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Abstract

The prism over a graph G is the product G�K2, i.e., the graph obtained by taking

two copies of G and adding a perfect matching joining the two copies of each vertex by

an edge. The graph G is called prism-hamiltonian if it has a hamiltonian prism. Jung

showed that every 1-tough P4-free graph with at least three vertices is hamiltonian. In

this paper, we extend this to observe that for k ≥ 1 a P4-free graph has a spanning k-

walk (closed walk using each vertex at most k times) if and only if it is 1
k -tough. As our

main result, we show that for the class of P4-free graphs, the three properties of being

prism-hamiltonian, having a spanning 2-walk, and being 1
2 -tough are all equivalent.

Keywords: Toughness, Prism-hamiltonicity, P4-free graph.

1 Introduction

All graphs considered are simple and finite. Let G be a graph. For S ⊆ V (G) the subgraph

induced on V (G)− S is denoted by G− S; we abbreviate G− {v} to G− v. The number

of components of G is denoted by c(G). The graph is said to be t-tough for a real number

t ≥ 0 if |S| ≥ t · c(G − S) for each S ⊆ V (G) with c(G − S) ≥ 2. The toughness τ(G) is

the largest real number t for which G is t-tough, or ∞ if G is complete. Positive toughness

implies that G is connected. If G has a hamiltonian cycle it is well known that G is 1-tough.

In 1973, Chvátal [3] conjectured that for some constant t0, every t0-tough graph is

hamiltonian. Thomassen (see [2, p. 132]) showed that there are nonhamiltonian graphs
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with toughness greater than 3
2 . Enomoto, Jackson, Katerinis and Saito [6] showed that

every 2-tough graph has a 2-factor (2-regular spanning subgraph), but also for every ε > 0

constructed (2− ε)-tough graphs with no 2-factor, and hence no hamiltonian cycle. Bauer,

Broersma and Veldman [1] constructed (94−ε)-tough nonhamiltonian graphs for every ε > 0.

Thus, any such t0 is at least 9
4 .

There have been a number of papers on toughness conditions that guarantee the exis-

tence of more general spanning structures in a graph. A k-tree is a tree with maximum

degree at most k, and a k-walk is a closed walk with each vertex repeated at most k times.

A k-walk can be obtained from a k-tree by visiting each edge of the tree twice. Note that

a spanning 2-tree is a hamiltonian path and if a graph has at least three vertices then a

spanning 1-walk is a hamiltonian cycle. Win [12] showed that for k ≥ 3, every 1
k−2 -tough

graph has a spanning k-tree, and hence a spanning k-walk. In 1990, Jackson and Wormald

made the following conjecture.

Conjecture 1.1 (Jackson and Wormald [8]). For each integer k ≥ 2, every connected
1

k−1 -tough graph has a spanning k-walk.

The prism over a graph G is the Cartesian product G�K2. If G�K2 is hamiltonian, we

say that G is prism-hamiltonian. Kaiser et al. [10] showed that existence of a hamiltonian

path implies prism-hamiltonicity, which in turn implies existence of a spanning 2-walk.

They gave examples showing that none of these implications can be reversed. They also

made the following conjecture, which is analogous to those of Chvátal and of Jackson and

Wormald.

Conjecture 1.2 (Kaiser et al. [10]). There exists a constant t1 such that the prism over

any t1-tough graph is hamiltonian.

Kaiser et al. also showed that t1 must be at least 9
8 .

Our goal is to investigate the conjectures above for P4-free graphs, which have no in-

duced subgraph isomorphic to a 4-vertex path. P4-free graphs are also known as cographs.

Connected P4-free graphs can have arbitrarily low or high toughness: Km + nK1 (where

‘+’ denotes join) with m,n ≥ 1 is P4-free and has toughness m/n if n ≥ 2, and ∞ if n = 1.

The following result of Jung shows that Chvátal’s conjecture holds for P4-free graphs.

Theorem 1.3 (Jung [9, Theorem 4.4(2)]). Every P4-free graph with at least three vertices

is hamiltonian if and only if it is 1-tough.

