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Abstract

Hartsfield and Ringel proved that a complete graph Kn has an orientable quadrangular

embedding if n ≡ 5 (mod 8), and has a nonorientable quadrangular embedding if n ≥ 9 and

n ≡ 1 (mod 4). We complete the characterization of complete graphs admitting quadrangular

embeddings by showing that Kn has an orientable quadrilateral embedding if n ≡ 0 (mod 8),

and has a nonorientable quadrilateral embedding if n ≡ 0 (mod 4). We also determine the

order of minimal quadrangulations for some surfaces where the corresponding graphs are not

complete.

Keywords: quadrangular embedding, complete graph, minimal quadrangulation.

1 Introduction

In this paper surfaces are compact 2-manifolds without boundary. The connected orientable surface

of genus h is denoted Sh, and the connected nonorientable surface of genus k is denoted Nk. A

disconnected surface is considered orientable if all of its components are orientable. The Euler

characteristic of a surface Σ is denoted χ(Σ), which is 2−2h for Sh, and 2−k for Nk. All embeddings

of graphs in surfaces are cellular (every face is homeomorphic to an open disk). For convenience we

often identify a face by referring to its bounding cycle or bounding closed walk. Graphs may have

loops or multiple edges; simple graphs have neither.

An embedding of a graph G in a surface Σ is quadrangular , or a quadrangulation of Σ, if every

face is bounded by a 4-cycle. A quadrilateral is a face bounded by a 4-cycle. A quadrangulation of Σ
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is minimal if its underlying graph is simple and connected, and there is no quadrangular embedding

of a simple graph of smaller order on Σ.

Similarly, a triangulation of a surface Σ is an embedding of a graph in Σ such that every face is

bounded by a 3-cycle. Triangular embeddings of simple graphs are always minimum genus embed-

dings. Conditions for the existence of triangular embeddings of complete graphs were determined as

part of the well-known Map Color Theorem (see [20]), which extended the Four Color Theorem to

other surfaces. Subsequently there were a number of results providing lower bounds on the number

of nonisomorphic triangular embeddings of Kn for certain families of n; see for example [1, 5, 6, 14].

Much less work has been done on quadrangular embeddings of complete graphs, which is our

subject here. We begin with some simple observations. The first follows from Euler’s formula and

the fact that a quadrangulation with m edges has m/2 faces. The second follows from the first, the

fact that m =
(
n
2

)
for Kn, and because χ(Σ) is an integer, which is even when Σ is orientable.

Observation 1.1. (i) If a connected graph G with n vertices and m edges has a quadrangular

embedding on a surface Σ, then m = 2n− 2χ(Σ).

(ii) If Kn has a quadrangular embedding on Σ then χ(Σ) = n(5 − n)/4. Hence, if Σ is orientable

then n ≡ 0 or 5 (mod 8) and if Σ is nonorientable then n ≡ 0 or 1 (mod 4).

Hartsfield and Ringel [10, 11] obtained the following results, each of which covers half of the

possible values of n for which quadrangular embeddings of Kn may exist, from Observation 1.1(ii).

Theorem 1.2 (Hartsfield and Ringel [10]). A complete graph Kn with n ≡ 5 (mod 8) admits a

quadrangular embedding in an orientable surface.

Theorem 1.3 (Hartsfield and Ringel [11]). A complete graph Kn with n ≥ 9 and n ≡ 1 (mod 4)

admits a quadrangular embedding in a nonorientable surface. However, there is no such embedding

of K5 (or of K1).

Hartsfield and Ringel also showed that the generalized octahedron O2k (K2k with a perfect match-

ing removed) has orientable and nonorientable quadrangular embeddings for k ≥ 3. In the orientable

case this is a special case of an older result of White [21] discussed in Subsection 2.2 below.

Using current graphs, Korzhik and Voss [14] constructed exponentially many nonisomorphic

orientable quadrangular embeddings of K8s+5 for s ≥ 1, and Korzhik [13] constructed superex-

ponentially many nonisomorphic orientable and nonorientable quadrangular embeddings of K8s+5

for s ≥ 2. Grannell and McCourt [7] constructed many nonisomorphic orientable embeddings of

complete graphs Kn with faces bounded by 4k-cycles for k ≥ 2, when n = 8ks+ 4k + 1 for s ≥ 1.

