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Abstract

We show that every 4-representative graph embedding in the double torus contains a

noncontractible cycle which separates the surface into two pieces.
1. Introduction

If a graph is embedded in a surface of genus (orientable or nonorientable) at least 2, then it
may have a noncontractible separating cycle (NSC'), a cycle in the graph which is noncontractible
and separates the surface into two pieces. Sufficient conditions for the existence of an NSC are of
interest because they may provide a way to prove results about graph embeddings by induction on
genus.

Several conditions of this kind have been proved or proposed. Many of them involve the
representativity, or facewidth, of a graph embedding, which is the smallest number of points in
which any noncontractible closed curve in the surface intersects the graph. The representativity of
the embedding V¥ is denoted p(¥), and V is k-representative if p(V) > k.

In what follows, a ‘suitable’ surface is one of genus (orientable or nonorientable) at least 2.
Barnette, at a meeting in Tacoma, Wash. in the mid-1980’s, conjectured that every triangulation
of a suitable orientable surface has an NSC. Triangulations are a subset of the 3-representative
embeddings. In a workshop in Vermont, one of us (Zha) [7] conjectured more generally that every
3-representative embedding in a suitable (orientable or nonorientable) surface has an NSC. The

representativity condition here would be best possible, as Zha and Zhao [8] have given examples
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of embeddings with representativity 2 and no NSC. Robertson and Thomas [5] proved that every
3-representative embedding in the Klein bottle has an NSC. Richter and Vitray [4] proved that ev-
ery 11-representative embedding in any suitable surface has an NSC. Zha and Zhao [8] reduced the
needed representativity condition to 6-representative for orientable surfaces and 5-representative
for nonorientable surfaces. Brunet, Mohar, and Richter [1] proved that a graph embedding of rep-
resentativity w in a suitable orientable surface contains |(w—9)/8] disjoint and pairwise homotopic
NSCs. Thomassen (see [3]) conjectured that given a triangulation of a surface of genus ¢ > 2 and a
number h, 1 < h < g—1, there must be an NSC I' such that the two surfaces separated by I' have
genus h and g — h, respectively. Mohar [3] conjectured that the same is true for any 3-representative
embedding.

In this paper we tackle the simplest suitable orientable surface, the double torus. We show
that 4-representative graph embeddings in the double torus have an NSC. This improves on the
best previous condition (p > 6) but does not achieve the goal of Zha’s conjecture (p > 3).

We believe that an argument similar to the one in this paper can be used to verify Barnette’s
conjecture (on triangulations) in the case of the double torus. However, the argument would be
long and tedious, involving examination of many cases. It might even be possible to verify Zha’s
conjecture (for p > 3) in the case of the double torus with this approach, but in practice any such

proof is likely to be unmanageably lengthy.

2. Punctured tori

In this section we introduce our basic definitions and then prove some properties of punctured
tori that we need later.

A circle in a surface is a simple closed curve; an arc is a simple non-closed curve, including
its endpoints. A single point is not considered to be an arc. If a graph is embedded in a surface,
each cycle of the graph is embedded as a circle, and each nontrivial (not a single vertex) path as
an arc. If a, b are sections of an oriented arc or oriented circle @), then a@b denotes the part of )
from the last point of a to the first point of b, inclusive. Q! denotes @ traversed in the opposite
direction. A section of an arc or circle on a surface is a subarc or single point contained in the arc
or circle. A segment of a path or cycle in a graph is a subpath, which may consist of just a single
vertex. The number of components of a set S in a surface ¥ is denoted ||5]|.

For convenience, all topological sets we deal with are considered closed unless we explicitly

indicate otherwise. Arcs include their endpoints, and disks, faces, and surfaces with boundary
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include their boundaries. When a surface X is separated into two parts by a circle I'; each of the
parts is assumed to contain TI'.
1" denotes the torus 5. We assume we are using a fixed orientation of 7'. Any contractible

circle in 7" then has a natural clockwise orientation. The following facts are well known.

Lemma 2.1.
(i) Two disjoint noncontractible circles in the torus are homotopic, and together they separate
the torus into two cylinders.

(ii) Two circles in the torus are disjoint under homotopy if and only if they are homotopic. i

Suppose X is a surface with one boundary circle, I'. Let X be the surface (without boundary)
obtained by pasting a disk D along I'. Suppose P is an arc that joins two distinct points of I' in
Yo, with P°NT = (. The endpoints of P divide I' into two subarcs I'y,I's, and the two circles
P UTy, PUTy are homotopic in X. If these circles are noncontractible then P will be called an
essential arc (or path, if appropriate).

