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Abstract

Hartsfield and Ringel constructed orientable quadrangular embeddings of the complete graph

Kn for n ≡ 5 (mod 8), and nonorientable ones for n ≥ 9 and n ≡ 1 (mod 4). These provide

minimal quadrangulations of their underlying surfaces. We extend these results to determine,

for every complete graph Kn, n ≥ 4, the minimum genus, both orientable and nonorientable,

for the surface in which Kn has an embedding with all faces of degree at least 4, and also for

the surface in which Kn has an embedding with all faces of even degree. These last embeddings

provide sharpness examples for a result of Hutchinson bounding the chromatic number of graphs

embedded with all faces of even degree, completing the proof of the Even Map Color Theorem.

We also show that if a connected simple graph G has a perfect matching and a cycle then the

lexicographic product G[K4] has orientable and nonorientable quadrangular embeddings; this

provides new examples of minimal quadrangulations.
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1 Main results

In this paper surfaces are connected compact 2-manifolds without boundary. The orientable surface

of genus h is denoted Sh, and the nonorientable surface of genus k is denoted Nk. The Euler

characteristic of a surface Σ is denoted ε(Σ), which is 2− 2h for Sh, and 2− k for Nk.

Frequently we want embeddings of a given graph with minimum genus, which have faces that

are small, often triangular faces. In particular, the determination of the minimum genus of complete

graphs as part of the Map Color Theorem [30] was one of the driving forces behind the development

of topological graph theory. However, we can also consider the minimum genus of embeddings with

restrictions on face degrees. In this paper we consider embeddings where all faces have degree at

least 4, or all faces have even degree. Euler’s formula and face/edge counting imply the following.

Observation 1.1. If Φ is an embedding of an n-vertex m-edge graph in a surface Σ with all faces

of degree at least 4, then m ≤ 2n− 2ε(Σ), with equality if and only if the embedding is cellular and

every face degree is 4. For a complete graph Kn, n ≥ 4, such an embedding has n(n− 5) ≤ −4ε(Σ),

with equality if and only if the embedding is quadrangular.

In this paper we completely resolve the question of the minimum genus of a surface in which Kn

has an embedding with all faces of degree at least 4, or with all faces of even degree. These results

also complete the proof of a coloring result, the Even Map Color Theorem. In 1975 Hutchinson [16]

showed that the chromatic number bound of the Map Color Theorem can be significantly improved

for even-faced embeddings; our results improve her bound in one case and provide sharpness exam-

ples. We also provide some constructions for minimal quadrangulations, simple quadrangulations

with a minimum number of vertices in a given surface.

Our main results are as follows (see Section 3 for definitions not stated here). For a graph G and

positive integer d, the orientable d-genus gd(G) and the orientable even-faced genus geven(G) are the

smallest h ≥ 0 for which G has a cellular embedding in Sh with all face degrees at least d, or with

all face degrees even, respectively. We can similarly define the nonorientable d-genus g̃d(G) and the

nonorientable even-faced genus g̃even(G) (for convenience we take g̃d(G) or g̃even(G) to be 0 if G has

a suitable planar embedding).

Theorem 1.2. Let f(n) = 1 + dn(n− 5)/8e. Then

g4(Kn) = f(n) if n ≥ 4, and geven(Kn) =

f(n) if n ≥ 4 and n 6= 6,

f(6) + 1 = 3 if n = 6.

For n = 5, for n ≥ 7, and for g4(K6) there is a face-simple closed-2-cell embedding of Kn realizing

each equation. Such an embedding is quadrangular if and only if n ≡ 0 or 5 (mod 8).

Theorem 1.3. Let f̃(n) = 2 + dn(n− 5)/4e. Then

g̃4(Kn) = g̃even(Kn) =

f̃(n) if n ≥ 4 and n 6= 5,

f̃(5) + 1 = 3 if n = 5.

For n = 4 and for n ≥ 6 there is a closed-2-cell embedding of Kn realizing this pair of equations,

that is face-simple if n ≥ 6. Such an embedding is quadrangular if and only if n ≡ 0 or 1 (mod 4).
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Let χ(Φ) and χ∗(Φ) denote the number of colors needed to properly vertex-color or face-color,

respectively, a graph embedding Φ. We will ignore loops when vertex-coloring and monofacial edges

(with the same face on both sides) when face-coloring, so χ and χ∗ are defined for all embeddings.

Theorem 1.4 (Even Map Color Theorem). Let Φ be a (not necessarily cellular) embedding of a

(not necessarily connected) graph (loops and multiple edges allowed) in a surface Σ. Define

Heven(Σ) =

⌊
5 +

√
25− 16ε(Σ)

2

⌋
if Σ 6= S0, and c(Σ) =


2 if Σ = S0,

Heven(Σ)− 1 if Σ = N2 or S2,

Heven(Σ) otherwise.

(a) If every face of Φ has even degree (individual face boundary components may have odd length),

then (ignoring loops when coloring) χ(Φ) ≤ c(Σ).

(b) If every vertex of Φ has even degree, then (ignoring monofacial edges when coloring) χ∗(Φ) ≤
c(Σ).

Moreover, for every surface Σ there exist face-simple closed-2-cell embeddings of connected simple

graphs, that are quadrangular for (a) and 4-regular for (b), which show that these bounds are sharp.

The following provides new constructions of minimal quadrangulations, as well as giving an

alternative proof of some cases of Theorems 1.2 and 1.3.

Theorem 1.5. Let G be a connected simple graph with a perfect matching. Then G[K4] has a

face-simple orientable quadrangular embedding. Moreover, if G also has a cycle, then G[K4] also

has a face-simple nonorientable quadrangular embedding.

Section 2 provides some background to our results, and Section 3 provides precise definitions

and preliminary results. Section 4 proves Theorems 1.2 and 1.3, and Section 5 proves the Even Map

Color Theorem. Section 6 proves Theorem 1.5, and Section 7 shows that results from Sections 4 and

6 yield minimal quadrangulations. Section 8 contains some final remarks.

This version of this paper contains some details not included in the version submitted for publi-

cation.

2 Background

The minimum genus of the complete graph Kn and conditions for the existence of triangular embed-

dings of Kn were determined as part of the well-known Map Color Theorem [30], which extended

the Four Color Theorem to other surfaces. Subsequently there were a number of results showing

existence of multiple triangular embeddings of certain complete graphs, such as [1, 24, 33], and then

providing lower bounds on the number of nonisomorphic triangular embeddings of Kn for certain

families of n, such as [2, 8, 9, 20].

Less work has been done on quadrangular embeddings of complete graphs, or embeddings of

complete graphs with all faces of degree at least 4, or all faces of even degree. By Observation

1.1, n(n − 5) = −4ε(Σ) when there is a quadrangulation of Kn in Σ, which means that n ≡ 0 or
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5 (mod 8) in the orientable case, and n ≡ 0 or 1 (mod 4) in the nonorientable case. Hartsfield

and Ringel [14, 15] obtained the following results, mostly using current graphs, covering half of the

possible values of n for which quadrangular embeddings of Kn may exist.

Theorem 2.1 (Hartsfield and Ringel [14, 15]). A complete graph Kn with n = 8 or n ≡ 5 (mod 8)

has a face-simple orientable quadrangular embedding. A complete graph Kn with n ≥ 9 and n ≡ 1

(mod 4) has a face-simple nonorientable quadrangular embedding. However, K5 has no nonorientable

quadrangular embedding.

The embeddings in Theorem 2.1 are minimal quadrangulations. Hartsfield and Ringel also con-

structed quadrangular embeddings of the generalized octahedron O2k = Kk[K2] that are minimal.

We discuss minimal quadrangulations in more detail in Section 7. The fact that K5 has no nonori-

entable quadrangular embedding was also proved earlier (in dual form) by Hutchinson [16].

Using current graphs, Korzhik and Voss [20] constructed exponentially many nonisomorphic

orientable quadrangular embeddings of K8s+5 for s ≥ 1, and Korzhik [19] constructed superex-

ponentially many nonisomorphic orientable and nonorientable quadrangular embeddings of K8s+5

for s ≥ 2. Grannell and McCourt [10] constructed many nonisomorphic orientable embeddings of

complete graphs Kn with faces bounded by 4k-cycles for k ≥ 2, when n = 8ks+ 4k + 1 for s ≥ 1.

It is natural to ask whether the results in Theorem 2.1 can be extended to the other cases where

quadrangular embeddings of Kn might exist, namely n ≡ 0 (mod 8) for orientable embeddings,

and n ≡ 0 (mod 4) for nonorientable embeddings. When Kn has a quadrangular embedding it is

a minimal quadrangulation, and realizes g4(Kn) and geven(Kn), or g̃4(Kn) and g̃even(Kn). But we

can also try to determine these parameters even if Kn does not have a quadrangular embedding.

Our Theorems 1.2 and 1.3 resolve all of these questions, and we provide new proofs for the existence

results in Theorem 2.1.

Some explanation of the origins of this paper is appropriate. In the early 1990s one of us, Harts-

field, developed a technique for constructing quadrangulations by “adding handles using diagonals”.

She used this technique to derive a number of results on quadrangular embeddings, including that

Kn has a nonorientable quadrangular embedding when n ≡ 0 (mod 4) [12]. She also applied this

to derive results on g̃4(Kn) and g̃even(Kn) in a paper that was submitted for publication in 1994

[13]. As indicated in [17], Hartsfield was aware that her results would give sharpness examples

for Hutchinson’s coloring results [16]. Hartsfield’s papers [12, 13] outlined proofs (providing basis

cases and examples of inductive steps, such as from K8 to K16) but did not give complete general

arguments.