None of the above results, however, address the cases left open by Hartsfield and Ringel. We

settle those cases, as follows.

Theorem 1.4. A complete graph Kn with n ≡ 0 (mod 8) admits a quadrangular embedding in an

orientable surface.

Theorem 1.5. A complete graph Kn with n ≡ 0 (mod 4) admits a quadrangular embedding in a

nonorientable surface.

2



Hartsfield [9, Lemmas 1 and 3] also claims to prove Theorem 1.5, by modifying a nonorientable

quadrangular embedding of Kn to obtain an embedding of Kn+8. She provides the base cases, for

K8 and K12, and gives a specific construction of an embedding of K16 from an embedding of K8.

However, the details of her construction for general n ≡ 0 (mod 4) are not given, and do not appear

to be straightforward. While her approach seems valid, her work cannot be regarded as a complete

proof.

Before proving Theorems 1.4 and 1.5, we discuss some graph operations and constructions for

embeddings in Section 2. Theorem 1.4 is proved in Section 3, using graphical surfaces and voltage

graphs. We actually prove more general results on quadrangular embeddings of composition graphs

G[K4]. Theorem 1.5 is proved in Section 4, using the diamond sum operation. Our proof also gives

a new proof for the existence result in Theorem 1.3. In Section 5 we use earlier sections to give some

results on minimal quadrangulations. Section 6 gives some final remarks.

Combining our results with Theorems 1.2 and 1.3 gives a complete characterization.

Theorem 1.6. The complete graph Kn has a quadrangular embedding in an orientable surface if

and only if n ≡ 0 or 5 (mod 8), and in a nonorientable surface if and only if n ≡ 0 or 1 (mod 4)

and n 6= 1, 5.

2 Preliminaries

2.1 Graph operations

Let G and H be simple graphs. The composition (or lexicographic product) of G and H, denoted

G[H], has vertex set V (G) × V (H), with two vertices (v1, u1) and (v2, u2) adjacent if and only if

either (i) v1v2 ∈ E(G) or (ii) v1 = v2 and u1u2 ∈ E(H). For example, Kn[K2] is the complete graph

K2n and K2[Kn ] is the complete bipartite graph Kn,n, where Kn represents a graph with n vertices

and no edges. The join of G and H, denoted G + H, is the union of G and H together with one

edge uv for each u ∈ V (G) and v ∈ V (H). For example, K4 +Kn is the complete graph Kn+4.

2.2 Graphical surfaces

White [21] showed that any composition G[K2 ], where G is a simple graph without isolated vertices,

has an orientable quadrangular embedding. Craft [3, 4] developed graphical surfaces, which yield a

simple proof of this result. We outline his proof, since we need his construction in Section 3.

For a graphG, the graphical surface S(G) derived fromG is a surface obtained from an embedding

of G in R3 by blowing up every vertex u into a sphere Σu and replacing every edge uv by a tube

Tuv joining the spheres Σu and Σv. Since we work in R3, the resulting surface S(G) is orientable.

Lemma 2.1 (Craft [3, 4]). Let G be a simple graph without isolated vertices. Then G[K2 ] has a

quadrangular embedding on the graphical surface S(G).

Outline of proof. We embed G[K2 ] in S(G) as follows. For any vertex u ∈ V (G), let uN (north

pole) and uS (south pole) be two points in the sphere Σu; they represent the two vertices of G[K2 ]
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corresponding to u. We may assume that all tubes joined to Σu are joined in some cyclic order

around the equator of Σu. There are four edges of G[K2 ] corresponding to each uv ∈ E(G), which

are uNvN, uNvS, uSvS and uSvN. These can all be embedded along Tuv (there are two different ways

to do this, but for our purposes it will not matter which is used). In the resulting embedding,

every edge is contained in two quadrilaterals. For example, uSvN is contained in quadrilaterals

Qu = (tXuNvNuS) and Qv = (uSvNwY vS) where tu, vw ∈ E(G) and X,Y ∈ {N,S}. Note that if u

has degree 1, then tX = vS.