Now assume that Yo = Ty is a punctured torus and ¥ = T the torus. Suppose P and P’ are
disjoint essential arcs (so their four endpoints are all distinct). We say P and P’ are parallel if the
endpoints of P are not separated on I' by the endpoints of P’. In this case we may label the four
endpoints in order along I' as z,y,z',y' with P from z to y, P’ from 2z’ to y'. By Lemma 2.1 (1),
the disjoint homotopic circles P U zI'y and P’ U 2'T'y’ separate T into disjoint cylinders C,C’. Let
C" be the cylinder containing D°, then C' is further separated by yI'z’ U y'T'z into D° and a disk
S bounded by PU yI'zs" U P’ U y'Tx: we call S a strip with ends yI'z" and y'T'z. Thus, TU PU P’
separates the torus T into C', §, and D, and P U P’ separates the punctured torus Ty = T\ D°® into
C and S. Call {C, S} the cylinder-strip partition of Ty induced by P and P’, denoted CS(P, P').
This is illustrated on the left of Figure 2.1. In Tj it is easy to recognize the cylinder and the strip
because I' U P U P’ provides two disjoint boundary circles for C' and one boundary circle for 5.

The following two obvious properties of C'S(P, P') will be used frequently, and we refer to
them as C'S(P, P')(i) and C'S(P, P')(ii), respectively.

Lemma 2.2 [Cylinder-Strip]. Given a punctured torus Ty, let P and P’ be parallel disjoint
essential arcs. Let P" be an essential arc disjoint from P and P'. Then
(i) Both ends of P" must lie in the cylinder, or both ends must lie in the strip, of C.S(P, P").
(ii) If both ends of P" lie in the strip, then they lie at opposite ends. 1
When dealing with essential arcs in a given punctured torus Ty, with boundary I'; we have

found it useful to represent I' as a circle and the essential arcs as chords of the circle. This is
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illustrated by the centre and right parts of Figure 2.1, which show essential arcs P, P', P" that
violate the Cylinder-Strip Lemma.

Suppose T is the single boundary circle of a (closed) surface ¥g. Let D be a closed disk in ¥
and suppose that I'N' D = ' N dD consists of a finite number of components. We say that I' and

D intersect essentially if every arc in D joining two distinct components of I' N D is essential.

Lemma 2.3. Suppose I' is the boundary circle of a punctured torus and I intersects a disk D
essentially. Let I = 0D, oriented clockwise. Let I'y, 'y, ...,y be the components of TND =TNL
in clockwise order around L, where I'; = x; Ly; for each 1.

(i) If k = 2 then (y1,1,y2,x2) occur in that clockwise order along I';

(ii) If k = 3 then (y1,21, Y2, %2, Y3, x3) occur in that clockwise order along I';
(iii) If k = 4 then (y1,%1, Y2, T2, Y3, T3, Ya,24) occur in that clockwise order along T
(iv) k < 4.
Proof. By expanding D slightly if necessary, we may assume that z; # y; for all ¢. If we add a
disk along I') L and I' are both contractible and have natural clockwise orientations, which must
oppose each other where they meet. Thus, y; is followed on I' by z;, and z; must be followed by

some y;; it cannot be followed by z;.
(i) When k = 2 the given order is the only possible one.

(ii) Suppose k = 3. There are only two possible clockwise orders along I'. If the order is
(y1,%1,Y3,23,Y2,22) then the essential arc y3Lzy has both ends at the same end of the strip

of CS(y1Lxa,yaLas), contradicting (ii) of the Cylinder-Strip Lemma.
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(iii) By shifting D slightly we may apply (ii) separately to both collections I'1, 'y, I's and I'1, I's, I'y,
giving the required order.
(iv) If £ > 5, then by shifting D slightly we may assume that k& = 5. By similar reasoning to (iii),
the clockwise order must be (y1,21,Y2,22,Y3, 23, Ya, Za,Ys5,Z5). Now the essential arc ysLxs has
one end in the cylinder and the other end in the strip of C'S(ys L1, y2Las), contradicting (i) of the
Cylinder-Strip Lemma.

Now we counsider the double torus S5. Note that any contractible circle in Sy has a natural
clockwise orientation, but noncontractible circles must be given an orientation.

Suppose we have an oriented noncontractible separating circle I' of the double torus 5;. It
separates Sy into two punctured tori Ay, By (which we take to be closed, each including I'). When
convenient we complete Ag with a disk A* to a torus A, and By with a disk B* to a torus B. If
A, B both inherit the orientation of S5, I' will be clockwise in one, which we assume to be A, and
anticlockwise in the other, B. In other words, I' goes clockwise around A*, so A* is to the right of
I'in A, and Ap is to the left of I' in both A and 53. Similarly, By is to the right of T'.

We discuss some of the ways I' can pass through a given closed disk D. Let L = 0D. Suppose
I'n D has finitely many components, including (but not limited to) I'y, I'y, I's, I’y with the following
properties:

(1) Each I'; N L has at most two components, 1 < ¢ < 4.