The following corollary of Theorem 1.3 shows that a stronger version of Conjecture

1.1 holds for P4-free graphs. The composition or lexicographic product of graphs H and

K, denoted by H[K], is defined as the graph with vertex set V (H) × V (K) and edge set

{(u1, v1)(u2, v2) : u1u2 ∈ E(H) oru1 = u2 and v1v2 ∈ E(K)}.

Corollary 1.4. Let k ≥ 1 be a positive integer. Then a P4-free graph has a spanning k-walk

if and only if it is 1
k -tough.
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Proof. For necessity, Jackson and Wormald [8, Lemma 2.1(i)] showed that every graph with

a spanning k-walk is 1
k -tough. So we just show sufficiency.

The statement is true for graphs on one or two vertices (note that in those cases a

spanning 1-walk is not a hamiltonian cycle). Hence, we may assume that G has at least

three vertices. Also, we may assume that k ≥ 2, since the statement is true for k = 1 by

Theorem 1.3.

Jackson and Wormald [8] showed that G has a spanning k-walk if and only if G[Kk] has

a hamiltonian cycle. Now suppose G is a 1
k -tough P4-graph. It is an easy observation that

G[Kk] is P4-free. Goddard and Swart [7, Theorem 6.1(b)] showed that τ(G[Kk]) = kτ(G),

so τ(G[Kk]) ≥ 1, and hence G[Kk] is hamiltonian by Theorem 1.3. Therefore, G has a

spanning k-walk using Jackson and Wormald’s result.

Theorem 1.5. A P4-free graph with at least two vertices is prism-hamiltonian if and only

if it is 1
2 -tough.

Jung’s result, Theorem 1.3, also confirms that sufficiently tough P4-free graphs are

prism-hamiltonian. However, we show that a weaker toughness condition is both necessary

and sufficient, and it is the same toughness condition required for P4-free graphs to have a

spanning 2-walk. In a similar way, two of the authors (Ellingham and Salehi Nowbandegani)

[5] showed that for general graphs having a spanning 2-walk and being prism-hamiltonian

require the same Chvátal-Erdős condition. Note that if G is P4-free, G�K2 is not in general

P4-free, so Theorem 1.3 cannot directly provide a necessary and sufficient condition for a

P4-free graph to be prism-hamiltonian.

The following is a simple corollary of Theorem 1.5 and Corollary 1.4.

Corollary 1.6. In the class of P4-free graphs with at least two vertices, the properties of

being prism-hamiltonian, having a spanning 2-walk, and being 1
2 -tough are equivalent.

To confirm the above result we just need to note that the subgraph corresponding to

any 2-walk is 1
2 -tough, and prism-hamiltonicity implies the existence of a spanning 2-walk.

The proof of Theorem 1.5 uses an inductive approach, which in general is hard to do for

showing results based on toughness. In Section 2, we develop tools for proving Theorem 1.5,

which is then proved in the last section.

We conclude this section with a remark on algorithms. Corneil, Lerchs and Stewart

Burlingham [4] showed that hamiltonicity can be determined in polynomial time for a P4-

free graph G. Determining whether G has a spanning k-walk amounts to determining

whether the P4-free graph G[Kk] is hamiltonian. Every connected n-vertex graph has a

spanning (n − 1)-tree and hence a spanning (n − 1)-walk, so we only need to check G[Kk]

if k ≤ n − 2, and this can be done in time polynomial in n. Therefore, determining, for

a given P4-free graph G and positive integer k, whether G has a spanning k-walk can be

done in polynomial time. By Corollary 1.6, determining whether G is prism-hamiltonian

can also be done in polynomial time.
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2 Preliminary results

In this section, we provide some lemmas for proving Theorem 1.5. We define a class of graphs

which (when they occur as spanning subgraphs) form a subclass of the SEEP-subgraphs

introduced by Paulraja [11] for finding hamiltonian cycles in prisms.

Definition 2.1. A simple block EP (SBEP) graphH is a connected graph with the following

properties:

(i) each block of H is either an even cycle or an edge, and

(ii) each vertex of H is contained in at most two blocks.