White and Craft dealt only with orientable embeddings. However, we can also produce nonori-

entable embeddings. Given a graphical surface, we can replace a tube Tuv by a twisted tube T̃uv by

taking a simple closed curve γ around Tuv with a specified positive direction, cutting along it to

produce two boundary curves γ1 and γ2, then re-identifying γ1 with γ2 so that the positive direction

along γ1 corresponds to the negative direction along γ2 (this cannot be done in R3). We can still

embed the four edges between {uN, uS} and {vN, vS} along T̃uv; they become orientation-reversing

edges relative to the original orientation at each vertex. Depending on which tubes we replace, the

resulting embedding may be nonorientable.

Lemma 2.2. Let G be a simple graph with no isolated vertices and at least one cycle. Then G[K2 ]

has a quadrangular embedding on a nonorientable modified graphical surface S̃(G).

Proof. Choose one edge uv belonging to a cycle and replace the tube Tuv by a twisted tube T̃uv in the

construction of Lemma 2.1. The resulting embedding is nonorientable because the cycle (uvw . . . z)

in G gives an orientation-reversing cycle (uNvNwN . . . zN) in the embedding of G[K2 ] on the new

surface S̃(G).

2.3 Voltage graphs

We assume the reader is familiar with voltage graph constructions for embeddings. We summarize

the main features; see [8] for more details.

Given a graph G, assign an arbitrary plus direction to each edge. A function α from the plus-

directed edges of G to a group Γ is an ordinary voltage assignment on G. The pair 〈G,α〉 is called an

ordinary voltage graph. The derived graph Gα has vertex set V (G)×Γ and an edge from ua = (u, a)

to vb = (v, b) whenever uv is a plus-directed edge in G and b = a · α(uv).

If G has an embedding Φ, represented by a rotation of edges at each vertex and edge signatures,

then Gα has a derived embedding Φα: for each ua ∈ V (Gα) use the natural bijection between edges

incident with u in G and edges incident with ua in Gα to define the rotation at ua from the rotation

at u, and give each edge uavb of Gα the signature of the corresponding edge uv in G.

For each walk W = v0e1v1e2v2 . . . ekvk in G define its total voltage to be α(e1)ε1α(e2)ε2 . . . α(ek)εk

where εi is +1 if W uses ei in the plus direction and −1 otherwise. The faces of Φα come from the

faces of Φ: each face in Φ with degree k whose boundary walk has total voltage of order r in Γ yields

|Γ|/r faces of degree kr in Φα. Also, Φα is nonorientable if and only if Φ is nonorientable and has

an orientation-reversing closed walk whose total voltage is the identity of Γ.
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2.4 The diamond sum

Let G and G′ be two simple graphs with embeddings Φ and Φ′ on disjoint surfaces Σ and Σ′,

respectively. Suppose that k ≥ 1 and both G and G′ have a vertex of degree k, say v and v′

respectively. Let v have neighbors v0, v1, ..., vk−1 in cyclic order around v in Φ, and let v′ have

neighbours v′0, v
′
1, ..., v

′
k−1 in cyclic order around v′ in Φ′. There is a closed disk D that intersects G

in v and the edges vv0, vv1, ..., vvk−1, and so that the boundary of D intersects G at v0, v1, ..., vk−1.

Similarly, there is a closed disk D′ that intersects G′ in v′ and the edges v′v′0, v
′v′1, ..., v

′v′k−1 and

so that the boundary of D′ intersects G′ at v′0, v
′
1, ..., v

′
k−1. Remove the interiors of D and D′, and

identify their boundaries so that vi is identified with v′i for 0 ≤ i ≤ k−1. The resulting embedding is

called a diamond sum of Φ and Φ′ at v and v′, denoted Φ3v,v′Φ
′ or just Φ3Φ′. Its graph is denoted

G3G′ and the surface is the connected sum Σ#Σ′. Note that Φ3Φ′ is orientable if and only if both

Φ and Φ′ are orientable.