(2) There is an arc P in D with ends on L and P° C D°, such that PN1' = {z1,z9, 3,24}, where
&1, 3,23,24 are in that order along P, each z; belongs to I';, and I'y and I's cross (not just
intersect) P at z, and z3, respectively.

Assume that z,Pzy C Ag. For each i, let ta denote the first component of I'; N L (following I';

along I') and b the last. Then by the fact that I' is separating, and using the orientations of Ag and

By, the components la,2b,3a,4b,4a,3b,2a,1b occur in that clockwise order along L (so 2a # 2b,

3a # 3b, but possibly la = 1b or 4a = 4b).

There are six possible cyclic orders in which the components I'y, 'y, I's, I'y (or 1,2,3,4 for
short) can occur along I'; they occur in pairs which are equivalent up to reversal of I'. If we know
that I' intersects the (closures of the) components of D\I' essentially, then for some of these orders

we can place restrictions on where additional components of I' N D can be.

Lemma 2.4. Suppose I is a noncontractible separating circle of Sy with a disk D and components
I'1,I'9, '3, 'y of I' 0N D as described above. Suppose further that ' intersects the closure of every

component of D\I" essentially (in Ay or By, as appropriate).
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(i) If the components occur along I' in the order (1432) then I' N (2¢L1b)° = I' N (4aL3b)° = 0.
(ii) If the components occur along I' in the order (1342) then I' N (2aL1b)° = T' N (3aL4b)° = 0.
Proof. Suppose in case (i) that ' N (2¢L1b)° # 0. Let I's (or 5 for short) be the component
of I' N (2aL1b)° closest to 1b on L. By Lemma 2.3 (2), 5 C (2bI'1a)°. But then 5L1b violates
CS(1al2b,3aL4b)(i). (Note: we assume that essential arcs can be shifted slightly if necessary so
that we can apply the Cylinder-Strip Lemma. Here this is necessary if I'y = la = 1b is a single
point.) Thus, I' N (2aL1b)° = 0. The rest of the proof is similar. B

3. Construction of noncontractible separating circles

In this section we describe two methods for constructing noncontractible separating circles.

Our first method constructs a new noncontractible separating circle from an old one.

Theorem 3.1. Let X be a surface with an oriented noncontractible separating circle I' separating
Y into two (closed) components Ag and By. Suppose there are sections I'1,I'2,I's,I'y of ' in that
order alonug I', and arcs Pyg, P34 in Ay and ()33,Q 41 in By such that

(i) I'1,T9, T3, Ty are disjoint;

(il) Py, P3y, Q%5,Q%, are disjoint from each other and from I';

(iii) Py2 has ends aq,a2, Pss has ends as,aq, Q23 has ends by, bz and ()41 has ends by, by, where a;
and b; are the two ends of each I'; (not necessarily in order along T');

(iv) P12 U Psy4 separates Ag into a component Ay with boundary Pis U agl'ag U Psq U agl'ay (one
circle) and a component Ay with boundary (a1l'ag U Py2) U (aslag U Psy) (two circles), while
Q23U Q41 similarly separates By into a component By with boundary (o3 Ubsl'by U@ 41 Ub1 by
(one circle) and a component By with boundary (baI'bs U Q23) U (bsI'by U Q41) (two circles).

Then

I"=T1UP3 Ul UQe3UT3U P34 UT4 UQsn

is also a noncontractible separating circle in Y, separating A; U By from Ay U Bj.

Proof. The conditions of the theorem clearly guarantee that IV separates A; U By from Ay U By.
We must show that T' is noncontractible, or, equivalently, that neither A; U By nor As U By is
homeomorphic to a disk. Since A; has one boundary circle, it is homeomorphic to a disk with
handles and/or crosscaps attached. Since By has two boundary circles, it is homeomorphic to a
cylinder with handles and/or crosscaps attached. If Ay is just a disk and Bj is just a cylinder,
the way they are attached along the segments of I' between I'y and T's and between I'y and I'y

means that the result would be homeomorphic to a punctured torus. More generally, the result
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Figure 3.1: Equivalent to an essential arc

is homeomorphic to a punctured torus with handles and/or crosscaps added, which is not a disk.

Similarly, Ay U By is not a disk. Therefore I' is noncontractible, as required.

We now apply this to the double torus, with weaker versions of conditions (ii) and (iv), and

stating condition (iv) in a way specific to the double torus.

Corollary 3.2. Suppose T is a noncontractible separating circle in the double torus Ss, separating

Sy into two (closed) punctured tori Ay and By. Suppose there are sections I'1,I'3,I's,I'y of ' in

that order along I', and arcs Pyy, P34 in Ay and ()a3,(41 in By such that

(i) I'y,T'9,T's, Iy are disjoint;

(ii) Py, P3y,Q%5,Q4, are disjoint from each other and from I'' UT'y UT's U I'y;

(ili) P12 has ends a1, a2, P34 has ends ag, a4, Q23 has ends by, bs and ()41 has ends by, by, where a;
and b; are the two ends of each I'; (not necessarily in order along I');

(iv) Pi2, Psy are homotopic with endpoints fixed in Ag to a pair of parallel essential arcs, and
@23, Q41 are homotopic with endpoints fixed in By to a pair of parallel essential arcs.