The edges of an SBEP graph are partitioned into cutedges and cycle edges, and the

vertices of an SBEP graph are partitioned into cutvertices and single-block vertices. Note

that any SBEP graph has at least two single-block vertices (at least one in each leaf block,

if there are two or more blocks). The following lemma lets us build a new SBEP subgraph

from two given SBEP subgraphs.

Lemma 2.2. Suppose H1 and H2 are disjoint SBEP subgraphs of a graph G, with x1y1 ∈
E(H1), x2y2 ∈ E(H2), and x1y2, x2y1 ∈ E(G). Then there is an SBEP subgraph H of G

with V (H) = V (H1) ∪ V (H2).

Proof. Each edge x1y1 or x2y2 is either a cycle edge or a cutedge. By symmetry, we consider

three cases.

If x1y1 and x2y2 are cycle edges, then define H = H1∪H2∪{x1y2, x2y1}−{x1y1, x2y2}.
If x1y1 is a cutedge and x2y2 is a cycle edge, then define H = H1∪H2∪{x1y2, x2y1}−{x2y2}.
If x1y1 and x2y2 are cutedges, then define H = H1 ∪H2 ∪ {x1y2, x2y1}.

In each case the two blocks containing x1y1 and x2y2 are replaced by a new block

that is an even cycle, without changing the number of blocks to which any vertex belongs.

Therefore, the result H is also an SBEP subgraph.

Theorem 2.3. Every SBEP graph is prism-hamiltonian.

Proof. Let G be an SBEP graph and let H = G�K2, consisting of G and a copy G′ of G,

with each v ∈ V (G) joined to its copy v′ ∈ V (G′) by a vertical edge. We show a stronger

statement, that H has a hamiltonian cycle C such that each single-block vertex v of G

and its copy v′ are joined by a vertical edge of H in C. We show this stronger statement

inductively on the number of blocks in G. The statement holds if G has a single block, i.e.,

G is an edge or even cycle. So we assume that G has a cutvertex x.

By Definition 2.1(ii), x is contained in exactly two blocks B1, B2 of G. Hence, G is the

union of two connected subgraphs G1 (containing B1) and G2 (containing B2) that have

only x in common. Each of G1 and G2 is an SBEP graph in which x is a single-block vertex.
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By induction G1�K2 and G2�K2 have hamiltonian cycles C1 and C2, respectively, using

vertical edges corresponding to all single-block vertices, including xx′. Now (C1 − xx′) ∪
(C2 − xx′) is the required hamiltonian cycle in G�K2.

Let G be a graph and S ⊆ V (G). The set S is called a tough-set of G if S is a cutset of G

and |S|
c(G−S) = τ(G). Let S be a cutset of G and X ⊆ S. Define c(G,S,X) to be the number

of components of G−S that are adjacent in G to vertices of X. If X1, X2, . . . , Xk are disjoint

nonempty subsets of V (G) then by G[X1, X2, . . . , Xk] we mean the k-partite subgraph of G

with vertex set X1 ∪X2 ∪ · · · ∪Xk and edge set {uv ∈ E(G)|u ∈ Xi, v ∈ Xj , 1 ≤ i < j ≤ k}.

Lemma 2.4. Let G be a connected P4-free graph and let S be a cutset of G such that each

vertex in S is adjacent to at least two distinct components of G − S. Then the following

statements are true.

(i) For each u ∈ S and each component R ⊆ G − S, if u is adjacent to one vertex in R

then u is adjacent to every vertex in R.

(ii) Let R be a component of G− S, and let G′ be obtained from G by contracting R into

a single vertex. Then G′ is P4-free.

(iii) If S is a minimal cutset of G, then G[S, V (G)− S] is a complete bipartite subgraph of

G.

(iv) Suppose that S is not a minimal cutset of G. There exist a cutset U ⊆ S of G,

nonempty X ⊆ S − U and nonempty Y ⊆ V (G) − S such that each of the following

holds.

(a) G[X ∪ Y ] is a component of G− U .

(b) G[U,X, Y ] is a complete tripartite subgraph of G.

Proof. For (i), suppose u is adjacent to some but not all vertices of R. Since R is connected

there must be v1v2 ∈ E(R) where v1 is adjacent to u but v2 is not. We know u is also adjacent

to w in another component of G− S. Then v2v1uw is an induced P4, a contradiction.