The diamond sum was first used by Bouchet [2] in dual form to derive a new proof of the

minimum genus of Km,n. Bouchet’s construction was later reinterpreted in more general situations

in [12, 16, 17]. Our construction in Section 4 relies on the following observation.

Observation 2.3. The diamond sum of two quadrangular embeddings is quadrangular.

3 Embeddings from graphical surfaces and voltage graphs

In this section, we use graphical surfaces and voltage graphs to construct both orientable and nonori-

entable quadrangular embeddings of certain graphs of the form G[K4]. Theorem 1.4 is a special case.

Theorem 3.1. Let G be a connected simple graph with a perfect matching. Then G[K4] has an

orientable quadrilateral embedding.

Proof. Let G have perfect matching M , and let S(G) be the graphical surface derived from G.

First, construct a quadrangular embedding Θ of H = G[K2 ] on S(G) as in Lemma 2.1. For

each vertex v ∈ V (G) there are two vertices vN, vS ∈ V (H). For each uv ∈ E(G), there is a tube

Tuv in S(G), along which run the edges uNvN, uNvS, uSvS and uSvN of H. Each edge uP vQ of H

belongs to two quadrilaterals of the form (uNvQuStX) and (uP vNwY vS) where tu, vw ∈ E(G) and

P,Q,X, Y ∈ {N,S}.
Modify the embedding Θ by splitting each edge into a digon (2-cycle) bounding a face. Let Ψ be

the new embedding, with underlying graph J . The other faces of Ψ are quadrilaterals, in one-to-one

correspondence with the quadrilaterals of Θ. We now assign voltages from the group Z2; since all

elements of Z2 are self-inverse, the designation of plus directions for edges does not matter. Choose

a voltage assignment α : E(J) → Z2 so that the voltages of the edges of J around each tube Tuv

alternate between 0 and 1. Then each digon of Ψ has one edge of voltage 0 and one edge of voltage 1.

Each quadrilateral of Ψ, which uses edges from two tubes Tuv and Tvw, has an edge of voltage 0 and

an edge of voltage 1 on Tuv, and similarly for Tvw. Therefore, every digon has total voltage 1 and

every quadrilateral has total voltage 0 in 〈J, α〉. Thus, the derived embedding Ψα, with underlying

graph Jα = H[K2 ] = G[K2 ][K2 ] = G[K4 ], is an orientable quadrangulation.
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We could also have obtained a quadrangular embedding of G[K4 ] = G[K2 ][K2 ] directly from

Lemma 2.1, but that would not have had the special structure which we now exploit to obtain an

embedding of G[K4]. We work with the vertices of G in pairs specified by the perfect matching M .

Figure 1: Votage graph 〈J1, α1〉 generated from graphical surface of G[K2 ].

For each uv ∈ M , let e be one of the four edges of H on the tube Tuv, between {uN, uS}
and {vN, vS}. We choose e = uSvN, as this makes it easier to illustrate what is happening (see

Figure 1). In Θ, e = uSvN belongs to two quadrilaterals Qu = (tXuNvNuS) and Qv = (uSvNwY vS)

where tu, vw ∈ E(G) and X,Y ∈ {N,S}. Let the two edges of the digon in J corresponding to e

be e1 and e2, where e1 belongs to the quadrilateral Q′u of Ψ corresponding to Qu and e2 belongs

to the quadrilateral Q′v of Ψ corresponding to Qv. Add a digon of two edges d1 and d2 in Q′u

between uN and uS, and a digon of two edges d3 and d4 in Q′v between vN and vS, so we have

four triangles T1(u) = (tXuNuS) using d1, T2(u) = (uNvNuS) using d2, T1(v) = (uSvNvS) using

d3 and T2(v) = (vSvNwY ) using d4. Assign voltage 1 to d2 and d3, and 0 to d1 and d4. Insert a

loop with voltage 1 at each of uN, uS, vN and vS and put these loops in the four different triangles

T1(u), T2(u), T1(v) and T2(v), respectively.

Everything up to this point could have been done using independently chosen quadrilaterals Q′u

containing uN and uS and Q′v containing vN and vS. However, the total voltages for the degree 4

faces containing the loops at uS and vN are currently 1, so they will not generate quadrilaterals in

the derived embedding. To fix this, swap the voltages on e1 and e2: this is where we use the pairing

of vertices via M . Let Ψ1, J1 and α1 be the final embedding, graph and voltage assignment, as

shown in Figure 1.