Then

F,:FlUP12UFQUQ23UF3UP34UF4UQ41
is also a noncontractible separating circle in \S5.
Proof. Conditions (ii) and (iv) mean that by shifting I' slightly we can make Py, P34 and 23, Q41

into pairs of parallel essential arcs. Then each of the (slightly shifted) punctured tori is separated

into a cylinder and a strip. Now apply Theorem 3.1. B

A set of arcs Pyg, Pag, (23, Q41 satisfying Corollary 3.2 is called an orthogonal arrangement of

parallel arcs, or OP for short; we refer to it as O P( P12, Pas; Q23, Qa1)-
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Note in particular that Pig, P34, Q23,41 are not required to have interiors disjoint from I,
just from the sections I'y, I'y, I's, I'y. The most common (but not the only) case of this is illustrated
in Figure 3.1. When forming an OP the two hatched essential arcs joined by a hatched segment of
I’ may be considered equivalent to the single dashed essential arc, as long as the hatched segment

of I' does not intersect I'y, 'y, I's, I'y.

4. Critical embeddings

Our approach to proving the existence of noncontractible separating cycles (NSCs) is to ex-

amine embeddings which are very close to having an NSC.

Lemma 4.1. LetX be a suitable surface, and k > 3. Suppose there is a k-representative embedding
in X that does not have an NSC. Then there exists a k-representative embedding ¥ of a simple
2-connected graph in ¥ that does not have an NSC, with a face f containing nonadjacent vertices

x,y, so that when the edge xy is inserted across the face f, ¥t = ¥ U xy has an NSC.

We call U a critical embedding with critical edge xy.

Proof. Let ¥y be a k-representative embedding of a graph Gy in X with no NSC. Since k£ > 3 and
since multiple edges bounding a face can be reduced to a single edge without affecting the existence
of an NSC, we may assume that G is simple. Moreover, by reducing to the ‘essential 2-component’
(see [6, Section 7]) we may assume that Gy is 2-connected.

Define an augmentation of an embedding to be either (1) the addition of an edge across a
face between two vertices nonadjacent on that face, or (2) if every face is a triangle (bounded by
a 3-cycle), then in some face (uvw) subdivide one edge vw with a new vertex z, then add the
edge uwx. Neither (1) nor (2) decreases the representativity. In a sequence of augmentations, any
augmentation following one of type (2) must be of type (1).

If we apply a sequence of augmentations to Wy, each embedding is k-representative with a
graph that is simple and 2-connected. Moreover, by applying a sequence of augmentations to ¥y
we can increase its representativity arbitrarily. First we complete Uy to a triangulation using type
(1) augmentations. It is well known that in a triangulation the representativity equals the length
of a shortest noncontractible cycle. Given an edge e = vw on a shortest noncontractible cycle,
belonging to two triangles (uwvw) and (twv), we can apply four augmentations of type (2), (1),
(2), (1) with the effect of deleting vw, adding two new vertices z1,z2, and adding paths va;w,

vaow, ux122t. This destroys all shortest noncontractible cycles through e without creating any
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new shortest noncontractible cycles. After destroying all shortest noncontractible cycles in this
way the representativity must increase by at least one; then we can repeat the process.

Therefore, it is possible to apply a sequence of augmentations to ¥g to raise the representativity
to at least 6, at which point an NSC exists (see Section 1). Let ¥ be the embedding in the sequence
before the first augmentation that creates an NSC. Type (2) augmentations cannot create an NSC

if one does not already exist. So, that augmentation is of type (1), and the result follows. B

5. Main theorem

In this section, we show that every embedding in the double torus with representativity at

least 4 contains an NSC. We begin with a standard result on 4-representative graphs.

Lemma 5.1. Let f be a face of ¥, and let F be the union of f and all faces that share at least

one vertex with f.

(i) The face f is a disk Dy with boundary cycle Ly, and there is a disk Dy O Dy with boundary
cycle Ly, such that F° C Dy and Ly = 0Dy C OF.

(ii) Any path P in Dy with both ends on Ly must be a segment of Ly or must contain a vertex of
L.

Proof. (i) is a special case, for representativity at least 4, of a standard result. The facts that

F C Dy and Ly C OF are not part of the usual statement, but follow from the standard proof. See

[2, Prop. 5] or [3, Prop. 3.7].

(i) If (ii) fails there would be a path P in Dj internally disjoint from Lg joining two vertices of

Ly and not intersecting L,. Labelling the ends a,b of P appropriately, P U bLya would separate

(aL2b)® from L;. But this contradicts the fact that since Ly C 0F, every point of Ly has an arc

joining it to Ly that does not intersect the graph except at its endpoints.
Now we state and prove our main result.