The statement (ii) follows easily by noting that any induced P4 of G′ corresponds to an

induced P4 of G (using (i) if the contracted vertex is contained in the P4). For (iii), if S is

a minimal cutset then each u ∈ S is adjacent to every component of G− S, and hence, by

(i), to every vertex of every component of G− S.

We now show (iv) by induction on |V (G)|. Let U0 be a minimal cutset of G that is

contained in S. Every vertex in U0 is adjacent to every vertex in V (G) − U0 by (iii); call

this (?). As S − U0 6= ∅, G− U0 has a nontrivial component G1 such that S ∩ V (G1) 6= ∅.
Let S1 = S ∩ V (G1). Then G1 consists of G[S1], the components of G− S adjacent to S1,

and the edges of G between S1 and these components. Hence, each vertex in S1 is adjacent

to at least two components of G1−S1 (thus, S1 is a cutset of G1). If S1 is a minimal cutset
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of G1, then let U = U0, X = S1 and Y = V (G1) − S1. Then (a) holds by definition of G1

and (b) holds by (?) and because G[X,Y ] = G1[S1, V (G1) − S1] is complete bipartite by

(iii).

Otherwise, by induction, with G1 taking the role of G and S1 taking the role of S, we

find a cutset U1 ⊆ S1 of G1, X1 ⊆ S1 −U1 and Y1 ⊆ V (G1)− S1 such that G1[X1 ∪ Y1] is a

component of G1−U1 and G1[U1, X1, Y1] is a complete tripartite subgraph of G1. Let U =

U0∪U1, X = X1, and Y = Y1. Clearly, U ⊆ S, X ⊆ S−U and Y ⊆ V (G1)−S1 ⊆ V (G)−S.

We claim that U,X and Y satisfy (a) and (b). Since G1 is a component of G − U0, every

component of G1 − U1 is a component of G− U0 − U1 = G− U , so U is a cutset of G and

G1[X1 ∪ Y1] = G[X ∪ Y ] is a component of G − U . Because G1[U1, X1, Y1] = G[U1, X, Y ]

is a complete tripartite graph and by (?), we see that G[U,X, Y ] is a complete tripartite

subgraph of G.

Lemma 2.5. Let G be a connected graph and let S be a tough-set of G. Suppose τ(G) =

t ≤ 1. Then the following statements hold.

(i) For any nonempty S′ ⊆ S with S′ 6= S, S′ is adjacent in G to at least |S′|/t + 1

components of G− S.

(ii) For any nonempty S′ ⊆ S, S′ is adjacent in G to at least |S′|/t components of G−S.

(iii) Every vertex of S is adjacent to at least two components in G− S.

(iv) Let R be a component of G − S. If S is a maximal tough-set of G, k is a positive

integer, and t ≥ 1
k , then R is 1

k -tough.

(v) Suppose G is P4-free. Let R be a component of G− S, and let G′ be obtained from G

by contracting R into a single vertex. Then G′ is t-tough.

An equivalent way to state the conclusion of (iv) is that R is (1/d1/te)-tough. We

cannot in general strengthen this to say that R is t-tough. For example, suppose that p ≥ 2

and G = ((2p − 2)K1 ∪ K1,2) + Kp. It is not difficult to show that τ(G) = p
2p−1 , with

maximal tough-set S = V (Kp), but the component R = K1,2 of G− S is only 1
2 -tough, not

p
2p−1 -tough.

Proof. For (i), let S∗ = S−S′ 6= ∅. Note that |S∗| ≥ t c(G−S∗), by toughness if c(G−S∗) ≥
2, and because t ≤ 1 if c(G− S∗) = 1. Also, c(G− S∗) ≥ c(G− S)− c(G,S, S′)+1. Then

|S′| = |S| − |S∗| ≤ |S| − t c(G− S∗) = t c(G− S)− t c(G− S∗)
≤ t c(G− S)− t(c(G− S)− c(G,S, S′) + 1) = t c(G,S, S′)− t.

implying that c(G,S, S′) ≥ |S′|/t + 1. For (ii), use (i) if S′ 6= S, and if S′ = S we have

c(G− S) = |S|/t since S is a tough-set.
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For (iii), if |S| ≥ 2, it follows directly from (i) by taking S′ as singletons. If |S| = 1,

then the single vertex of S is adjacent to every component of G− S.