In Ψ1 there are four types of faces. Each face bounded by a digon has total voltage 1 in 〈J1, α1〉,
and each quadrilateral and face of degree 4 containing a loop has total voltage 0. These three types

of faces all lift to quadrilaterals in Ψα1
1 . The final type of face is bounded by a loop of total voltage

1. This lifts to a face in Ψα1
1 bounded by a digon between (uX , 0) and (uX , 1), where u ∈ V (G) and

X ∈ {N,S}. Replacing each such digon in Ψα1
1 by a single edge generates the required orientable

quadrangular embedding of G[K4].

Proof of Theorem 1.4. Write n = 8k and take G = K2k, which has a perfect matching. Then

G[K4] = Kn has an orientable quadrangular embedding by Theorem 3.1.

We can also obtain a nonorientable version of Theorem 3.1. This provides an alternative proof

of Theorem 1.5 in the case where n ≥ 16 and n ≡ 0 (mod 8).
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Theorem 3.2. Let G be a simple graph with a perfect matching and a cycle. Then G[K4] has a

nonorientable quadrilateral embedding.

Proof. Use Lemma 2.2 instead of Lemma 2.1 in the proof of Theorem 3.1. Replacing one or more

tubes by twisted tubes does not affect the argument. Take the orientation-reversing cycle C =

(uNvNwN . . . zN) in H = G[K2 ] from the proof of Lemma 2.2 and replace each edge of C by the

edge of voltage 0 in the corresponding digon of J1. This gives an orientation-reversing cycle of total

voltage 0 in 〈J1, α1〉, so the final embedding is nonorientable.

4 Embeddings from diamond sums

In this section, we discuss quadrangular embeddings of complete graphs on nonorientable surfaces.

Our construction is based on quadrangular embeddings of complete bipartite graphs and of K+
7 , the

graph obtained from K7 by subdividing an edge. A quadrangular embedding of K+
7 in N5 is shown

in Figure 2.

Figure 2: A quadrangular embedding of K+
7 in N5 (subdividing uv of K7 by w).

As part of determining the orientable and nonorientable genera of Km,n, Ringel showed that

Km,n has quadrangular embeddings in certain cases. Bouchet [2] later provided a simpler proof.

Lemma 4.1 (Ringel [18, 19]). The complete bipartite graph Km,n has an orientable quadrangu-

lar embedding whenever (m − 2)(n − 2) ≡ 0 (mod 4) and min{m,n} ≥ 2, and a nonorientable

quadrangular embedding whenever mn ≡ 0 (mod 2) and min{m,n} ≥ 3.

Lemma 4.2. If a complete graph Kn admits an orientable or nonorientable quadrangular embedding,

then Kn+4 admits a nonorientable quadrangular embedding.

Proof. Assume that K+
7 is obtained from K7 by subdividing an edge uv to create a degree 2 vertex

w, as in Figure 2. We may interpret K+
7 as a join (K1 ∪K5) +K2 where w is the vertex of the K1,

and u and v are the vertices of the K2. Let Φ1 be the quadrangular embedding of K+
7 on N5 from

Figure 2. We build the embedding of Kn+4 in two steps from Φ1, an orientable or nonorientable

quadrangular embedding Φ2 of K6,n−1 from Lemma 4.1, and the assumed quadrangular embedding

Φ3 of Kn.
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Let u′ be a vertex of K6,n−1 of degree 6. Apply the diamond sum to the embeddings Φ1 and

Φ2 at vertices u and u′. By Observation 2.3 the resulting embedding Φ4 is quadrangular; it is also

nonorientable since Φ1 is nonorientable. The underlying graph K+
7 3K6,n−1 is (K1 ∪K5) + Kn−1,

where w is the vertex of the K1, with degree n− 1, and u is now a vertex of the Kn−1.