Theorem 5.2. Every 4-representative embedding on the double torus contains a noncontractible
separating cycle.
Proof. Suppose the theorem is false. By Theorem 4 there is a critical 4-representative embedding
VU (of a simple 2-connected graph) with no NSC, while ¥+ = ¥ Uzy has an NSC. Suppose that zy
is added across the face f. Let Dy, Dy, L1, Ly be as provided by Lemma 5.1 for f.

Every NSC in ¥t must contain the edge zy. Of all NSCs in Wt let I' be one that minimizes

Il N Dy||, and, subject to this, also minimizes ||I'N Dy||. Then each component of I' N Dy contains
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Figure 5.1: Some parts of I in Dy

at most one component of I' N Dy, and (using Lemma 5.1(ii)) at most two components of I' N L.
The components of I'U Dy will be denoted I';, for i = 1,2,.... We often abbreviate I'; to 7. (In later
parts of the proof we also use components I}, abbreviated ¢, where ¢ = 1,2,....) We represent
subsegments of component ¢ as ¢j where j is a letter, e.g. 3b is a subsegment of 3 = I's.

The minimality assumption further guarantees us that any arc in D that joins different com-
ponents I';,I'; of I' N Dy and is otherwise disjoint from I' is essential. If it were not essential, then
we could replace one of the segments iI'j or jI'i with a segment of Ly, reducing [|[I' N Dy||. This is
true even if the segment of L, we wish to use intersects other components of I' N Dy, because those
other components must also be part of the segment of I' we are replacing.

Let I's be the component of I' N Dy that contains zy. Then I's U L has four components which
we name 3a,3b,3¢,3d in order on I', with 3a,3d C Ly and 3b,3c C Ly. We may assume that
z € 3b and y € 3c¢. For ease of description, we assume Dj is drawn as a circular disk and I's passes
downwards through Dy, with 3a containing its top point and 3d containing its bottom point. Other
than I's, no component of I' N Dy contains more than one component of I' N L.

In fact, any other component I'; of I'N Dy is of one of two types. If ||I'; N L|| = 1, ¢ is a segment
of Ly. Otherwise, ||I'; N L|| = 3 and 7 includes two segments %a, ic of Ly and one segment b of Ly,
with ia,1b,tc in that order along T'.

Since ¥ is critical, I' intersects both (30L13¢)° and (3¢L13b)°, otherwise we could reroute I' to

avoid (the interior of) 3bI'3¢ = zy. Moreover, each component of I'N Dy which intersects (3¢L13b)°
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cannot be rerouted via 3dL23a, or we could reduce ||[I'N Dy]|. Let I'y denote any such component,
with 2a,2¢ C Lg and 2b C Ly. Note that I's passes upwards through Dy, so that the half of f to the
right of I's3 is also to the right of I's. Since I'y cannot be rerouted there is at least one component
of I'N Dy that intersects (2aL22¢)°. Let I'y denote any such component, which must be a segment
of Ly and pass downwards through Ds. In a similar way we can find I'y passing upwards through
Dy, intersecting (3aL23d)° at 4a and 4c¢ and intersecting (3bL13¢)° at 4b. Then we must also have
I's = 5 passing downwards through Dy and contained in (4c¢Ljy4a)°. The situation is illustrated in
Figure 5.1. Note that in general we do not know whether a given component of I' N L is trivial or
nontrivial.

Let Ag denote the part of Sy to the left of I', and By the part to the right; Ag and By are
punctured tori. For ¢z > 1, let A; denote the unique component of Ag N Dy to which I'; belongs;
define B; similarly. (If I'; C Ly, one of A; or B; will be just I'; itself.) We know that A4; = Ay,
By = B3, A3 = Ay and By = Bs.

We will frequently use orthogonal arrangements of parallel paths to construct a new NSC I'' in
U+, In the notation OP(P, P';Q,Q"), P, P’' will be the paths in Ay and @, Q' those in By. There
are two common ways in which this provides a contradiction. First, I’ may avoid the edge zy,
and so be an NSC for ¥: we indicate this by AOP(P, P';Q,Q'"). Second, I'' N Dy may have fewer
components than I' N Dy: we indicate this by COP(P, P';Q),Q").

Suppose P, P',(),Q’" all lie in Dy. When we form I from I' we delete the interiors of four
nontrivial segments of I, say 51,52, 53,94, and then add the interiors of P, P’',(),Q’. Each end of
each 5; lies in some component of I' N Dy. Suppose each S; intersects s; components of I' N Dy,
then s; > 1. When we delete 57, the number of components in D, changes by 2 — s;. When
we add P°, P'°,(Q°,Q'° the number of components in 1)y changes by —4. Thus,

I'"'nDqf| =
ITN Da|| +4 — s1 — s3 — s3 — s4. This analysis is valid even when the interiors of P, P',Q,Q’
intersect components of I'N Dy. If we do not have s; = s3 = s3 = s4 = 1 then we have COP(P, P,
Q,Q"). In particular, let OO P[¢]( P, P';Q, Q") denote the situation in which some component ¢ of
I' N Dy contains an odd number of the eight endpoints of P, P',Q, Q" (counted with multiplicity).
Then s; > 1 for some j, so this is a special case of COP(P, P';Q,Q").