In the late 1990s three of us, Chen, Lawrencenko and Yang (CLY), derived results on g4(Kn)

using current graphs [4, 22]. These were submitted for publication in 1998. When Hartsfield and

CLY discovered they had been working on similar results, they decided to combine their results into

a single paper. Unfortunately, this single paper was never finished. Some researchers were aware of

the results of Hartsfield (cited in [17]) and of CLY (cited in [31]) but they were not publicly available.

Around 2015 the remaining four authors, Ellingham, Liu, Ye and Zha (ELYZ), worked on some

problems of Craft [6] on quadrangular embeddings of composition graphs. ELYZ realized that their

constructions (see Section 6) provided orientable quadrangular embeddings for Kn with n ≡ 0
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(mod 8), which did not seem to be in the literature. ELYZ also came up with a diamond sum

construction (see Section 4) for nonorientable quadrangular embeddings of Kn for n ≡ 0 (mod 4).

ELYZ’s results were written up [25] and submitted in 2016. After submission of their paper ELYZ

were informed of the earlier unpublished results of Hartsfield and CLY. It was decided to combine

all of the results into the present joint paper. Although Nora Hartsfield died in 2011 we think it is

appropriate to include her as an author.

We hope that eventually the other proofs of Theorems 1.2 and 1.3 using Hartsfield’s diagonal

technique and current graphs will also appear. For the current graph results, some modification of

the index 2 current graphs in [4, 22] is required, and we hope to provide nonorientable constructions

as well as orientable ones. A paper using a combination of current graphs and Hartsfield’s diagonal

technique is in preparation [23] and additional papers may follow.

3 Preliminaries

3.1 Graph embeddings

Our graphs may have loops or multiple edges; simple graphs have neither. We say a graph embedding

has some graph property (such as bipartiteness) if the underlying graph has this property. A face of

a graph embedding is cellular if it is homeomorphic to an open disk. We often identify a cellular face

by referring to its bounding cycle or bounding closed walk. A graph embedding is cellular if every

face is cellular, closed-2-cell if it is cellular and every face is bounded by a cycle (with no repeated

vertices), and face-simple if every two distinct faces share at most one boundary edge. In this paper

all embeddings are cellular unless we specifically refer to a general embedding, which means that

faces may have multiple boundary components and internal handles or crosscaps.

Suppose Φ is a graph embedding in surface Σ. The degree of a face is the number of sides of

edges with which it is incident. A k-face is a face of degree k, and a Ck-face is a cellular face

bounded by a k-cycle. A cellular k-face is bounded by a single closed walk of length k, which may

or may not be a k-cycle. The minimum vertex degree and minimum face degree of Φ are denoted

δ(Φ) and δ∗(Φ), respectively. The embedding Φ is even-vertexed or even-faced if every vertex or

every face, respectively, has even degree. An even-faced noncellular embedding may have individual

face boundary component walks of odd length, as long as the overall degree of each face is even.

We say Φ is quadrangular , or a quadrangulation of Σ, if every face is a C4-face. We also refer to

a C4-face as a quadrilateral. A quadrangulation of Σ is minimal if its underlying graph is simple

and connected, and there is no quadrangular embedding of a simple graph of smaller order in Σ.

Similarly, a triangulation of a surface Σ is an embedding of a graph in Σ such that every face is a

C3-face.

Lemma 3.1 (Euler’s inequality). Suppose we have a general embedding of a graph G in a surface

of Euler characteristic ε, with n vertices, m edges and r faces. Then n−m+ r ≥ ε, with equality if

and only if the embedding is cellular,

Observation 3.2. Suppose Φ is a general embedding of a simple graph G and δ(Φ) ≥ 2. Then every

face of G of degree at most 5 is bounded by a single cycle.
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Observation 3.3. Suppose Φ is a general even-faced embedding of a simple connected graph on at

least three vertices. Then every face boundary walk has length at least 3, and hence δ∗(Φ) ≥ 4.

Observation 3.4. Suppose Φ is a quadrangular embedding of a simple connected graph and δ(Φ) ≥
3. If Φ is not face-simple then it contains two faces of the form (uvwx) and (uvxw). Thus, if Φ is

orientable or bipartite then it is face-simple.

3.2 Graph operations

LetG andH be simple graphs. The complement ofG is denotedG. The composition (or lexicographic

product) of G and H, denoted G[H], has vertex set V (G) × V (H), with two vertices (v1, w1) and

(v2, w2) adjacent if and only if either (i) v1v2 ∈ E(G) or (ii) v1 = v2 and w1w2 ∈ E(H). For example,

Kn[K2] is the complete graph K2n, and Kn[K2 ] is the generalized octahedron O2n = K2n − nK2.

The join of G and H, denoted G+H, is the union of G and H together with one edge uv for each

u ∈ V (G) and v ∈ V (H). For example, K4 +Kn is the complete graph Kn+4.

3.3 The diamond sum

Let G and G′ be two simple graphs with embeddings Φ and Φ′ in disjoint surfaces Σ and Σ′,

respectively. Suppose that k ≥ 1 and both G and G′ have a vertex of degree k, say v and v′

respectively. Let v have neighbors v0, v1, ..., vk−1 in cyclic order around v in Φ, and let v′ have

neighbours v′0, v
′
1, ..., v

′
k−1 in cyclic order around v′ in Φ′. There is a closed disk D that intersects G

in v and the edges vv0, vv1, ..., vvk−1, and so that the boundary of D intersects G at v0, v1, ..., vk−1.

Similarly, there is a closed disk D′ that intersects G′ in v′ and the edges v′v′0, v
′v′1, ..., v

′v′k−1 and

so that the boundary of D′ intersects G′ at v′0, v
′
1, ..., v

′
k−1. Remove the interiors of D and D′, and

identify their boundaries so that vi is identified with v′i for 0 ≤ i ≤ k−1. The resulting embedding is

called a diamond sum of Φ and Φ′ at v and v′, denoted Φ♦v,v′Φ′ or just Φ♦Φ′. Its graph is denoted

G♦G′ and the surface is the connected sum Σ#Σ′. Note that Φ♦Φ′ is orientable if and only if both

Φ and Φ′ are orientable.

The diamond sum was first used by Bouchet [3] in dual form to derive a new proof of the

minimum genus of Km,n. Bouchet’s construction was later reinterpreted in more general situations

in [18, 26, 27].

The diamond sum of two cellular embeddings is cellular. It is also not difficult to see that if Φ

and Φ′ are quadrangular and the diamond sum Φ♦Φ′ is simple, then Φ♦Φ′ is also quadrangular.

To build embeddings in Section 4 that are face-simple and closed-2-cell, we rely on the following

technical extension of this observation, which allows Φ′ to contain non-C4-faces.

Lemma 3.5. Suppose Φ is a face-simple quadrangular embedding of a simple graph G, δ(Φ) ≥ 3,

v ∈ V (G), and the neighbors of v in G are independent. Suppose Φ′ is a closed-2-cell embedding

of a simple graph G′, v′ ∈ V (G′), and every pair of distinct faces of Φ′ shares at most one edge of

G′−v′. Then Φ′′ = Φ♦v,v′Φ′ is a face-simple closed-2-cell embedding and there is a degree-preserving

bijection between the non-C4-faces in Φ′ and the non-C4-faces in Φ′′.

Note that the condition on pairs of distinct faces of Φ′ holds if Φ′ is face-simple.
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Proof. There are three types of faces in Φ′′: (1) those that use only edges of G−v; (2) those that use

edges of both G− v and G′− v′; and (3) those that use only edges of G′− v′. Represent the faces of

Φ using v as Zi = (vviwivi+1) and the faces of Φ′ using v′ as Z ′i = (v′v′i . . . v
′
i+1), for 0 ≤ i ≤ k − 1,

taking subscripts modulo k. Since the neighbors of v are independent, wi is not a neighbor of v.

All faces in Φ and Φ′ are bounded by cycles since Φ and Φ′ are closed-2-cell, which implies that

faces of type (1) and (3) are bounded by cycles, and all Zi and Z ′i are cycles. Thus, every face of

type (2) is a face Z ′′i obtained by combining paths Zi − v = viwivi+1 and Z ′i − v′ by identifying vi

with v′i and vi+1 with v′i+1. Since wi is not a neighbor of v, it is not identified with any vertex of

Z ′i − v′, so Z ′′i is a cycle, and of the same length as Z ′i. Thus, Φ′′ is closed-2-cell.

Since all faces of type (1) are C4-faces, mapping each non-C4-face Z ′i to Z ′′i and each non-C4-face

of type (3) to itself gives the required degree-preserving bijection for non-C4-faces.

Let mst be the maximum number of edges shared by a face of type (s) and a distinct face of

type (t). Clearly m13 = 0; since Φ is face-simple, m11,m12 ≤ 1; and by the hypothesis on Φ′,

m32,m33 ≤ 1. Consider two arbitrary distinct faces Z ′′i , Z
′′
j of type (2). Suppose Zi − v and Zj − v

share an edge ab. Since Φ is simple and δ(Φ) ≥ 3, we cannot have Zi = (vabc) and Zj = (vabd), so

we may assume that we have Zi = (vabc) and Zj = (vbad). But then a and b are adjacent neighbors

of v, a contradiction. Therefore, Z ′′i and Z ′′j share no edges of G − v, and by the hypothesis on Φ′

they share at most one edge of G′ − v′, so m22 ≤ 1, and Φ′′ is face-simple.

3.4 Graphical surfaces

White [32] showed that any composition G[K2 ], where G is a simple graph without isolated vertices,

has an orientable quadrangular embedding. Craft [5, 7] developed graphical surfaces, which yield a

simple proof of this result. We outline his proof, since we need his construction in Section 6.

