with yT , y′
T and

at least one vertex of T .
Form G′ from G by adding in the face fT the edge yT y′

T , if it is not already
an edge of G, for every T ∈ T . For each j, 1 ≤ j ≤ 2g, let Y ′

j be the cycle
in G′ obtained from Yj by replacing the segment Yj [yT , y′

T ] by the edge yT y′
T

for each T ∈ Tj ; then V (Y ′
j ) = V (Yj) ∩ V (C). Modify each path Sik to obtain

S′
ik in G′ by replacing any segment Yj [yT , y′

T ] ⊆ Sik by the edge yT y′
T . Then

({X2i−1, Y
′
2i−1, Z2i−1, Ri3, Ri4, Z2i, Y

′
2i, X2i}, {S′

ik|0 ≤ k ≤ 39}) forms a cylindrical
mesh in G′ for each i.

For each j, the components of each CylG′(Y ′
j , Zj) are precisely the elements of Tj ,

each of which is adjacent to two vertices of Y ′
j . Thus, Lemma 2.1 allows us to apply

Lemma 2.2 (ii) for each j to find Z ′
j (not changing Y ′

j ) such that CylG′(Y ′
j , Z ′

j) is
empty, modifying the paths S′

dj/2e,k, 0 ≤ k ≤ 39, appropriately, so that for each i,

1 ≤ i ≤ g, ({X2i−1, Y
′
2i−1, Z

′
2i−1, Ri3, Ri4, Z

′
2i, Y

′
2i, X2i}, {S′

ik|0 ≤ k ≤ 39}) forms a
cylindrical mesh in G′. Each Z ′

j is a cycle in G as well as in G′ (since it contains no
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edge yT y′
T ), and every vertex of G is either in C or belongs to a cylinder subgraph

Cyl[Z ′
2i−1, Z

′
2i].

Step 7. Two large subgraphs in each cylinder. For each j, let rj , r
′
j ∈ V (Y ′

j ) denote
the neighbors of vj in C. Then in G or G′, each rj is adjacent to sj and each r′j is
adjacent to s′j , where sj , s

′
j ∈ V (Z ′

j). If sj 6= s′j , let Wj = {rj , r
′
j} and Vj = {sj, s

′
j}.

If sj = s′j , then we let xj and x′
j denote the vertices closest to sj in either direction

along Z ′
j that have a neighbor in Y ′

j , and we let wj and w′
j , respectively, be those

neighbors. In this case, let Wj = {rj , r
′
j , wj , w

′
j} and Vj = {sj = s′j , xj , x

′
j}.

We now claim that for each i, 1 ≤ i ≤ g, Cyl[Z ′
2i−1, Z

′
2i] has disjoint disk sub-

graphs L2i−1, L2i with the following properties.

(i) L2i−1 ∩Z ′
2i−1, L2i−1∩Z ′

2i, L2i ∩Z ′
2i−1, L2i ∩Z ′

2i are all paths with at least one
edge;

(ii) for j = 2i − 1 and 2i, every neighbor of Wj on Z ′
j (including every vertex of

Vj) belongs to Lj ;
(iii) for j = 2i − 1 and 2i, no vertex of Y ′

j is adjacent to both components of
Z ′

j − V (L2i−1 ∪ L2i); and
(iv) subject to (i), (ii) and (iii), |V (L2i−1 ∪ L2i)| is as large as possible.

We prove this for i = 1; the proof for general i is similar. We need only find L1 and
L2 satisfying (i), (ii) and (iii).

Define R′
11 = Y ′

1 , R′
12 = Z ′

1, R′
13 = R13, R′

14 = R14, R′
15 = Z ′

2 and R′
16 = Y ′

2 . For
each j, 1 ≤ j ≤ 5, and for each k ∈ Z40, let Ujk denote the disk subgraph of G′

bounded by subpaths of R′
1j , R′

1,j+1, S′
1k and S′

1,k+1 that does not contain vertices
of any other paths of the cylindrical mesh. We call Ujk a cell of the mesh. Let [i, j]
denote the set {i, i + 1, . . . , j} either as an interval in the integers, or as a cyclic
interval in Z40 = {0, 1, . . . , 39}—it will be clear from context which is intended. Let
Uj,[k1,k2] denote

⋃
k∈[k1,k2] Ujk and U[j1,j2],[k1,k2] denote

⋃
j∈[j1,j2]

⋃
k∈[k1,k2] Ujk.