For (iv), we may assume R is not complete. Let Q ⊆ V (R) be a tough-set of R. Since

S is a maximal tough-set of G, S ∪Q is not a tough-set of G, but it is a cutset of G. Then

|S|+ |Q| = |S ∪Q| > t c(G− (S ∪Q)) = t(c(G− S)− 1 + c(R−Q)).

Since |S| = t c(G − S), we see that |Q| > t(c(R − Q) − 1), and since t ≥ 1
k we have

k|Q| > c(R−Q)−1. Because both sides are integers, k|Q| ≥ c(R−Q), and so R is 1
k -tough.

Now we prove (v). By (iii), Lemma 2.4 applies to G and S. By Lemma 2.4(ii), G′ is

P4-free. Let Q be a tough-set of G′ and τ(G′) = t′. We may assume that t′ ≤ 1; otherwise,

t ≤ 1 < t′. Then by (iii), Lemma 2.4 also applies to G′ and Q. Let vR be the vertex to

which R is contracted. If vR /∈ Q then Q is also a cutset of G with c(G−Q) = c(G′ −Q).

Then

t′ =
|Q|

c(G′ −Q)
=

|Q|
c(G−Q)

≥ t.

So we may assume vR ∈ Q. Let A1, A2, . . . , Aa be the components of G′ − Q adjacent in

G′ to vR, where a ≥ 2 by (iii). By Lemma 2.4(i) for G′ and Q, vR is adjacent in G′ to

every vertex of Ai for all i with 1 ≤ i ≤ a, i.e., vR is adjacent in G′ to every vertex of

X =
⋃a

i=1 V (Ai). On the other hand, all neighbors of vR in G′ lie in S, and hence X ⊆ S.

Let B1 = vR, B2, . . . , Bb be the components of G′−S adjacent in G′ to vertices of X, and

Y =
⋃b

i=1 V (Bi). The components of G− S adjacent in G to X are just R and B2, . . . , Bb,

i.e., c(G,S,X) = b. Now by (ii) for G and S, we have

|Y | ≥ b = c(G,S,X) ≥ |X|/t. (1)

Suppose 2 ≤ i ≤ b. By Lemma 2.4(i) for G and S, if u ∈ X is adjacent in G to some vertex

of Bi, then u is adjacent to all vertices of Bi. Thus, every vertex of Bi is adjacent in G,

and hence in G′, to some vertex of X. Since X is the union of components of G′ − Q, all

edges leaving X go to Q, so V (Bi) ⊆ Q. Moreover, V (B1) = {vR} ⊆ Q and hence Y ⊆ Q.

Let Z be the set of vertices in all components of G′−Q other than A1, A2, . . . , Aa. Then

Z = V (G′) − Q − X, and there are no edges of G′ from {vR} ∪ X to Z. Thus, there is

no edge in G′ from Y to Z; otherwise, there is an induced P4 starting at vR then visiting

a vertex of X, a vertex of Y − {vR} (which is nonempty because |Y | ≥ |X| by (1), and

|X| ≥ a ≥ 2) and a vertex of Z. Therefore, c(G′, Q, Y ) = a, and by (ii) for G′ and Q we

have

|X| ≥ a = c(G′, Q, Y ) ≥ |Y |/t′. (2)

By (1) and (2), tt′ ≥ 1, but t ≤ 1 by hypothesis and t′ ≤ 1 by assumption, so t′ = t = 1,

and t′ ≥ t as required.
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3 Proof of Theorem 1.5

In this section, we prove Theorem 1.5. We actually prove a stronger result, of which the

following lemma is a special case.

Lemma 3.1. If G = G[X,Y ] is a complete bipartite graph with |X| ≤ |Y | ≤ 2|X|, then G
has a spanning SBEP subgraph in which every element of Y is a single-block vertex.