For a graphG, the graphical surface S(G) derived fromG is a surface obtained from an embedding

of G in R3 by blowing up every vertex u into a sphere Σu and replacing every edge uv by a tube

Tuv joining the spheres Σu and Σv. Since we work in R3, the resulting surface S(G) is orientable.

Lemma 3.6 (Craft [5, 7]). Let G be a connected simple graph. Then G[K2 ] has a quadrangular

embedding in the graphical surface S(G).

Outline of proof. We embed G[K2 ] in S(G) as follows. For any vertex u ∈ V (G), let uN (north

pole) and uS (south pole) be two points in the sphere Σu; they represent the two vertices of G[K2 ]

corresponding to u. We may assume that all tubes joined to Σu are joined in some cyclic order

around the equator of Σu. There are four edges of G[K2 ] corresponding to each uv ∈ E(G), which

are uNvN, uNvS, uSvS and uSvN. These can all be embedded along Tuv (there are two different ways

to do this, but for our purposes it will not matter which is used). In the resulting embedding,

every edge is contained in two quadrilaterals. For example, uSvN is contained in quadrilaterals

Qu = (tXuNvNuS) and Qv = (uSvNwY vS) where tu, vw ∈ E(G) and X,Y ∈ {N,S}. Note that if u

has degree 1, then tX = vS.

White and Craft dealt only with orientable embeddings. However, we can also produce nonori-

entable embeddings. Given a graphical surface, we can replace a tube Tuv by a twisted tube T̃uv by
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taking a simple closed curve γ around Tuv with a specified positive direction, cutting along it to

produce two boundary curves γ1 and γ2, then re-identifying γ1 with γ2 so that the positive direction

along γ1 corresponds to the negative direction along γ2 (this cannot be done in R3). We can still

embed the four edges between {uN, uS} and {vN, vS} along T̃uv; they become orientation-reversing

edges relative to the original orientation at each vertex. Depending on which tubes we replace, the

resulting embedding may be nonorientable.

Lemma 3.7. Let G be a connected simple graph with at least one cycle. Then G[K2 ] has a quad-

rangular embedding in a nonorientable modified graphical surface S̃(G).

Proof. Choose one edge uv belonging to a cycle and replace the tube Tuv by a twisted tube T̃uv in the

construction of Lemma 3.6. The resulting embedding is nonorientable because the cycle (uvw . . . z)

in G gives an orientation-reversing cycle (uNvNwN . . . zN) in the embedding of G[K2 ] in the new

surface S̃(G).

3.5 Voltage graphs

We assume the reader is familiar with voltage graph constructions for embeddings. We summarize

the main features; see [11] for more details.

Given a graph G, assign an arbitrary plus direction to each edge. A function α from the plus-

directed edges of G to a group Γ is an ordinary voltage assignment on G. The pair 〈G,α〉 is called an

ordinary voltage graph. The derived graph Gα has vertex set V (G)×Γ and an edge from ua = (u, a)

to vb = (v, b) whenever uv is a plus-directed edge in G and b = a · α(uv).

If G has an embedding Φ, represented by a rotation of edges at each vertex and edge signatures,

then Gα has a derived embedding Φα: for each ua ∈ V (Gα) use the natural bijection between edges

incident with u in G and edges incident with ua in Gα to define the rotation at ua from the rotation

at u, and give each edge uavb of Gα the signature of the corresponding edge uv in G.

For each walk W = v0e1v1e2v2 . . . ekvk in G define its total voltage to be α(e1)ε1α(e2)ε2 . . . α(ek)εk

where εi is +1 if W uses ei in the plus direction and −1 otherwise. The faces of Φα come from the

faces of Φ: each face in Φ with degree k whose boundary walk has total voltage of order r in Γ yields

|Γ|/r faces of degree kr in Φα. Also, Φα is nonorientable if and only if Φ is nonorientable and has

an orientation-reversing closed walk whose total voltage is the identity of Γ.

4 Embeddings from diamond sums

In this section we prove Theorems 1.2 and 1.3 by constructing embeddings of minimum genus with

all face degrees at least 4, and with all face degrees even, for each complete graph Kn, n ≥ 4. Our

constructions are inductive. The base cases are provided in Appendix A.

The induction steps use quadrangular embeddings of complete bipartite graphs and of K+
7 and

K+
11, where K+

n denotes the graph obtained from Kn by subdividing an edge. In Figure 1 we

provide embeddings Ψ̃7 of K7 in N5 (as a polygon with labeled vertices, indicating how edges are

to be identified around the boundary) and Ψ11 of K11 in S9 (as a rotation system; see [11, Section
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3.2]). Each embedding is face-simple and all faces are C4-faces apart from two C3-faces that share

an edge xy (xy = 01 for Ψ̃7 and xy = 56 for Ψ11). Nonorientability of Ψ̃7 follows from the fact

that there are edges, such as 05, used twice in the same direction around the outer boundary of the

polygon. By subdividing xy with a vertex z in each case, we obtain embeddings Ψ̃+
7 and Ψ+

11 of

graphs K+
7 and K+

11. These embeddings are not face-simple, but with the choice v′ = x they satisfy

the hypotheses for Φ′ in Lemma 3.5.

6 3 1
y

6

4
0x

2 4

2 5 6 3 4 2

3 4 0 5 1 3

2 6 0. 1 3 4 6 a 9 8 7 5 2
1. 0 8 7 a 9 3 2 5 6 4
2. 0 1 5 6 4 3 9 a 7 8
3. 0 4 6 5 1 2 a 9 7 8
4. 0 8 6 5 7 9 a 2 3 1

x = 5. 0 9 a 4 6 2 3 7 8 1
y = 6. 0 1 8 7 3 2 5 4 a 9

7. 0 2 1 5 6 3 4 a 8 9
8. 0 7 9 a 4 3 6 5 1 2
9. 0 4 3 8 a 6 2 1 5 7
a. 0 9 7 5 1 2 6 8 3 4

Figure 1: Embeddings Ψ̃7 of K7 in N5 (left) and Ψ11 of K11 in S9 (right).

As part of determining the orientable and nonorientable genera of Km,n, Ringel showed that

Km,n has quadrangular embeddings in certain cases. Bouchet [3] later provided a simpler proof.

Lemma 4.1 (Ringel [28, 29]). The complete bipartite graph Km,n has an orientable quadrangu-

lar embedding whenever (m − 2)(n − 2) ≡ 0 (mod 4) and min{m,n} ≥ 2, and a nonorientable

quadrangular embedding whenever mn ≡ 0 (mod 2) and min{m,n} ≥ 3.

First we consider nonorientable embeddings. The following two lemmas provide the induction

steps in our proof.

Lemma 4.2. If a complete graph Kn, n ≥ 4, admits a face-simple orientable or nonorientable

quadrangular embedding, then Kn+4 admits a face-simple nonorientable quadrangular embedding.

Proof. Take K+
7 as described above, with special vertices x, y, z. We may interpret K+

7 as a join

(K1 ∪ K5) + K2 where z is the vertex of the K1, and x and y are the vertices of the K2. We

build the embedding of Kn+4 in two steps from the embedding Φ1 = Ψ̃+
7 of K+

7 as described above,

an orientable or nonorientable quadrangular embedding Φ2 of K6,n−1 from Lemma 4.1, and the

assumed quadrangular embedding Φ3 of Kn.

Let x′ be a vertex of K6,n−1 of degree 6. Since δ(Φ2) = min(6, n − 1) ≥ 3, K6,n−1 is bipartite,

and using Observation 3.4, we satisfy the hypotheses for Φ in Lemma 3.5 by taking Φ = Φ2 and

v = x′. From above we also satisfy the hypotheses for Φ′ in Lemma 3.5 by taking Φ′ = Φ1 = Ψ̃+
7

and v′ = x. Therefore, by Lemma 3.5, applying the diamond sum to Φ1 and Φ2 at x and x′ yields a

face-simple quadrangulation Φ12, which is nonorientable since Φ2 is nonorientable. The underlying

graph G12 = K+
7 ♦K6,n−1 is (K1 ∪K5) +Kn−1, where z is the vertex of the K1, with degree n− 1,

and y is now a vertex of the Kn−1.
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Since δ(Φ12) = min(6, n− 1) ≥ 3 and the neighbors of z in G12 are independent, we satisfy the

hypotheses for Φ in Lemma 3.5 by taking Φ = Φ12 and v = z. Let z′ be a vertex of Kn. We also

satisfy the hypotheses for Φ′ in Lemma 3.5 by taking Φ′ = Φ3 and v′ = z′. Therefore, by Lemma

3.5, applying the diamond sum to Φ12 and Φ3 at z and z′ yields a face-simple quadrangulation Φ123,

which is nonorientable since Φ12 is nonorientable. The underlying graph ((K1 ∪K5) + Kn−1)♦Kn

is K5 +Kn−1 = Kn+4.

The same proof also shows the following. The Cp-face in the embedding Φ3 of Kn corresponds

to a Cp-face in the embedding Φ123 = Φ12♦Φ3 of Kn+4 by the degree-preserving bijection of Lemma

3.5.

Lemma 4.3. Suppose that n ≥ p ≥ 5. If a complete graph Kn admits a face-simple orientable or

nonorientable embedding in which all faces are C4-faces except for one Cp-face, then Kn+4 has a

face-simple nonorientable embedding in which all faces are C4-faces except for one Cp-face.

Theorem 4.4. Given an integer n, let k = 2 + dn(n− 5)/4e.
Suppose that n ≥ 6. If n ≡ 0 or 1 (mod 4) then Kn has a face-simple quadrangular embedding

in Nk. If n ≡ 2 or 3 (mod 4) then Kn has a face-simple embedding in Nk in which every face is a

C4-face except for one C6-face.