Now we break into cases according to the order of 1,2,3,4,5 along I'. For any distinct compo-
nents ¢y, ¢y, ..., of I'N Dy, we say that I' has (4192 .. .0¢) if 241,29, ..., 2% occur in that order along

I.
(A) Suppose I' has (1432). By Lemma 2.4, 'N(2aL21)° = I'N(4aLy3d)° = (. Note that by Lemma
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2¢ 4a
2b 4b
2a 4c

3d

3¢ 3b 3a

Figure 5.2: Some cases from (A)

2.3, I'N(2cLy3a)° C (3I'2)°.

To help the reader begin following our arguments, Figure 5.2 shows how we construct new
NSCs using Corollary 3.2 in the first two cases here. The solid chords are essential paths in Ay,
the dashed chords are essential paths in By, and the edges of 1" used by the new NSC are hatched.

First, suppose that I'N(3¢L12b)° = 0. Let P = 2¢(0Bs3)3a (P is just 2¢L23a if I'N(2¢L23a)° =
0). Since I'N(2¢L23a)° is contained in (3I'2)°, we have P°NT C (3'2)°. Now we have AO P(2al,1,
4aly3d;3cL12b, P). This is illustrated on the left of Figure 5.2. Note that (31'2)° is not hatched,
showing that this part of I' may be used by P if necessary.

Second, suppose that I' N (20L13b)° = 0. Since I' N (2¢Ly3a)° C (31'2)°, we have OO P|[1]
(2aL21,4al33d;2¢L23a,2bL13b). This is illustrated on the right of Figure 5.2. While this appears
very similar to the left of Figure 5.2, we obtain different types of contradiction in these two cases.

Finally, we may suppose that there exist I's = 6 that intersects (20L130)° and I'y = 7 that
intersects (3¢L12b)°. By Lemma 2.3, 2,3,6,7 are the only components of I' N Dy intersecting Bs,
and T' has (3627). If I has (271) then we have OO P[1|(2alL21,4aL33d;2bL16b,3¢L17b). If I' has
(173) then we have OO P[1](2aL21,4aL23d;6bL13b, TbL,12b).

By symmetry we may also exclude the cases where I' has (1234), (5234) or (5432).

(B) Suppose T' has (1342). By Lemma 2.4, I' N (2aL21)° = T N (3aLz4c)® = 0.

Suppose I'N (2¢Ly3a)° = 0, then we have OO P[1](2aL21,3aLydc; 2¢Ly3a, 2b1,3b). Therefore,
we may assume ' N (2¢Ly3a)® # 0, and, similarly, I' N (3dL22a)° # 0. Let I's = 6 intersect
(2¢L23a)°, and I'y = 7 intersect (3dL22a)°. By Lemma 2.3, 2,3,6,7 are the only components of
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I' N Dy intersecting Bs and I' has (3627). Then we have OO P[1](2aL21,3aL24c¢;2¢L26,3dLy7).
By symmetry we may also exclude the cases where I' has (1243), (5324) or (5423).

(C) Now we know that I' must have either (1324) or (1423), and either (5243) or (5342). So the
overall order must be (13524) or (14253). These cases are symmetric, so let us assume the order
is (14253). Given this order, there is a symmetry that reverses I' and swaps Ay and By. For our
standard picture of Dj, this amounts to rotating Dy by 180° and reversing I'.

Consider the components of I' N Dy that intersect (2aL92¢)°. Each such component lies in
(3'4)°, otherwise we could choose that component as 1 and have case (A) or (B). Let 1 be the
first and 1’ the last such component along 3I'4 (possibly 1 = 1’). By Lemima 2.3 there are at most
three such components, and 1 is the first, and 1’ the last, along 2aLs2¢. Thus, I' N (2aL,1)° =
I'N(1'Ly2¢)° = P. If there are three distinct components 1,1*,1" in order along I', then 3aLs4c
violates C'S(1L21*,1'Ly2¢)(i) in Ag. Therefore, there are at most two such components. Similarly,
at most two components of I' N Dy intersect (4cLqy4a)®, they lie in (2I'3)°, and if 5 is the first and
5" the last along 2I'3 (possibly 5 = 5'), then I' N (4¢L25")° = T'N (5L24a)° = 0.