Proof. If |X| = 1 then G itself is the required subgraph, so suppose that |X| ≥ 2. Since

|X| ≤ |Y | there is a cycle C using X and |X| vertices of Y . Since |Y | ≤ 2|X|, the vertices

not in C form a subset of Y of size at most |X|, so we can add an edge joining each such

vertex to a distinct vertex of X to obtain the required subgraph.

The theorem we prove is the following.

Theorem 3.2. Let G be a connected P4-free graph with at least two vertices. Then G has

a spanning SBEP subgraph if and only if τ(G) ≥ 1
2 .

Proof. The necessity is clear, as any SBEP subgraph contains a spanning 2-walk and the

subgraph corresponding to a 2-walk is 1
2 -tough. We show sufficiency. We may assume that

t = τ(G) < 1, otherwise Theorem 1.3 implies that G has a hamiltonian cycle, which is a

spanning SBEP subgraph. We prove Theorem 3.2 by induction on |V (G)|. The result holds

if |V (G)| ≤ 3. So we assume that |V (G)| ≥ 4. Let S ⊆ V (G) be a maximal tough-set of G.

By Lemma 2.5(iii), Lemma 2.4 applies to G and S. We consider two cases.

Case 1. Suppose G − S has a nontrivial component. Let R be a nontrivial component of

G−S, and let G′ be the graph obtained from G by contracting R into a single vertex, which

has at least two vertices. By Lemma 2.5(v), the graph G′ is 1
2 -tough, and by Lemma 2.5(iv),

the component R is 1
2 -tough.

By induction, G′ has a spanning SBEP subgraph T ′ and R has a spanning SBEP

subgraph TR. Let vR be the corresponding contracted vertex in G′, and let x, y be two

single-block vertices in TR (any SBEP graph has at least two single-block vertices). By

Lemma 2.4(i), the neighbors of vR in T ′ are all adjacent in G to the vertices x, y. Therefore,

any subgraph of G′, or T ′, can be embedded in G by replacing vR by either x or y.

If vR is a single-block vertex in T ′, we embed T ′ in G with x replacing vR. Then T ′∪TR
is a spanning SBEP subgraph of G. Now suppose vR is a cutvertex. Then vR is contained

in exactly two blocks B1, B2 of T ′. Hence, T ′ is the union of two connected subgraphs T ′1
(containing B1) and T ′2 (containing B2) that have only vR in common. Each of T ′1 and T ′2 is

an SBEP graph in which vR is a single-block vertex. Embed T ′1 in G with x replacing vR,

and embed T ′2 in G with y replacing vR. Then T ′1 ∪ T ′2 ∪ TR is a spanning SBEP subgraph

of G.
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Case 2. Suppose each component of G−S is a single vertex. We may assume that S is not

a minimal cutset of G. For otherwise, G[S, V (G)−S] is complete bipartite by Lemma 2.4(i).

Since G is 1
2 -tough and less than 1-tough, |S| < |V (G)− S| ≤ 2|S| and so G[S, V (G)− S],

and hence G, has a spanning SBEP subgraph by Lemma 3.1.

Applying Lemma 2.4(iv), we find a cutset U ⊆ S of G, X ⊆ S − U and Y ⊆ V (G)− S
such that G[X∪Y ] is a component of G−U , and G[U,X, Y ] is a complete tripartite subgraph

of G. Consequently, G[X,Y ] is a spanning complete bipartite subgraph of the component

G[X ∪ Y ] of G− U .

By Lemma 2.5(i), |Y | = c(G,S,X) ≥ d|X|/te + 1. Let Y1 be a subset of Y of size

d|X|/te, and Y2 = Y − Y1 6= ∅. Let R be the complete bipartite subgraph G[X,Y1] of G,

and let G′ = G− V (R).

We now show that G′ is 1
2 -tough. Assume to the contrary that t′ = τ(G′) < 1

2 , so that

t′ < t. Let Q ⊆ V (G′) be a tough-set of G′, and let

Q1 = Q ∩ S and Q2 = Q ∩ (V (G)− S).

By Lemma 2.5(iii), Lemma 2.4 applies to G′ and Q. We consider three cases below.