For n = 4, K4 has a quadrangular embedding in Nk = N1 that is closed-2-cell but not face-simple.

For n = 5, K5 has no quadrangular embedding in Nk = N2, but has an embedding in N3 with three

C4-faces and one 8-face.

Proof. In each case the genus will follow by simple face/edge counting and Euler’s formula, so we

focus on the other properties. For n 6≡ 1 (mod 4), Appendix A gives the required embeddings Θ̃n

for n ∈ {4, 6, 7, 8}, and we then repeatedly apply Lemma 4.2 or 4.3. (We need n = 8 because the

embedding for n = 4 is not face-simple.)

Suppose that n ≡ 1 (mod 4). For n = 5, Hutchinson [16, proof of Theorem 2] and Hartsfield and

Ringel [15, Theorem 2] showed that there is no quadrangular embedding of K5 in the Klein bottle

N2. However, there is a face-simple quadrangular embedding Ψ̃−6 of K6− e in N3 given in Appendix

A, and deleting vertex 0 gives the required embedding of K5 in N3. For n ≥ 9, applying Lemma

4.2 to the orientable quadrangular embedding Θ5 of K5 from Appendix A gives a nonorientable

quadrangular embedding of K9, and we then repeatedly apply Lemma 4.2.

Theorem 1.3 follows because every embedding given in Theorem 4.4 is even-faced.

By adding chords (carefully, for K5) or a single vertex inside the face of degree greater than 4

we also obtain the following.

Corollary 4.5. Suppose that n ≥ 4 and k = dn(n − 5)/4e + 2. If n ≡ 0 or 1 (mod 4) and n 6= 5,

then Kn has a quadrangular embedding in Nk, which is face-simple if n ≥ 8. For n = 5, K5 is a

subgraph of a quadrangular 5-vertex embedding with multiple edges in N3, and of a face-simple simple

6-vertex quadrangular embedding in N3. If n ≡ 2 or 3 (mod 4), Kn is a subgraph of a quadrangular

n-vertex embedding with multiple edges in Nk, and of a face-simple simple (n+1)-vertex quadrangular

embedding in Nk.
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Proof. For n = 5 we take Ψ̃−6 from Appendix A as the simple 6-vertex embedding. Deleting ver-

tex 0 from Ψ̃−6 leaves an 8-face (11415121234252) (subscripting occurrences of the same vertex to

distinguish them). We can add multiple edges 113 and 513.

Now we turn to orientable embeddings. The following two lemmas provide the induction steps in

our proof. They are proved in exactly the same way as Lemmas 4.2 and 4.3, except that we take Φ1

to be the orientable quadrangular embedding Ψ+
11 of K+

11 instead of the nonorientable embedding Ψ̃+
7

of K+
7 , and Φ2 to be an orientable quadrangular embedding of K10,n−1, instead of a nonorientable

embedding of K6,n−1.

Lemma 4.6. If a complete graph Kn, n ≥ 4, admits a face-simple orientable quadrangular embed-

ding, then Kn+8 admits a face-simple orientable quadrangular embedding.

Lemma 4.7. Suppose that 5 ≤ p ≤ n. If a complete graph Kn admits a face-simple orientable

embedding in which all faces are C4-faces except for one Cp-face, then Kn+8 has a face-simple

orientable embedding in which all faces are C4-faces except for one Cp-face.

There is one case where we cannot find an embedding with all of the properties we would like.

Proposition 4.8. Every general embedding of K6 in S2 is cellular with five C4-faces and two C5-

faces, and such an embedding exists. Thus, K6 has no general even-faced embedding in S2.

Outline of proof. Let Φ be a general embedding of K6 in S2, with n = 6 vertices, m = 15 edges,

r faces, and ri faces of degree i. By Euler’s inequality, r ≥ ε − n + m = −2 − 6 + 15 = 7. By

Observation 3.3, δ∗(Φ) ≥ 4, and so 30 = 2m = 4r4 + 5r5 + 6r6 + . . . ≥ 4r. Hence r = 7, with either

r4 = 6 and r6 = 1, or r4 = 5 and r5 = 2. Since r = 7, Φ is cellular. By Observation 3.2 the 4-faces

and any 5-faces are bounded by cycles; any 6-face is bounded by a cycle or a ‘bowtie’ walk (abcade).

Now that we have restricted the structure of Φ, we can perform a case analysis to show that the

embedding is as described. Details may be found in Appendix B. It is also easy to generate and

check all rotation systems for K6 (up to isomorphism) by computer. We did this; it ran in less than

a minute. The embedding Θ6 from Appendix A demonstrates existence.

Theorem 4.9. Given an integer n, let h = 1 + dn(n− 5)/8e.
Suppose that n = 5 or n ≥ 7. If n ≡ 0 or 5 (mod 8), then Kn has a face-simple quadrangular

embedding in Sh. If n 6≡ 0 and 5 (mod 8) then Kn has a face-simple embedding in which every face

is a C4-face except for one Cp-face, where p ∈ {6, 8, 10} (specifically, p = 12− (n(n− 5) mod 8)).

For n = 4, K4 has an embedding in Sh = S1 with one C4-face and one 8-face. For n = 6, K6

has no even-faced embedding in Sh = S2, but has an embedding in S2 with five C4-faces and two

C5-faces, and an embedding in S3 with four C4-faces and one 14-face.

Proof. In each case the genus will follow by simple face/edge counting and Euler’s formula, so we

focus on the other properties. For n 6= 4 and 6, Appendix A gives the required embeddings Θn of

Kn for n ∈ {5, 7, 8, 9, 10, 11, 12, 14}, covering all classes modulo 8, and we then repeatedly apply

Lemma 4.6 or 4.7. For n = 4, there cannot be an embedding with a C8-face, but an embedding Θ4

with an 8-face is given in Appendix A.
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For n = 6, see Proposition 4.8. To obtain the embedding of K6 in S3 with a 14-face, take Θ6

from Appendix A and swap the positions of 1 and 2 in the rotation of vertex 0. This replaces face

boundaries (01234), (03142) and (0251) by a single closed walk (01234025103142) of length 14.

Theorem 1.2 follows because every embedding given in Theorem 4.9, except for the embedding

of K6 in S2, is even-faced.

By adding chords (carefully, for K4 and K6) or a single vertex (or two vertices, for K6) inside

the face of degree greater than 4 we also obtain the following.

Corollary 4.10. Suppose that n ≥ 4 and h = dn(n − 5)/8e + 1. If n ≡ 0 or 5 (mod 8), then

Kn has a quadrangular embedding in Sh. If n 6≡ 0 and 5 (mod 8) and n 6= 6, Kn is a subgraph

of a quadrangular n-vertex embedding with multiple edges in Sh, and of a simple (n + 1)-vertex

quadrangular embedding in Sh. For n = 6, K6 is a subgraph of a quadrangular 6-vertex embedding

with multiple edges in S3 and a simple 8-vertex quadrangular embedding in S3.

Proof. For K4, the 8-face in Θ4 is (0111213112023222) (subscripting occurrences of the same vertex

to distinguish them) and we can add multiple edges 0131, 1222. Adding a new vertex 4 adjacent to

01, 21, 12, 32 gives an embedding isomorphic to the the quadrangular embedding Θ5 of K5 in S1.

For K6, the 14-face from the proof of Theorem 4.9 is (011121314102225120332134223) and we can

add multiple edges 0131, 3122, 3142, 2203, 0342 or new vertices 6 adjacent to 23, 11, 31, 02, 5 and then

7 adjacent to 12, 32, 42, 6. (Or the 8-vertex simple quadrangulation of S3 containing K7 also contains

K6.)

5 Proof of the Even Map Color Theorem

The Map Color Theorem says that for a graph embedding Φ in a surface Σ 6= S0, χ(Φ) ≤ H(Σ) =⌊(
7 +

√
49− 24ε(Σ)

)
/2
⌋

(the Heawood number of Σ), which can be improved to χ(Φ) ≤ H(Σ)− 1

if Σ = N2, and these bounds are sharp. Hutchinson showed that this can be significantly improved

if the embedding is even-faced. In this section we strengthen her bound in one case, and use the

embeddings constructed in Section 4 to show that the bounds are sharp.

Theorem 5.1 (Hutchinson [16, Theorems 1 and 2 and Corollary 2]). For a surface Σ define

Heven(Σ) =
⌊(

5 +
√

25− 16ε(Σ)
)
/2
⌋

. If Φ is an even-faced graph embedding in a surface Σ 6= S0

then χ(Φ) ≤ Heven(Σ). If Σ = N2 this can be improved to χ(Φ) ≤ Heven(N2)− 1 = 4. These results

are sharp when Σ = N1, N2 or S1.

Hutchinson’s proof requires Φ to be cellular, because she first proves a face-coloring result and

applies that to the dual Φ∗; each vertex of Φ needs to correspond to a distinct face of Φ∗. One way

to extend the result to general embeddings is by first applying the following lemma.

Lemma 5.2. Suppose Φ is a general embedding. Then we can construct a new embedding Φ′ in

the same surface by adding edges, such that (a) Φ′ is cellular, (b) each face of Φ corresponds to a

distinct face of Φ′, (c) if two faces are adjacent in Φ then the corresponding faces are adjacent in

Φ′, (d) if Φ is even-faced then so is Φ′, and (e) if Φ is even-vertexed then so is Φ′.
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Proof. We can add edges inside faces to destroy each internal handle or crosscap (run an edge along

the handle or across the crosscap) and connect different boundary components without creating any

new faces, satisfying (a)–(d). If we replace each new edge by two parallel edges bounding a 2-face

we still satisfy (a)–(d) and also satisfy (e). In particular, since new edges have the same face on

both sides, this does not violate (c).