Let w′ be a vertex of Kn. Apply the diamond sum again to the embeddings Φ3 and Φ4 at w′ and

w. By Observation 2.3 the resulting embedding Φ5 is quadrangular; it is also nonorientable since

Φ4 is nonorientable. The underlying graph ((K1 ∪K5) +Kn−1)3Kn is K5 +Kn−1 = Kn+4.

Proof of Theorem 1.5. Apply Lemma 4.2 repeatedly starting from the quadrangular embedding of

K4 in the projective plane, which has the three hamilton cycles of K4 as its face boundaries.

We can also prove the existence part of Theorem 1.3 by applying Lemma 4.2 repeatedly starting

from a quadrangular embedding of K5 in the torus. For n ≥ 9 the resulting embeddings of Kn are

nonorientable.

5 Minimal quadrangulations

In this section we apply our results to determine the order of some minimal quadrangulations.

Hartsfield and Ringel [10, 11] gave lower bounds on the order of a minimal quadrangulation for

a given surface, and showed that the quadrangular embeddings of complete graphs and generalized

octahedra O2k, k ≥ 4, that they constructed were minimal. Lawrencenko [15] showed that certain

orientable quadrangular embeddings of a graph G[K2 ], which exist as described in Subsection 2.2,

are minimal. The following lemma implies the minimality results both of Hartsfield and Ringel and

of Lawrencenko.

Lemma 5.1. Suppose L is obtained by deleting at most n − 4 edges from the complete graph Kn,

n ≥ 5. Then any quadrangular embedding of L is minimal.

Proof. Let f(x) = x(x − 5)/2. Suppose that x ≥ 5. If 2 1
2 ≤ x′ ≤ x − 1, then because f is

increasing on [2 1
2 ,∞) we have f(x)− f(x′) ≥ f(x)− f(x− 1) = x− 3. If 1 ≤ x′ ≤ 2 1

2 , then because

2 1
2 ≤ 5− x′ ≤ x− 1 we have f(x)− f(x′) = f(x)− f(5− x′) ≥ x− 3. Thus, f(x)− f(x′) ≥ x− 3

whenever 1 ≤ x′ ≤ x− 1. If n is a nonnegative integer then f(n) =
(
n
2

)
− 2n.

Now suppose L has n vertices, m edges, and a quadrangular embedding in Σ. Since at most n−4

edges of Kn were deleted, L, and hence also Σ, is connected. If we have another quadrangulation of

the same surface with n′ ≤ n− 1 vertices and m′ edges, then, using Observation 1.1(i),

m′ −
(
n′

2

)
= 2n′ − 2χ(Σ)−

(
n′

2

)
= −f(n′)− 2χ(Σ) = −f(n′) +m− 2n

≥ −f(n′) +

(
n

2

)
− (n− 4)− 2n = f(n)− f(n′)− (n− 4) ≥ 1,

proving that the other graph is not simple.

Lemma 5.1 is sharp whenever Kn−1 has a quadrangular embedding Φ of the appropriate ori-

entability type (as in Theorem 1.6). Adding a new vertex of degree 2 adjacent to two opposite
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vertices of a face of Φ yields a quadrangular embedding of a graph obtained from Kn by deleting

n− 3 edges, but this is not minimal.

We can now apply Lemma 5.1 to Lemmas 2.1 and 2.2, and to Theorems 3.1 and 3.2. The

orientable case of Corollary 5.2 is due to Lawrencenko [15, Theorem 2].

Corollary 5.2. Let k and p be integers with k ≥ 4 and 0 ≤ p ≤ k/4−1. Suppose G is obtained from

Kk by deleting at most p edges. Then G[K2 ] has both orientable and nonorientable quadrangular

embeddings that are minimal. Thus, minimal quadrangulations of the orientable surface of genus

k(k − 3)/2− p+ 1 and of the nonorientable surface of genus k2 − 3k − 2p+ 2 have order 2k.

Proof. Deleting p edges from Kk does not create isolated vertices or destroy all cycles. Thus, by

Lemmas 2.1 and 2.2, G[K2 ] has orientable and nonorientable quadrangular embeddings. These

have order 2k, and are minimal by Lemma 5.1 since we get G[K2 ] by deleting k+ 4p ≤ 2k−4 edges

from K2k. Observation 1.1(i) gives the genera of the surfaces.