Case 2.1. Suppose that U − Q 6= ∅ and Y2 − Q 6= ∅. Then there is one component of

G′ − Q containing all of U − Q and all of Y2 − Q, since G′[U − Q,Y2 − Q] is a complete

bipartite subgraph of G[U,X, Y ]. Adding back X and Y1 to G′ just adds X and Y1 to this

component without changing any of the other components of G′ −Q, so

2 ≤ c(G′ −Q) = c(G−Q) ≤ |Q|/t

by toughness of G, contradicting c(G′ −Q) = |Q|/t′ > |Q|/t.

Case 2.2. Suppose that U −Q = ∅. Since G[X ∪ Y ] is a component of G−U and U ⊆ Q,

there are no edges of G from X ∪ Y , or in particular from Y1, to V (G′) − Q. Thus, if

Q∗ = Q ∪X, then G−Q∗ = G[(V (G′)−Q) ∪ Y1] is G′ −Q together with isolated vertices

from Y1. Hence, c(G−Q∗) = c(G′−Q)+ |Y1|. Then because |Q| = t′ c(G′−Q), |Y1| ≥ |X|/t
and t′ < t we have that

|Q∗| = |Q|+ |X| ≤ t′ c(G′ −Q) + t|Y1|
< t(c(G′ −Q) + |Y1|) = t c(G−Q∗),

contradicting G being t-tough.

Case 2.3. Suppose that Y2 − Q = ∅. Then Y2 ⊆ Q2, so Q2 6= ∅. Let A1, A2, . . . , Aa be

the components of G′ − Q adjacent in G′ to vertices of Q2. Given Ai, 1 ≤ i ≤ a, there is

w ∈ V (Q2) adjacent to some vertex of Ai. By Lemma 2.4(i) for G′ and Q, w is adacent to

every vertex of Ai, and hence V (Ai) ⊆ S. Let S1 =
⋃a

i=1 V (Ai) ⊆ S. Vertices of S1 can
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only be adjacent in G′ to vertices of S ∪Q = S ∪Q2. Now by Lemma 2.5(ii) for G′ and Q,

and because t′ < 1
2 , |S1| ≥ a = c(G′, Q,Q2) ≥ |Q2|/t′ > 2|Q2|.

Since X ⊆ S, and G[X ∪ Y ] is a component of G − U , we see that all vertices in

S1 ∪X together are adjacent in G to at most |Q2 ∪ Y | = |Q2|+ |Y1| components of G− S.

Therefore, by Lemma 2.5(ii), we have |Q2| + |Y1| ≥ c(G,S, S1 ∪X) ≥ (|S1| + |X|)/t. But

|X|/t+ 1 > d|X|/te = |Y1| and |S1| > 2|Q2|, so we get |Q2|+ |X|/t+ 1 > 2|Q2|/t+ |X|/t,
giving |Q2|+ 1 > 2|Q2|/t ≥ 2|Q2|, from which |Q2| < 1, which is a contradiction.

This concludes the proof that G′ is 1
2 -tough.

Since 1
2 ≤ t < 1, we have |X| < |Y1| = d|X|/te ≤ 2|X|. Thus, by Lemma 3.1, the

complete bipartite subgraph R has a spanning SBEP subgraph TR. By induction, G′ has

a spanning SBEP subgraph T ′. Let xy1 ∈ E(TR) with x ∈ X and y1 ∈ Y1. Let zy2 ∈
E(T ′) with y2 ∈ Y2; then z ∈ U . Then TR and T ′ are two disjoint SBEP subgraphs, and

zy1, xy2 ∈ E(G) because G[U,X, Y ] is complete tripartite. Hence, by Lemma 2.2 we obtain

a spanning SBEP subgraph of G.

Now combining Theorems 2.3 and 3.2 gives Theorem 1.5.
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[10] Tomáš Kaiser, Zdeněk Ryjáček, Daniel Král, Moshe Rosenfeld, and Heinz-Jürgen Voss,

Hamilton cycles in prisms, J. Graph Theory 56(4) (2007) 249–269.

[11] P. Paulraja, A characterization of Hamiltonian prisms, J. Graph Theory 17(2) (1993)

161–171.

[12] Sein Win, On a connection between the existence of k-trees and the toughness of a

graph, Graphs Combin. 5(2) (1989) 201–205.

11