We can also prove Theorem 5.1 directly for general embeddings. We outline a proof of the

general inequality in Theorem 5.1, based on translating and simplifying the proof of [16, Theorem

1], as we need some details later. We use the following preliminary results, which are implicit in the

arguments of [16].

Observation 5.3. If we remove edges or vertices from an even-faced embedding it remains even-

faced.

Lemma 5.4. If Ψ is a general n-vertex embedding in a surface Σ with δ(Ψ) ≥ d ≥ 4 and δ∗(Ψ) ≥ 4,

then n(d− 4) ≤ −4ε(Σ).

Proof. Suppose Ψ has m edges and r faces, and let ε = ε(Σ). By Euler’s inequality, dn−dm+dr ≥ dε
so dm ≤ d(r − ε) + dn (1). Since δ(Ψ) ≥ d, dn ≤ 2m (2). From (1) and (2), dm ≤ d(r − ε) + 2m

so that (d − 2)m ≤ d(r − ε) (3). Since δ∗(Ψ) ≥ 4, 4r ≤ 2m so that 2r ≤ m (4). From (3) and (4),

2(d − 2)r ≤ (d − 2)m ≤ d(r − ε), hence (d − 4)r ≤ −dε, and thus (d − 4)(r − ε) ≤ −dε − (d − 4)ε,

i.e., (d − 4)(r − ε) ≤ −2(d − 2)ε (5). By (3) and (5) and since d − 4 ≥ 0, 2(d − 4)(d − 2)m ≤
2(d− 4)d(r − ε) ≤ −4d(d− 2)ε, and dividing by d− 2 > 0 gives 2(d− 4)m ≤ −4dε (6). By (2) and

(6) and since d− 4 ≥ 0, dn(d− 4) ≤ 2m(d− 4) ≤ −4dε and dividing by d > 0 gives n(d− 4) ≤ −4ε,

as required.

Lemma 5.5. Let Σ be a surface with Σ 6= S0, and let d = Heven(Σ). Then d ≥ 4 and d is the

smallest positive integer such that (d+ 1)(d− 4) > −4ε(Σ).

Proof. Consider p(x) = (x + 1)(x − 4) + 4ε(Σ) = x2 − 3x − 4 + 4ε(Σ). Since ε(Σ) ≤ 1, p(1) =

p(2) < 0, and so p(x) has two real roots α1 < 1 and α2 > 2. By the quadratic formula, α2 =

(3 +
√

25− 16ε(Σ))/2. A positive integer d has p(d) > 0 if and only if d > α2. But since d is an

integer, d > α2 is equivalent to d ≥ bα2 + 1c = Heven(Σ). So the smallest positive integer d with

(d+ 1)(d− 4) > −4ε(Σ), or p(d) > 0, or d > α2, is exactly Heven(Σ).

Since ε(Σ) ≤ 1, if d = Heven(Σ) then the formula for Heven(Σ) yields d ≥ 4.

Outline of proof that χ(Φ) ≤ Heven(Σ) for general embeddings. We label the steps here for reference.

Let ε = ε(Σ) ≤ 1. (A) Let d = Heven(Σ) ≥ 4. (B) Let Φ be an even-faced embedding of minimum

order n in Σ whose graph G is not d-colorable. (C) If n ≤ d, then G is d-colorable, so n ≥ d + 1.

(D) Remove all loops from Φ to obtain an even-faced embedding Φ1 of G1 with χ(G1) = χ(G).

(E) Starting with Φ1 repeatedly remove one edge from each 2-face until no 2-faces remain, giving an

even-faced embedding Φ2 of a graph G2 with χ(G2) = χ(G) and δ∗(Φ2) ≥ 4. (F) If δ(Φ2) ≤ d− 1,

then we can remove a vertex x of degree at most d− 1, d-color G2 − x by minimality since Φ2 − x
remains even-faced, then color x, so G2, and hence G, is d-colorable. Thus, δ(Φ2) ≥ d. (G) By (E),

(F), Lemma 5.4 and (C), (d+ 1)(d− 4) ≤ n(d− 4) ≤ −4ε, contradicting Lemma 5.5.
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Figure 2: Adding a quadrangular handle (left) or crosscap (right).

Working with general embeddings, rather than cellular embeddings, simplifies the above proof

in step (F): we do not have to worry about losing cellularity when we delete a vertex.

We now show that the bound of Theorem 5.1 can be improved by 1 when the surface is S2, and

then show that with this improvement the result is sharp.

Proposition 5.6. Suppose G is a graph (multiple edges and loops allowed) with a general even-faced

embedding Φ in S2. Then (ignoring loops when coloring) χ(G) ≤ Heven(S2)− 1 = 5.

Proof. We modify the above proof that χ(Φ) ≤ Heven(Σ). In (A) take d = 5 instead of d =

Heven(S2) = 6. As in (B), let Φ be an even-faced embedding of minimum order n in Σ = S2

(ε = −2) of a graph G with χ(G) > d = 5. Apply Lemma 5.2 to convert Φ into an even-faced

cellular embedding Φ0 of a necessarily connected graph G0. Apply (D) and (E) to Φ0 to construct

Φ1 and Φ2 as above. Then G2 is loopless and connected, χ(G2) = χ(G1) = χ(G0) ≥ χ(G), and

δ∗(Φ2) ≥ 4. From (C) and (F), n ≥ d+ 1 = 6 and δ(Φ2) ≥ d = 5.

Delete edges from Φ2 to obtain an even-faced embedding Φ3 in S2 of an underlying connected

simple graph G3 of G2. We have χ(G3) = χ(G2) ≥ χ(G) > 5. Let m and r be the number of edges

and faces of Φ3, respectively.

Suppose that n = 6. If G3 6= K6, then G3, and hence G, is 5-colorable, so G3 = K6. But then,

by Proposition 4.8, Φ3 cannot exist, a contradiction.

So n ≥ 7. If ∆(G3) = 5, then since G3 is simple, connected and not equal to K6, by Brooks’

Theorem, G3, and hence G, is 5-colorable. Thus, G3 has a vertex of degree 6 or more, from which

2m ≥ 5(n − 1) + 6 = 5n + 1, so m ≥ d(5n + 1)/2e. By Observation 3.3, δ∗(Φ3) ≥ 4, so 2m ≥ 4r

and r ≤ m/2. Therefore, −2 = ε ≤ n −m + r ≤ n −m + m/2 = n −m/2 ≤ n − d(5n + 1)/2e/2.

This fails if n ≥ 8, so n = 7. Moreover, when n = 7 this is tight, so all steps in our reasoning are

tight. In particular, G3 has one vertex of degree 6 and n − 1 = 6 vertices of degree 5. But then

G3 = K7 − 3K2 (delete three independent edges from K7), which is 4-colorable, a contradiction.

So no such Φ exists, and χ(G) ≤ 5 for all G with an even-faced embedding in S2.

Before proving the main result of this section, we introduce two operations. By adding a quadran-

gular handle to an orientable quadrangulation Φ, we mean deleting two distinct faces, and inserting

a handle (cylinder or annulus) with four new vertices as shown at left in Figure 2, identifying the

inner and outer 4-cycles with the boundaries of the deleted faces, so that the resulting quadrangular

embedding Φ′ is still orientable. Note that if Φ is simple, so is Φ′, and if Φ is face-simple, so is Φ′.
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Figure 3: Adding new faces in the same surface.

Also, by adding a quadrangular crosscap to a quadrangular embedding Φ we mean inserting a

crosscap and three new vertices in a face, as shown at right in Figure 2. The resulting quadrangular

embedding Φ′ is nonorientable. If Φ is simple, so is Φ′, and if Φ is face-simple, so is Φ′.

In both cases, χ(Φ′) ≥ χ(Φ).

Proof of Theorem 1.4, the Even Map Color Theorem. Consider first the vertex-coloring result (a).

The upper bound on χ(Φ) follows from Hutchinson’s Theorem 5.1, our Proposition 5.6, and the well-

known fact that graphs with even-faced embeddings in the plane are bipartite. Hutchinson provided

sharpness examples for Σ = N1, N2 and S1, but we now provide sharp quadrangular examples for

all surfaces.

First we apply the results of Section 4. For n ≥ 7, it follows from Corollaries 4.5 and 4.10 and

addition of quadrangular handles or quadrangular crosscaps that there is a face-simple quadrangular

embedding Ωn,Σ in Σ of a simple graph withKn as a subgraph, and hence with χ(Ωn,Σ) ≥ n, provided

ε(Σ) ≤ n(5 − n)/4, i.e., n(n − 5) ≤ −4ε(Σ). This also works for n = 5 if Σ is orientable and for

n = 6 if Σ is nonorientable.

Now suppose that ε(Σ) ≤ −4, and let d = c(Σ) = Heven(Σ) ≥ 7. By Lemma 5.5, d is the

smallest positive integer with (d + 1)(d − 4) > −4ε(Σ), so this inequality fails with d replaced by

d − 1, giving d(d − 5) ≤ −4ε(Σ). Hence, by the previous paragraph, there is an embedding Ωd,Σ

with d ≤ χ(Ωd,Σ) ≤ Heven(Σ) = d, which provides the required sharpness example.

The remaining surfaces are Sh for 0 ≤ h ≤ 2 and Nk for 1 ≤ k ≤ 5. For S0 take the standard

planar (spherical) embedding of the cube. If Σ = S1 or S2 take Ω5,Σ, which has 5 ≤ χ(Ω5,Σ) ≤
c(Σ) = 5. For N1 and N2, take Θ̃4 in N1 (from Appendix A), add four new vertices inside each face

as shown at left in Figure 3 to obtain face-simple Θ̃′4 in N1, and then add a quadrangular crosscap

to give Θ̃′′4 in N2. Then 4 = χ(Θ̃4) ≤ χ(Θ̃′4) ≤ χ(Θ̃′′4) ≤ c(N1) = c(N2) = 4, so take Θ̃′4 and Θ̃′′4 for

N1 and N2, respectively. For N3 add a quadrangular crosscap to Θ5 (from Appendix A). If Σ = N4

or N5 use Ω6,Σ.