IfI'N(2cLy3a)° # 0, we denote the component of I'N Dy closest to 3a by 6, and that closest to
2¢ by 6' (possibly 6 = 6"). If I'N(3dL22a)° # 0, we denote the component of I'N Dy closest to 2a by
7, and that closest to 3d by 7' (possibly 7 = 7’). By Lemma 2.3, I has (366'277"), suitably modified
to identify components that are the same and delete components that do not exist. Similarly, if
I'n(3alLa4c)® # 0, we denote the component of I'N Dy closest to 3a by 8, and that closest to 4¢ by
8" (possibly 8 = 8"). If I'N (4aL23d)° # 0, we denote the component of I' N Dy closest to 4a by 9,
and that closest to 3d by 9’ (possibly 9 = 9'). By Lemma 2.3, I' has (388'499’), suitably modified.
Note that 6,6”,7,7,8,8.9,9" may or may not intersect L.

Claim 1. At least one of 7 and 9 exists.
Proof. Ifnot, we havethe O P(3bL14b,3aLs4c;3¢L12b,3dLy2a) which produces I with ||[I' N Dy|| =
II'N Dy|| and ||[I"' N Dq|| = |[I'N Dq|| — 2, contradicting the minimality of I'. B

Claim 2. At most one of 6 and 7 exists. By symmetry, at most one of 8 and 9 exists.

Proof. Suppose both 6 and 7 exist. By Lemma 2.3 (4), 2,3,6,7 are the only components of I'N Dy
intersecting Bz, and I' has (3627). To avoid an arc (not necessarily path) from 4 to 5 in Bj violating
CS(6L23a,7L22a) (i) in By, I' must have (275) when it has (364), and must have (573) when it
has (462). So I' has either (364275) or (346257).

(2.1) Suppose I' has (364275). If 8 does not exist, let P = 3aL4c and P’ = 3bL14b; if 9 does
not exist, let P = 4al23d and P’ = 4bL13c. In either case we have OO P[2|( P, P';3dL27,2¢L36).
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Therefore, 8 and 9 exist. By Lemma 2.3, 3,4,8,9 are the only components of I' N Dy intersecting
Ag, and I' has (3849).

To avoid an arc from 1 to 2 in A; violating C'S(3aL,8,4aL,9) (i) in Ay, I' must have (429)
when it has (318), and must have (923) when it has (814). So I' has either (318429) or (381492). If
I' has (318429) we have OO P[2](8 L24¢,9L93d;6L33a,7Ly2a). If I has (381492) we have OO P[5]
(8L34¢,9L23d;6L33a,5L24a).

(2.2) Suppose I' has (346257). If I' N (3alqdc)® = 0 let P = 3alq4c and P' = 3bL14b; if I'N
(4al33d)° = 0 let P = 4aLy3d and P’ = 4bL13c. In either case we have OO P[5]( P, P'; 3dL,7,
5Ly4a). 1

Claim 3. If 7 exists then 7 = 7" and I' has (275). By symmetry, if 8 exists then 8 = 8" and I' has
(1'84).

Proof. We first show that I' does not have (57'3). Suppose I' has (57'3). Since at most one of 8
and 9 exists by Claim 2, we may take paths P, P’ to be either 3alLs4c,3bL14b or 4bL13c,4al93d.
Then we have OO P[5|( P, P';3dLy7',5L34a).

If 7 #4 7' then to avoid an arc from 4 to 5 violating C'S(3dLy7',7L22a)(i) in By, I' must have
(2757'3) and hence (57'3). Thus, 7 = 7/, and since I' does not have (57'3) = (573), it must have
(275).

Claim 4. If 6 exists then 6 = 6’ and I' has (462). By symmetry, if 9 exists then 9 = 9" and I' has
(492).

Proof. We first show that I' does not have (364). Suppose I' has (364). Since at most one of 8
and 9 exists by Claim 2, we may take paths P, P’ to be either 3aly4c,3bL14b or 4bL13c,4al,3d.
Then we have OO P[5]( P, P';6L23a,5L24a).

If 6 # 6" then to avoid an arc from 4 to 5 violating C'5(2¢L26’,6L33a)(i) in By, I' must have
(3646'2) and hence (364). Thus, 6 = 6’ and since I' does not have (364) it must have (462). B

Now, from Claim 1 we may assume without loss of generality that 7 exists. By Claim 2, 6 does
not exist, and at most one of 8 or 9 exists. If 8 exists, then I has (31'84275) by Claim 3, and we
get OO P[1'|(1'La2¢,8L24¢; 5L34a,7L92a). If 9 exists, then I' has (31'49275) by Claim 4, and we
get OO P[1'](1'La2¢,4aL99;5L24a,7L22a). Therefore, none of 6, 8 or 9 exists.