Corollary 5.3. Let ` and q be integers with ` ≥ 1 and 0 ≤ q ≤ (`−1)/2. Suppose G is obtained from

K2` by deleting at most q edges. Then G[K4] has both orientable and nonorientable quadrangular

embeddings that are minimal. Thus, minimal quadrangulations of the orientable surface of genus

8`2 − 5`− 4q + 1 and of the nonorientable surface of genus 16`2 − 10`− 8q + 2 have order 8`.

Proof. If ` = 1 then q = 0 and G[K4] = K8k, so orientable and nonorientable quadrangular embed-

dings exist by Theorems 1.4 and 1.5. If ` ≥ 2 then the q edges deleted from K2` are incident with

at most ` − 1 vertices, so G has K2` − E(K`−1) as a subgraph, and hence has a perfect matching

and a cycle. Thus, by Theorems 3.1 and 3.2, G[K4] has the required embeddings.

For all ` these embeddings have order 8`, and are minimal by Lemma 5.1 since we get G[K4] by

deleting 16q < 8`− 4 edges from K8`. Observation 1.1(i) gives the genera of the surfaces.

There is some overlap here between the conclusions about the order of minimal quadrangulations.

The case of Corollary 5.3 with `/4 ≤ q ≤ (`− 1)/2 is also covered by Corollary 5.2 with k = 4` and

p = 4q − `.

6 Conclusion

We give some final remarks.

(1) In their work on quadrangular embeddings of complete graphs and minimal quadrangulations,

Hartsfield and Ringel [10, 11] used a stricter definition of a quadrangular embedding than we do: they

insisted that two distinct faces intersect in at most one edge and at most three vertices. The reason

for this restriction is unclear. Perhaps they wished to make the embedding “polyhedral”. However,

an embedding is now usually considered polyhedral if it is a 3-representative (every noncontractible

simple closed curve in the surface intersects the graph in at least three points) embedding of a

3-connected graph. A quadrangular embedding of Kn is never polyhedral in this sense: if we take

a face bounded by (uvwx) then the edge uw is part of the boundary of some other face, and using
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these two faces we can find a simple closed curve intersecting the graph at just u and w, which must

be noncontractible.

(2) We used diamond sums to prove the existence of nonorientable quadrangular embeddings of

complete graphs. We could also use diamond sums to prove the existence of orientable quadrangular

embeddings of complete graphs if we could find an orientable quadrangular embedding of K+
11, the

graph obtained by subdividing one edge of K11, on S9. We could then prove a lemma analogous to

Lemma 4.2, saying that if Kn has an orientable quadrangular embedding then so does Kn+8, and

apply this starting from quadrangular embeddings of K5 on S1 and K8 on S4.

(3) We can carry out the graphical surface/voltage graph construction from the proof of Theorem

3.1 with non-perfect matchings M of G as well as with perfect matchings, to give orientable and

nonorientable quadrangular embeddings of some graphs L with G[K4 ] ⊆ L ⊆ G[K4]. This provides

some further results on minimal quadrangulations, but we omit the details.

(4) Our constructions have a lot of flexibility, particularly the constructions from Subsection 2.2 and

Section 3. The graphical surface embeddings of G[K2 ] in S(G) (with twisted tubes allowed) require

a cyclic order of tubes around the equator of each sphere, and a designation of which tubes are to

be twisted. (This corresponds to choosing an arbitrary embedding of G, described by a rotation

scheme with edge signatures.) There are two ways to run the edges along each tube. For Theorem

3.1 or 3.2 we may choose an arbitrary perfect matching M of G, and for each edge uv of M we may

choose one of four possible edges along the corresponding tube to determine Qu and Qv. We also

have two ways to assign the voltages for the digons of J running along each tube.

It therefore seems natural to ask whether our techniques can be used to provide useful lower

bounds on the number of nonisomorphic quadrangular embeddings of Kn.
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[18] G. Ringel, Das Geschlecht des vollständigen paaren Graphen, Abh. Math. Sem. Univ. Ham-

burg. 28 (1965) 139–150.
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