The face-coloring version (b) follows from the vertex coloring-version (a) by taking duals, after

applying Lemma 5.2 if an embedding is noncellular. All of the vertex-coloring sharpness examples

are quadrangular (implying closed-2-cell), face-simple and simple, so their duals provide face-coloring

sharpness examples that are 4-regular, closed-2-cell, simple and face-simple.

We cannot extend the Even Map Color Theorem to embeddings with all face degrees at least

4, because there is no counterpart to Observation 5.3 for such embeddings. They may realize the
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Heawood bound of the original Map Color Theorem. Suppose Φ is a sharpness example (such as a

triangular embedding of some Kn) for the original Map Color Theorem in a surface Σ 6= S0, N2, so

that χ(Φ) = H(Σ). If we add new vertices inside each triangular face as shown at right in Figure 3,

we obtain an embedding Φ′ in Σ with δ∗(Φ′) ≥ 4 and χ(Φ′) = H(Σ) > Heven(Σ).

6 Embeddings from graphical surfaces and voltage graphs

In this section, we use graphical surfaces and voltage graphs to construct both orientable and nonori-

entable quadrangular embeddings of certain graphs of the form G[K4], proving Theorem 1.5.

Theorem 6.1. Let G be a connected simple graph with a perfect matching. Then G[K4] has a

face-simple orientable quadrangular embedding.

Proof. Let G have perfect matching M , and let S(G) be the graphical surface derived from G.

First, construct a quadrangular embedding Θ of H = G[K2 ] in S(G) as in Lemma 3.6. For

each vertex v ∈ V (G) there are two vertices vN, vS ∈ V (H). For each uv ∈ E(G), there is a tube

Tuv in S(G), along which run the edges uNvN, uNvS, uSvS and uSvN of H. Each edge uP vQ of H

belongs to two quadrilaterals of the form (uNvQuStX) and (uP vNwY vS) where tu, vw ∈ E(G) and

P,Q,X, Y ∈ {N,S}.
Modify the embedding Θ by splitting each edge into a digon (2-cycle) bounding a face. Let Ψ be

the new embedding, with underlying graph J . The other faces of Ψ are quadrilaterals, in one-to-one

correspondence with the quadrilaterals of Θ. We now assign voltages from the group Z2; since all

elements of Z2 are self-inverse, the designation of plus directions for edges does not matter. Choose

a voltage assignment α : E(J) → Z2 so that the voltages of the edges of J around each tube Tuv

alternate between 0 and 1. Then each digon of Ψ has one edge of voltage 0 and one edge of voltage 1.

Each quadrilateral of Ψ, which uses edges from two tubes Tuv and Tvw, has an edge of voltage 0 and

an edge of voltage 1 on Tuv, and similarly for Tvw. Therefore, every digon has total voltage 1 and

every quadrilateral has total voltage 0 in 〈J, α〉. Thus, the derived embedding Ψα, with underlying

graph Jα = H[K2 ] = G[K2 ][K2 ] = G[K4 ], is an orientable quadrangulation.

We could also have obtained a quadrangular embedding of G[K4 ] = G[K2 ][K2 ] directly from

Lemma 3.6, but that would not have had the special structure which we now exploit to obtain an

embedding of G[K4]. We work with the vertices of G in pairs specified by the perfect matching M .

Figure 4: Voltage graph 〈J1, α1〉 generated from graphical surface of G[K2 ].
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For each uv ∈ M , let e be one of the four edges of H on the tube Tuv, between {uN, uS}
and {vN, vS}. We choose e = uSvN, as this makes it easier to illustrate what is happening (see

Figure 4). In Θ, e = uSvN belongs to two quadrilaterals Qu = (tXuNvNuS) and Qv = (uSvNwY vS)

where tu, vw ∈ E(G) and X,Y ∈ {N,S}. Let the two edges of the digon in J corresponding to e

be e1 and e2, where e1 belongs to the quadrilateral Q′u of Ψ corresponding to Qu and e2 belongs

to the quadrilateral Q′v of Ψ corresponding to Qv. Add a digon of two edges d1 and d2 in Q′u

between uN and uS, and a digon of two edges d3 and d4 in Q′v between vN and vS, so we have

four triangles T1(u) = (tXuNuS) using d1, T2(u) = (uNvNuS) using d2, T1(v) = (uSvNvS) using

d3 and T2(v) = (vSvNwY ) using d4. Assign voltage 1 to d2 and d3, and 0 to d1 and d4. Insert a

loop with voltage 1 at each of uN, uS, vN and vS and put these loops in the four different triangles

T1(u), T2(u), T1(v) and T2(v), respectively.

Everything up to this point could have been done using independently chosen quadrilaterals Q′u

containing uN and uS and Q′v containing vN and vS. However, the total voltages for the 4-faces

containing the loops at uS and vN are currently 1, so they will not generate quadrilaterals in the

derived embedding. To fix this, swap the voltages on e1 and e2: this is where we use the pairing of

vertices via M . Let Ψ1, J1 and α1 be the final embedding, graph and voltage assignment, as shown

in Figure 4.

In Ψ1 there are four types of faces. Each 2-face has total voltage 1 in 〈J1, α1〉, and each quadri-

lateral and 4-face containing a loop has total voltage 0. These three types of faces all lift to quadri-

laterals in Ψα1
1 . The final type of face is bounded by a loop of total voltage 1. This lifts to a face in

Ψα1
1 bounded by a digon between (uX , 0) and (uX , 1), where u ∈ V (G) and X ∈ {N,S}. Replacing

each such digon in Ψα1
1 by a single edge generates the required orientable quadrangular embedding

of G[K4], which is automatically face-simple by Observation 3.4.

As a special case of Theorem 6.1, by taking G = K2k for k ≥ 1 we obtain a proof of Theorem

1.2 if the case where n ≡ 0 (mod 8). We can also obtain a nonorientable version of Theorem 6.1,

which provides a proof of Theorem 1.3 in the case where n ≥ 16 and n ≡ 0 (mod 8).

Theorem 6.2. Let G be a connected simple graph with a perfect matching and a cycle. Then G[K4]

has a face-simple nonorientable quadrangular embedding.

Proof. Use Lemma 3.7 instead of Lemma 3.6 in the proof of Theorem 6.1. Replacing one or more

tubes by twisted tubes does not affect the argument. Take the orientation-reversing cycle C =

(uNvNwN . . . zN) in H = G[K2 ] from the proof of Lemma 3.7 and replace each edge of C by the

edge of voltage 0 in the corresponding digon of J1. This gives an orientation-reversing cycle of total

voltage 0 in 〈J1, α1〉, so the final embedding is nonorientable.

In the nonorientable case we also need to verify that the embedding is face-simple. We can

properly 2-face-color Ψ1, coloring the 4-faces white and the other faces black; this lifts to a proper

2-face-coloring of Ψα1
1 . In Ψ1 each white face shares an edge with four distinct black faces, so this

also holds in Ψα1
1 , and thus Ψα1

1 is face-simple. Replacing digons makes each white face share at

most one edge with another white face, and the final embedding is still face-simple.

Theorems 6.1 and 6.2 together prove Theorem 1.5.
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7 Minimal quadrangulations

In this section we apply our results to determine the order of some minimal quadrangulations.

Hartsfield and Ringel [14, 15] showed that an n-vertex simple quadrangulation of Σ must satisfy

n(n − 5) ≥ −4ε(Σ). They used this to investigate minimal quadrangulations of surfaces of small

genus, and to show that quadrangular embeddings of complete graphs and generalized octahedra

O2k = Kk[K2], k ≥ 4 are minimal. Lawrencenko [21] showed that certain orientable quadrangular

embeddings of a graph G[K2 ], as described in Subsection 3.4, are minimal. The following lemma

implies the minimality results of [14, 15, 21].

Lemma 7.1. Suppose that L is obtained by deleting at most n − 4 edges from the complete graph

Kn, n ≥ 5. Then any quadrangular embedding of L is minimal.

Proof. Let f(x) = x(x − 5)/2. Suppose that x ≥ 5. If 2 1
2 ≤ x′ ≤ x − 1, then because f is

increasing on [2 1
2 ,∞) we have f(x)− f(x′) ≥ f(x)− f(x− 1) = x− 3. If 1 ≤ x′ ≤ 2 1

2 , then because

2 1
2 ≤ 5− x′ ≤ x− 1 we have f(x)− f(x′) = f(x)− f(5− x′) ≥ x− 3. Thus, f(x)− f(x′) ≥ x− 3

whenever 1 ≤ x′ ≤ x− 1. If n is a nonnegative integer then f(n) =
(
n
2

)
− 2n.

Now suppose L has n vertices, m edges, and a quadrangular embedding in Σ. Since at most n−4

edges of Kn were deleted, L, and hence also Σ, is connected. If we have another quadrangulation of

Σ with n′ ≤ n− 1 vertices and m′ edges, then, since m′ = 2n′ − 2ε(Σ) from Observation 1.1,

m′ −
(
n′

2

)
= 2n′ − 2ε(Σ)−

(
n′

2

)
= −f(n′)− 2ε(Σ) = −f(n′) +m− 2n

≥ −f(n′) +

(
n

2

)
− (n− 4)− 2n = f(n)− f(n′)− (n− 4) ≥ 1,

proving that the other graph is not simple.