To summarise: I' has (314275), 7 exists, 7 = 7', and none of 6, 8 or 9 exists. To find new NSCs
in this situation, we use paths that may lie outside the disk Dy. By Lemma 5.1(ii), every edge of
L9 belongs to a face, contained in Dg, that includes a vertex of L;. Applying this to an edge of

Ly with at least one end in 1, we obtain a face g with at least one vertex vy of 1 and at least one

14



vertex vy of 2b. The only components of I'N Dy that g may intersect are 1, 2 and (if 1 # 1’) 1. By
Lemma 5.1(ii), g N 1 and g N 1’ have at most one component each. Apply Lemma 5.1 to g, letting
Fq and F; be the disks, with boundaries M; and Ms.

Let O19 be an arc from vy to vy inside ¢, and let O34 be an arc from an interior point v3 of xy
to a vertex vy of 4b inside f N Ag. Cut Ag along 012 and Osy; the result is a disk with clockwise

boundary (in compressed notation)
’01012’021“’1’0403’41’03F’1’02 Olal’l)lril’03034’04F71’01

(We do not distinguish between the two copies of O12, 034, v1, v2, v3, v4, since it will be clear which
one we mean.) This disk contains a slightly smaller disk £, whose boundary we divide into left, right,
top and bottom segments for convenience. Reading bottom to top, R has Q = 03T 13d L, '4al 1oy
on the left, and Q)2 = v2['3als4cT'vy on the right. Reading left to right, R has O on the top and
Oﬁl on the bottom. We use >, <, >, < to denote order along ¢); or ()2, so that, for example, u > v
means u is above v. Along ()1 we have v; < 3d < 4a < vy, with 4a < 1" < vy if 1’ # 1. Along @,
we have 19 < 2¢ <7< 5 < 3a< 4¢c < 2a < vy.

Now, examining (M; U M) N R, there must be vertices #1 > 9 > w3 > 24 on Q1, y1 > Y2 >
Y3 > Y4 on (o, and paths Py, P», P3, Py in R, such that

o P, Py, P35, P, are vertex-disjoint, except that P; and P, may intersect at either or both of

01, V3;

e cach P; has ends x;, y; and is otherwise disjoint from 0R;

o P; and Py are segments of M7, while P, and P; are segments of My; and

ez €1,y €2,a4€lorl,y, €2.
The paths P; and P, are just the obvious segments of dg = M;. If M, did not contain two
disjoint paths P,, Ps as described, then we could find a circle in Fy that was noncontractible in 99,
contradicting the fact that Fs is a disk.

If an end of P, or P3 belongs to (4aL23d)° or (3aLa4c)®, then the path is not essential because
it does not have both ends on I'. However, it can be extended to an essential path, in more than
one way. Given x; > 3d, define Xi‘" to be dalqx; if x; < 4a, or z; if z; > 4a. Given z; < 4a, define
X, to be 2;Ly3d if x; > 3d, or z; otherwise. Define Yi+ and Y;” on the right similarly, based on
the relationship of y; to 4¢ and 3a.

Let ws be the last vertex of 5 along I'. Note that 5Ls4a = ws Loda.

Suppose first that 23 < 4a. Then necessarily z4 € 1. If y3 < ws then OP(P;, X5 U Ps;

5Ls4a,7L4a) produces a separating cycle which does not use 4b; replace zy by z L1y to obtain a
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separating cycle avoiding zy. If ws < y3 < 4c¢, then since 24 € 1 we have AOP(X5 U P U Y, ,
Py;2c¢L93a,3dL27 U 7T U 7Lo2a). If y3 > 4c¢, then we have (the rather complicated) AOP(P,
X5 UPsUysl Y4cUdely ' 3a;2¢Ly3a,3dLy7 U 75 U 5L94a).

Now suppose that 3 > 4a, and that y; < 3a. If I' N (3¢L12b)° = 0, then we have AOP(Ps,
Ps;2¢l23a,3c¢L12b). Otherwise, 7 must intersect 3¢L12b, so 7 has segments 7a, 7c on Ly and 7b on
L. Then we have AOP(3aLq4c¢,4bL13¢;3¢L17b,3dL,y7a).

Finally, suppose that z3 > 4a and y, > 3a. If 24 € 1, then OP(Py U Y,", Py;5L54a,70,2a)
produces a separating cycle that does not use 4b; replace zy by z L1y to obtain a separating cycle
avoiding zy. If z4 ¢ 1, then 1 £ 1" and x4 € 1". Let Py = P, Uy, I'4ec U 4cL513a if yo > 4¢, and
Py =P, UY, if 3a < y2 < 4c. Then we have AO P(Py, Py;2¢L33a,3dLy7 U TI'5U 5Ls4a).

We have covered all cases, so this concludes the proof of the theorem. B

Since representativity for triangulations is the same as the edgewidth, or length of the shortest

noncontractible cycle, we observe the following corollary of Theorem 5.2.

Corollary 5.3. Any triangulation of the double torus whose shortest noncontractible cycle has

length at least 4 has a noncontractible separating cycle.
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