Let U1,[a,a+α] be a contiguous block of cells that contains V1, such that α is as
small as possible. Then α ≤ 20. The neighbors of V1 on R′

11, including W1, lie in
U1,[a−1,a+α+1]. Therefore, the neighbors of W1 on R′

12 = Z ′
1 lie in U1,[a−2,a+α+2] ∩

R′
12 ⊆ U2,[a−3,a+α+3]∩R′

12. Similarly, there are b and β ≤ 20 such that the neighbors
of W2 on R′

15 = Z ′
2 lie in U4,[b−3,b+β+3] ∩ R′

15.
Now L1

2 = U4,[b−3,b+β+3] and L2
2 = U[2,4],[a−7,a−5] together use up at most 27+3 =

30 of the 40 cells U4j, in one or two contiguous blocks. Therefore there is a block
of at least 5 contiguous unused cells. Hence, we can choose c so that U4,[c,c+2]

is a block of 3 cells disjoint from L1
2 ∪ L2

2. If [b − 3, b + β + 3] ∪ [a − 7, a − 5] is
a cyclic interval in Z40, define L3

2 = ∅; otherwise, define L3
2 to be whichever of

U4,[b+β+4,a−8] or U4,[a−4,b−4] does not intersect U4,[c,c+2]. Let L1
1 = U2,[a−3,a+α+3]

and L2
1 = U[2,4],[c,c+2]. If [a−3, a+α+3]∪ [c, c+2] is a cyclic interval in Z40, define

L3
1 = ∅; otherwise, define L3

1 = U2,[a+α+4,c−1].
Then L1 = L1

1 ∪ L2
1 ∪ L3

1 and L2 = L1
2 ∪ L2

2 ∪ L3
2 are both unions of contiguous

blocks of cells, using cyclic intervals of cells along R′
12 = Z ′

1 and R′
15 = Z ′

2, giving
(i). Property (ii) is immediate from our construction. For (iii), consider any v
on R′

11 = Y ′
1 . Since v belongs to at most two cells U1j, the neighbors of v on

R′
12 = Z ′

1 lie in U1,[d,d+1] for some d. Since both L1
1 ∪ L3

1 and L2
2 use at least three

contiguous blocks U2j , it is not possible for U1,[d,d+1] to intersect both components
of Z ′

1 − V (L1 ∪ L2) = R′
12 − V ((L1

1 ∪ L3
1) ∪ L2

2). A similar argument applies to
vertices of Y ′

2 .
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Step 8. The remainder of each cylinder. Now we show that for each i, Cyl[Z ′
2i−1, Z

′
2i]

contains four additional subgraphs Mjl, j = 2i − 1 or 2i and l = 1 or 2, each of
which intersects L2i−1 ∪ L2i at exactly two vertices uj,2l−1, uj,2l of Z ′

j . We begin
with the case i = 1.

There are vertices u11, u12, u13, u14 in order along Z ′
1, and u21, u22, u23, u24 in

order along Z ′
2, such that ∂L1 = Z ′

1[u14, u11] ∪ Z ′
2[u24, u21] ∪ P4 ∪ P1 and ∂L2 =

Z ′
1[u12, u13]∪Z ′

2[u22, u23]∪P2∪P3, where each Pk is a path from u1k to u2k internally
disjoint from Z ′

1 ∪ Z ′
2. Write Qjk = Z ′

j [ujk, uj,k+1] (subscripts added modulo 4).
We first claim that u11 and u12 lie on a common face of G′. Consider the bound-

aries of the faces containing u11. If they do not contain u12, then there must exist
a path joining Q11 − {u11, u12} and (P1 ∪ Q21 ∪ P2) − {u11, u12}. This contradicts
the maximality of |V (L1 ∪ L2)|.

Thus, we can add an edge u11u12 (if it does not already exist) through this face.
In the same way, we can add an edge u21u22. Consider the disk subgraph U1

bounded by P1, P2 and u11u12, u21u22. If U1 contains an inner vertex v, then since
G is 3-connected, there exist three disjoint paths joining v to the boundary of U1.
However, this also contradicts the maximality of |V (L1 ∪ L2)|. Thus, U1 has no
interior vertices.

Similarly, U2 has no interior vertices, where U2 is bounded by P3, P4 and u13u14,
u23u24 (we add these edges as before).

If Q11 is the single edge u11u12, define M11 = Q11. Otherwise, let M11 denote the
disk subgraph bounded by Q11 ∪ {u11u12}. Let q11 denote the vertex of Q11 − u11

closest to u11 that has a neighbor p11 on Y ′
1 , and let q12 denote the vertex of Q11−u12

closest to u12 that has a neighbor p12 on Y ′
1 . Since G is 4-connected, q11 6= q12, and

we may assume that p11 6= p12.
In a similar way we can construct M21 bounded by Q21∪{u21u22}, M12 bounded

by Q13 ∪ {u13u14}, and M22 bounded by Q23 ∪ {u23u24}. More generally, for every
j and l, 1 ≤ j ≤ 2g and 1 ≤ l ≤ 2, we can construct Mjl and, if appropriate, qj,2l−1,
pj,2l−1, qj,2l, pj,2l. By property (iii) of Step 7, pj1, pj2, pj3, pj4 are all distinct,
and by property (ii) of Step 7 none of these vertices belong to Wj . Because the
disk subgraphs U2i−1, U2i have no interior vertices, every vertex of Cyl[Z ′

2i−1, Z
′
2i]

belongs to exactly one of L2i−1, L2i, or Mjl − {uj,2l−1, uj,2l}, j = 2i − 1 or 2i and
l = 1 or 2.