Lemma 7.1 is sharp whenever Kn−1 has a quadrangular embedding Φ of the appropriate ori-

entability type (as in Theorems 1.2 and 1.3). Adding a new vertex of degree 2 adjacent to two

opposite vertices of a face of Φ yields a quadrangular embedding of a graph obtained from Kn by

deleting n− 3 edges, but this is not minimal.

We can now apply Lemma 7.1 to Lemmas 3.6 and 3.7, and to Theorems 6.1 and 6.2. The

orientable case of Corollary 7.2 is due to Lawrencenko [21, Theorem 2].

Corollary 7.2. Let k and p be integers with k ≥ 4 and 0 ≤ p ≤ k/4−1. Suppose G is obtained from

Kk by deleting p edges. Then G[K2 ] has both orientable and nonorientable quadrangular embeddings

that are minimal. Thus, minimal quadrangulations of the orientable surface of genus k(k−3)/2−p+1

and of the nonorientable surface of genus k2 − 3k − 2p+ 2 have order 2k.

Proof. Deleting p edges from Kk does not create isolated vertices or destroy all cycles. Thus, by

Lemmas 3.6 and 3.7, G[K2 ] has orientable and nonorientable quadrangular embeddings. These

have order 2k, and are minimal by Lemma 7.1 since we get G[K2 ] by deleting k+ 4p ≤ 2k−4 edges

from K2k. We compute the genera of the surfaces from m = 2n− 2ε(Σ).
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Corollary 7.3. Let ` and q be integers with ` ≥ 1 and 0 ≤ q ≤ (`−1)/2. Suppose G is obtained from

K2` by deleting q edges. Then G[K4] has both orientable and nonorientable quadrangular embeddings

that are minimal. Thus, minimal quadrangulations of the orientable surface of genus 8`2−5`−4q+1

and of the nonorientable surface of genus 16`2 − 10`− 8q + 2 have order 8`.

Proof. If ` = 1 then q = 0 and G[K4] = K8k, so orientable and nonorientable quadrangular embed-

dings exist by Theorems 1.2 and 1.3. If ` ≥ 2 then the q edges deleted from K2` are incident with

at most ` − 1 vertices, so G has K2` − E(K`−1) as a subgraph, and hence has a perfect matching

and a cycle. Thus, by Theorems 6.1 and 6.2, G[K4] has the required embeddings.

For all ` these embeddings have order 8`, and are minimal by Lemma 7.1 since we get G[K4]

by deleting 16q < 8` − 4 edges from K8`. We compute the genera of the surfaces from m =

2n− 2ε(Σ).

The simple quadrangulations described in Corollaries 4.5 and 4.10 are also minimal. The simple

quadrangulations with ` = n + 1 vertices are embeddings of K` with ` − 4, ` − 5 or ` − 6 edges

deleted, and so are minimal by Lemma 7.1.

Corollary 7.4. If n ≡ 2 or 3 (mod 4), n ≥ 6 and k = 2 + dn(n− 5)/4e, then a minimal quadran-

gulation of Nk has n+ 1 vertices. If n ≡ 1, 2, 3, 4, 6 or 7 (mod 8), n ≥ 7 and h = 1 + dn(n−5)/8e,
then a minimal quadrangulation of Sh has n+ 1 vertices.

There is some overlap here between the conclusions about the order of minimal quadrangulations.

The case of Corollary 7.3 with `/4 ≤ q ≤ (`− 1)/2 is also covered by Corollary 7.2 with k = 4` and

p = 4q − `. Some (but not all) cases of Corollary 7.4 are also covered by Corollary 7.2.

8 Conclusion

We give some final remarks.

(1) Hartsfield and Ringel [14, 15] defined quadrangulations more strictly than we do: they insisted

that two distinct faces share at most one edge and at most three vertices. For an embedding of

a simple graph, this is equivalent to being face-simple. The reason for this restriction is unclear.

Perhaps they wished to make the embedding “polyhedral”. However, an embedding is now usually

considered polyhedral if it is a 3-representative (every noncontractible simple closed curve in the sur-

face intersects the graph in at least three points) embedding of a 3-connected graph. A quadrangular

embedding of Kn is never polyhedral in this sense: given a face (uvwx), the edge uw is part of the

boundary of some other face, and using these two faces we can find a simple closed curve intersecting

the graph at just u and w, which must be noncontractible. In any case, all our embeddings, with a

few small exceptions, are face-simple and so satisfy Hartsfield and Ringel’s definition.

(2) It may be possible to carry out the graphical surface/voltage graph construction from the proof

of Theorem 6.1 with non-perfect matchings M of G as well as with perfect matchings, to give

orientable and nonorientable quadrangular embeddings of some graphs L with G[K4 ] ⊆ L ⊆ G[K4].

This could provide some further examples of minimal quadrangulations.
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(3) Our constructions have a lot of flexibility, particularly the constructions from Subsection 3.4 and

Section 6. The graphical surface embeddings of G[K2 ] in S(G) (with twisted tubes allowed) require

a cyclic order of tubes around the equator of each sphere, and a designation of which tubes are to

be twisted. (This corresponds to choosing an arbitrary embedding of G, described by a rotation

system with edge signatures.) There are two ways to run the edges along each tube. For Theorem

6.1 or 6.2 we may choose an arbitrary perfect matching M of G, and for each edge uv of M we may

choose one of four possible edges along the corresponding tube to determine Qu and Qv. We also

have two ways to assign the voltages for the digons of J running along each tube.

It therefore seems natural to ask whether our techniques can be used to provide useful lower

bounds on the number of nonisomorphic quadrangular embeddings of Kn.

A Appendix: Small cases

In this appendix we provide the embeddings for the bases of the inductive proofs in Section 4.

A.1 Nonorientable embeddings

At left in Figure 5 is a face-simple quadrangular embedding Ψ̃−6 of K6 − e (e = 01) in N3, which is

used for constructing embeddings related to K5. This is shown as a polygon with labeled vertices,

indicating how edges are to be identified around the boundary. Nonorientability follows from the

existence of edges used twice in the same direction around the outer boundary.

We give nonorientable embeddings Θ̃n for n ∈ {4, 6, 7, 8} in which all faces are C4-faces except

for possibly one C6-face. They are all closed-2-cell and all except Θ̃4 are face-simple. The embedding

Θ̃4 of K4 is obtained by taking each of the three hamilton 4-cycles in K4 as a face boundary. The

embedding Θ̃6 of K6 with six C4-faces and one C6-face is generated by the voltage graph shown at

center in Figure 5. The loop of voltage 3 generates digons, which are replaced by single edges. A

polygon representation of Θ̃6 is also given at right in Figure 5. The embeddings Θ̃7 of K7 and Θ̃8

of K8 are shown at left and right, respectively, in Figure 6.

A.2 Orientable embeddings

Below are orientable embeddings in which all faces are C4-faces except for at most two specified

faces. These embeddings are represented as rotation systems using vertices 0, 1, 2, . . . , 9, a, b, c, d.

All embeddings are even-faced except for Θ6. All are face-simple and closed-2-cell except Θ4.
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Figure 5: Nonorientable embeddings Ψ̃−6 (left) and Θ̃6 (center and right).
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Figure 6: Nonorientable embeddings Θ̃7 (left) and Θ̃8 (right).

Θ4 of K4

with 8-face
(01231032):

0. 1 3 2
1. 0 2 3
2. 0 1 3
3. 0 2 1

Θ5 of K5:

0. 1 4 2 3
1. 0 4 3 2
2. 0 3 4 1
3. 0 1 2 4
4. 0 2 1 3

Θ6 of K6

with C5-faces
(01234), (03142):

0. 1 2 3 5 4
1. 0 2 3 4 5
2. 0 5 1 3 4
3. 0 1 5 2 4
4. 0 1 2 5 3
5. 0 4 3 2 1

Θ7 of K7

with C6-face
(012345):

0. 1 4 3 2 6 5
1. 0 2 5 3 4 6
2. 0 6 1 3 5 4
3. 0 1 2 4 5 6
4. 0 6 2 3 5 1
5. 0 3 2 1 6 4
6. 0 4 1 5 2 3
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Θ8 of K8:

0. 1 7 4 3 5 2 6
1. 0 7 2 5 6 4 3
2. 0 7 3 4 6 1 5
3. 0 7 1 6 5 2 4
4. 0 6 1 2 5 3 7
5. 0 4 3 1 6 2 7
6. 0 5 2 1 3 4 7
7. 0 3 4 2 5 1 6

Θ9 of K9 with C8-face
(01234567):

0. 1 4 6 2 8 5 3 7
1. 0 2 6 4 3 7 5 8
2. 0 8 5 7 6 4 1 3
3. 0 8 2 4 6 1 7 5
4. 0 8 6 2 3 5 7 1
5. 0 7 3 2 1 4 6 8
6. 0 1 4 5 7 3 2 8
7. 0 5 8 2 3 4 1 6
8. 0 3 5 4 1 2 6 7

Θ10 of K10 with C10-face
(0123456789):

0. 1 5 6 4 7 3 8 2 9
1. 0 2 4 3 6 7 5 8 9
2. 0 9 8 7 6 1 3 5 4
3. 0 9 1 8 2 4 5 7 6
4. 0 9 2 3 5 7 8 1 6
5. 0 9 4 6 7 1 3 2 8
6. 0 8 3 5 7 4 2 1 9
7. 0 6 8 5 3 1 2 4 9
8. 0 6 5 3 4 2 1 7 9
9. 0 4 6 3 7 5 1 2 8

Θ11 of K11 with C10-face
(0123456789):

0. 1 5 7 3 a 6 4 8 2 9
1. 0 2 7 9 6 4 5 8 3 a
2. 0 a 1 3 5 6 9 8 4 7
3. 0 a 7 2 4 1 9 8 6 5
4. 0 a 3 5 2 6 8 1 9 7
5. 0 a 3 2 7 4 6 1 8 9
6. 0 9 1 2 3 4 8 5 7 a
7. 0 9 2 5 3 6 8 4 1 a
8. 0 7 9 1 6 2 5 4 3 a
9. 0 7 5 2 1 4 6 a 3 8
a. 0 5 1 4 6 3 7 2 8 9

Θ12 of K12 with C8-face
(01234567):

0. 1 a 2 9 3 8 4 b 6 5 7
1. 0 2 b 6 5 8 4 7 3 a 9
2. 0 b 7 5 1 3 8 4 6 9 a
3. 0 b 7 8 5 9 6 2 4 1 a
4. 0 b 1 a 3 5 8 2 9 6 7
5. 0 b 2 8 7 3 4 6 9 1 a
6. 0 a 1 9 4 2 8 3 5 7 b
7. 0 a 1 b 4 9 5 3 8 2 6
8. 0 a 1 9 2 6 4 3 5 7 b
9. 0 a 1 2 4 8 5 3 7 6 b
a. 0 9 2 1 4 8 3 7 5 6 b
b. 0 7 4 8 3 9 1 5 6 2 a

Θ14 of K14 with C6-face
(012345):

0. 1 7 a 4 b 3 c 2 d 8 6 9 5
1. 0 2 6 7 a 3 b 9 4 8 5 c d
2. 0 d c 1 3 9 b a 4 8 5 7 6
3. 0 d 2 4 6 9 1 c 5 7 8 a b
4. 0 d 6 8 7 9 3 5 a 2 b 1 c
5. 0 d 7 a 8 3 1 c 2 b 9 6 4
6. 0 d 2 a 5 3 9 4 8 7 b 1 c
7. 0 d 6 9 1 b 4 3 8 5 a 2 c
8. 0 c 1 b 2 a 7 5 3 4 9 6 d
9. 0 c 1 a 7 8 6 4 b 3 5 2 d
a. 0 c 1 9 b 2 3 5 8 4 6 7 d
b. 0 c 3 2 5 8 4 a 1 9 7 6 d
c. 0 b 4 9 6 2 1 3 a 7 5 8 d
d. 0 6 8 4 a 5 9 3 b 7 1 2 c

B Appendix: Analysis of K6 in S2

In this appendix we prove Proposition 4.8, and show that K6 has no even-faced general embedding

in S2.

In an embedding the faces around a vertex must form a proper rotation, a cyclic sequence closing

up so that the vertex has a neighborhood homeomorphic to an open disk. If a potential set of faces

incident with a vertex v close up in a cyclic sequence without including all edges incident with v,

we say the rotation at v is improperly closed.

Lemma B.1. K6 has no orientable embedding in which every face is a C4-face except for one

C6-face.

Proof. Assume that such an embedding exists. Since the embedding is orientable we may assign

consistent orientations to all the faces, and describe each face using a cyclic list of vertices following

the orientation (it is not equivalent to its reverse).

We will label the vertices of K6 by elements of Z6 = {0, 1, 2, 3, 4, 5}. Each edge has an obviously

defined length of 1, 2 or 3 depending on j−i. Each arc (directed edge) from i to j has length j−i ∈ Z6
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which we will write as an element of the set {−2,−1, 1, 2, 3} (where −2 = 4, −1 = 5). Each arc is

used exactly once by our embedding. Without loss of generality we may label the vertices so that

the C6-face is Z = (054321), using all the arcs of length −1. Therefore the remaining 6 C4-faces use

6 arcs of each length 1, 2, −2 and 3. Since no C4 in K6 can use more than two arcs of length ±2,

and altogether they use 12 arcs of length ±2, each of the 6 C4 faces must use exactly two arcs of

length ±2.

Therefore the cyclic pattern of lengths in each C4-face (following the arcs in their positive

direction) must be one of 6 possibilities: A = (1, 1, 2, 2), B = (1, 2, 1, 2), C = (1,−2,−2, 3),

D = (1, 3,−2,−2), E = (1,−2, 3,−2) or F = (2, 3,−2, 3). For each pattern P let Pi be the

potential face starting at vertex i and following pattern P ; for example, C3 = (3420) (3 + 1 = 4,

4− 2 = 2, 2− 2 = 0, 0 + 3 = 3).

Any face Ai together with Z improperly closes the rotation at i + 1, so there are no faces of

pattern A. Let nF be the number of faces of pattern F and nCDE the number of faces of pattern

C, D or E. Counting the arcs of length −2 we have 2nCDE + nF = 6. Counting the arcs of length

3 we have nCDE + 2nF = 6. Therefore nCDE = nF = 2.

Consider the two faces of pattern F . They must share an edge of length 3, which we may assume

is 03. The faces of pattern F using this edge are F3 and F4, which use arc 03, and F0 and F1, which

use arc 30. We must have one face that uses arc 03 and one that uses arc 30. Moreover, we cannot

have F3 and F0 because they are reverses of each other, giving improper rotations at all of their

vertices if they occur together in an embedding. Similarly, we cannot have F4 and F1, because they

are reverses of each other. So we must have F3 and F1, or F4 and F0. Without loss of generality

we assume we have F4 and F0; if we have F3 and F1 we just add 3 to all the vertex labels and they

become F0 and F4.

Now consider the arc 01, which must belong to some face. The possible faces are B0 = B3, C0,

D0 or E0. If B0 is a face then the arc 45 is used by both B0 and F4. If C0 is a face then the arcs

53 and 30 are used by both C0 and F0, a contradiction. If D0 is a face then the arc 14 is used by

both D0 and F4, a contradiction. If E0 is a face then E0 and F0 improperly close up the rotation at

vertex 2, which is a contradiction.

Hence all situations lead to a contradiction, so, as claimed, there is no such embedding of K6.

Lemma B.2. Every cellular orientable embedding of K6 in which some vertex is incident with five

C4-faces must have five C4-faces and two C5-faces.

Proof. Label the vertices of K6 by ∞ and the elements of Z5 = {0, 1, 2, 3, 4}. Without loss of

generality we may suppose that∞ has clockwise rotation (0, 1, 2, 3, 4), and that for i ∈ Z5 there is a

4-cycle face (∞, i, ai+3, i+1) (writing faces also in clockwise order; this labelling makes ai ‘opposite’

to i in the face neighborhood around ∞). For each i ∈ Z5 we must have ai /∈ {∞, i − 3, i − 2}, so

ai ∈ {i − 1, i, i + 1} for each i; let the rotation around i be (∞, ai+2, bi1, bi2, ai+3). Since the same

vertex cannot occur twice in the rotation around i− 2, ai 6= ai+1 for each i.

Suppose first that ai = aj for some i 6= j. The only way this can happen is if j = i ± 2 and

ai is the number between i and j. Without loss of generality suppose that a4 = a1 = 0. Then the

rotation around 0 contains the sequence 4, 3 since a1 = 0 and the sequence 2, 1 since a4 = 0. Since
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a2 6= 4, the rotation around 0 must be (∞, a2 = 2, 1, 4, a3 = 3). Since a3 = 3, the rotation around

3 contains the sequence 1, 0; but we already know that the rotation around 3 contains the sequence

b32, a1 = 0 and hence b32 = 1. This means that a0 6= 1. By similar reasoning, b21 = 4 and hence

a0 6= 4. Also a0 6= a4 = 0. But now there are no possible values for a0, which is a contradiction. So

we know that ai 6= aj when i 6= j. Hence each j ∈ Z5 occurs exactly once as some ai.

Suppose that a0 = 1. The rotation around a0 = 1 contains the sequence 3, 2, so we have

(3, 2) = (a3, b11), (b11, b12) or (b12, a4). We cannot have a4 = 2 so (3, 2) cannot be (b12, a4). If

(3, 2) = (a3, b11) then both 1 = a0 and 3 = a3 occur as vertices ai, so we must have a2 = 2. Then

the rotation around a2 = 2 contains the sequence 0, 4. Now a4 6= a3 = 3 so a4 ∈ {0, 4} and the

rotation around 2 contains the sequence ∞, a4, so we cannot have a4 = 4 and we must have a4 = 0.

But now 1, 2, 0 have all been used as vertices ai, so there is no valid value for a1, a contradiction.

Hence we must have (3, 2) = (b11, b12). But then a3 cannot be equal to either 3 or 2, so a3 = 4.

Generalizing the above, we have shown that ai = i+1 implies that ai+3 = i+4, and bi+1,1 = i+3,

bi+1,2 = i + 2. Repeating this reasoning determines the rotation around every vertex i as being

(∞, i + 3, i + 2, i + 1, i − 1). This gives an embedding of K6 with five C4-faces and two C5-faces

(03142) and (01234), in clockwise order.

The case where ai = i − 1 for some i is symmetric. So we need only deal with the case where

ai = i for all i. However, this is impossible: for example, it leads to the rotation around vertex 0

containing a3,∞ = 3,∞ but also the rotation around a0 = 0 containing 3, 2.

Thus, the only possible situations lead to the embedding specified.

Proof of Proposition 4.8. Assume there is a general embedding Φ of K6 in S2. As noted in Section

4, Φ must be cellular with six C4-faces and one 6-face, or five C4-faces and two C5-faces.

Suppose there is a 6-face. By Lemma B.1 the 6-face is not a C6-face. So the 6-face has fewer

than 6 distinct vertices, and thus there is some vertex all of whose adjacent faces are C4-faces. But

then, by Lemma B.2, Φ does not have a 6-face, a contradiction.

Therefore the embedding has five C4-faces and two C5-faces. The embedding Θ6 in Appendix

A, or the embedding found in the proof of Lemma B.2, shows that such an embedding exists.
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