Step 9. Spanning each Lj and Mjl. In [16], Sanders and Zhao proved the following
theorem. They stated it for “2-connected graphs without any interior component
3-cuts” but these are exactly our I4CD graphs.

Theorem 3.7 (Sanders and Zhao [16], Lemma 6.2). Let G be an I 4CD graph
and let x, y be two distinct vertices in ∂G. Then G has a 3-covering K such that
E(∂G) ⊆ E(K) and degK(x) = 2, degK(y) = 2.

For each Lj we construct two subgraphs which together include all vertices of
Lj , and connect Lj to C. First suppose that sj 6= s′j . Let D′

j denote whichever of
Z ′

j [sj , s
′
j ] and Z ′

j[s
′
j , sj ] lies in Lj , and let Dj = D′

j ∪{rjsj , r
′
js

′
j}. By Lemma 2.1 we

may apply Theorem 3.7 to Lj to obtain a 3-covering Ej in which sj , s′j have degree
2. Note that Dj and Ej share the path D′

j . Now suppose that sj = s′j. Let Dj be
the path rjsjr

′
j . The graph Lj ∪ {xjsj, x

′
jsj} is a disk subgraph of the 4-connected

embedded graph G ∪ {xjsj , x
′
jsj} and so is I4CD by Lemma 2.1. Apply Theorem
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3.7 to this graph to obtain a 3-covering E′
j in which sj has degree 2, which contains

xjsj and x′
jsj . Let Ej = (E′

j − {sj}) ∪ {wjxj , w
′
jx

′
j}.

Now for each Mjl we construct a subgraph which includes all vertices of Mjl −
{uj,2l−1, uj,2l}, and which connects this subgraph to C. First, if Mjl is just a single
edge uj,2l−1uj,2l, let Fjl = ∅. Now suppose Mjl is not a single edge. The graph
Mjl ∪ {uj,2l−1qj,2l−1, uj,2lqj,2l} is a disk subgraph of the 4-connected embedded
graph G∪{uj,2l−1uj,2l, uj,2l−1qj,2l−1, uj,2lqj,2l}, so it is I4CD by Lemma 2.1. Apply
Theorem 3.7 to this graph to obtain a 3-covering F ′

jl in which uj,2l−1, uj,2l have
degree 2, which contains uj,2l−1uj,2l, uj,2l−1qj,2l−1 and uj,2lqj,2l. Let Fjl = (F ′

jl −
{uj,2l−1, uj,2l}) ∪ {pj,2l−1qj,2l−1, pj,2lqj,2l}.

Step 10. Join everything together and verify 2-connectedness. The proof of the
following lemma is straightforward.

Lemma 3.2. Let G1 and G2 be 2-connected graphs, and suppose we form G from
G1 and G2 in one of the following ways.
(i) Identify a path on at least two vertices in G1 with a path of the same length in

G2.
(ii) Take a path u0u1 . . . uk in G2, such that all of u1, u2, . . . , uk−1 have degree 2,

and let G = G1 ∪ (G2 − {u1, u2, . . . , uk−1}) ∪ {u0v, ukw} where v and w are
distinct vertices of G1.

Then G is 2-connected.

Let C′ = C − {v1, v2, . . . , v2g}. We claim that C′ ∪
⋃2g

j=1(Dj ∪ Ej ∪ Fj1 ∪ Fj2) is
the required 3-covering. By construction it spans all vertices of G, and has at most
ε|V (G)| vertices of degree greater than 2. It does not use any of the edges we added
to G in Step 6 or Step 8. By the last paragraph of Step 8, we do not create any
vertices of degree greater than 3. We use Lemma 3.2 to verify that it is 2-connected.
By our construction, C′ ∪

⋃2g
j=1 Dj is a cycle. For each j, we may apply Lemma 3.2

(i) with G2 = Ej if sj 6= s′j, or Lemma 3.2 (ii) with G2 = E′
j if sj = s′j , to show

that we retain 2-connectedness when we add Ej . For each j and l, we may also
apply Lemma 3.2 (ii) with G2 = F ′

jl to show that we retain 2-connectedness when
we add Fjl. This completes the proof.
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