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Abstract

We show that for n = 4 and n ≥ 6, Kn has a nonorientable embedding in which all the

faces are hamilton cycles. Moreover, when n is odd there is such an embedding that is 2-face-

colorable. Using these results we consider the join of an edgeless graph with a complete graph,

Km + Kn = Km+n − Km, and show that for n ≥ 3 and m ≥ n − 1 its nonorientable genus

is d(m − 2)(n − 2)/2e except when (m, n) = (4, 5). We then extend these results to find the

nonorientable genus of all graphs Km + G where m ≥ |V (G)| − 1. We provide a result that applies

in some cases with smaller m when G is disconnected. We also discuss some problems with a paper

of Wei and Liu [Util. Math. 59 (2001) 237–251] that claims to provide embeddings of Kn with

hamilton cycle faces.
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1. Introduction

Recently Kawarabayashi, Zha, and the authors, in a series of papers [5, 6, 13], determined the nonori-

entable genus of all complete tripartite graphs Kl,m,n. If l ≥ m ≥ n, the nonorientable genus of Kl,m,n

is (with three exceptions) the same as that of the complete bipartite graph Kl,m+n, which is a subgraph

of Kl,m,n. We were led to the question of when large sets of edges could be added to complete bipartite

graphs without raising the genus (orientable or nonorientable). One natural case is when we try to add all

possible edges on one side of the bipartition of Km,n, to obtain the graph Km + Kn, the join of the edgeless

graph Km with the complete graph Kn (which we can also think of as Km+n − Km, where we remove the

edges of a subgraph Km of Km+n). To do this, we require that m ≥ n − 1; otherwise, there are not enough

faces in the embedding of Km,n for us to add the edges of the Kn. In this paper we therefore examine the

case m ≥ n − 1. The ‘diamond sum’ technique used for complete tripartite graphs plays a crucial role. To

approach the genus of Km + Kn we need to consider embeddings of Kn in which all the faces are hamilton

cycles. Such embeddings were investigated by Wei and Liu [24], but there are some problems with their

results, which we explain.

It is also natural to consider the genus of Km + Kn when m < n − 1. In fact, for small m the problem

has a long history, in association with work on the Map Color Theorem by Ringel, Youngs and others. We

state a conjecture that covers all values of m.

The structure of this paper is therefore as follows. In the remainder of this section we give the basic

definitions we need. In Section 2 we investigate embeddings of Kn with all faces being hamilton cycles. In

Section 3 we discuss the general conjecture for the genus of Km + Kn = Km+n − Km, mention previous

results on this problem, and determine the nonorientable genus of Km + Kn with m ≥ n − 1. In Section 4

we use this result to determine the nonorientable genus of Km +G for certain general graphs G. In Section 5

we discuss the problems with Wei and Liu’s results from [24]. Finally, in Section 6 we give some concluding

remarks.

A surface is a compact 2-manifold without boundary. For h ≥ 0, the surface Sh is the sphere with h

handles added, which is an orientable surface. For k ≥ 0, the surface Nk is is the sphere with k crosscaps

added, which is nonorientable for k ≥ 1. N0 means the sphere. The Euler genus of Sh is 2h, and of Nk is k.

A graph is said to be embeddable on a surface if it can be drawn on that surface in such a way that no two

edges cross. Such a drawing is referred to as an embedding. The orientable genus g(G) of the graph G is the

minimum h such that G can be embedded on Sh. Likewise the nonorientable genus g̃(G) is the minimum k

such that G can be embedded on Nk. By our definition the nonorientable genus of a planar graph is zero,

which is convenient in various formulae.

As is commonly known, cellular embeddings of graphs on surfaces can be described in a purely combina-

torial way. The most usual way to do this is to give a rotation at each vertex v, which is a cyclic permutation

of the ends of edges incident with v, along with a signature for each edge, taking one of two possible values
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(see [7, 19]). Another way is by means of edge-colored cubic graphs known as gems [1]. A third common

way to describe cellular embeddings is by listing the facial walks, and that is the approach we use in this

paper.

A graph, or a walk in a graph, will be called trivial if it has no edges. Let F be a multiset of nontrivial

closed walks in a connected nontrivial graph G. It will be important how the faces of F travel through each

vertex v. Assume each F ∈ F has an arbitrarily designated forward direction. An ordered pair (α, β) is a

transition of F at v if α and β are edge ends incident with v, and β immediately follows α in some F ∈ F .

Note that the same transition may appear twice in F (or even in the same F ), and we consider transitions

with their multiplicities.

To represent a cellular embedding, F must cover every edge exactly twice. However, this is not sufficient.

If we glue 2-cells along each element of F , there may be vertices of G whose neighborhoods in the resulting

topological space are not homeomorphic to a disk: we may have an embedding on a pseudosurface, rather

than a surface. To prevent this, at each vertex v there must be a cyclic permutation πv of the ends of edges

incident with v (the rotation at v) such that if (α, β) is a transition at v, then β is either πv(α) or π−1
v (α).

Although it has been customary to describe rotations as permutations, it is sometimes easier to think

of them as graphs. Given an arbitrary multiset F of nontrivial closed walks in G, define the rotation graph

Rv(F), or just Rv if F is understood, to be an undirected graph with vertex set consisting of the ends of

edges incident with v, and an edge αβ for every transition (α, β) at v. Note that Rv may have multiple

edges and loops, even if G is simple. Now F represents a cellular embedding of G if and only if Rv is a cycle

(2-regular and connected) for every v ∈ V (G). In that case, the rotations πv correspond to traversing Rv in

either direction, and the elements of F are called facial walks .

Regarding rotations as graphs rather than permutations is a minor change, but it does allow some results

to be stated simply. Rotation graphs are particularly convenient when dealing with relative embeddings,

embeddings where some faces are missing. For example, Škoviera and Širáň [23] characterize when a multiset

of walks represents a relative embedding. Their results are stated in terms of words over an alphabet of

edge ends. Using rotation graphs, their results can be summarized succinctly: a multiset F of nontrivial

closed walks in G can be extended to an embedding of G if and only if each Rv is a cycle or a union of

vertex-disjoint paths. In the present paper, we sometimes build an embedding from two relative embeddings,

each of which contributes a subgraph of the rotation graph. It is easier to assemble graphs from subgraphs

than to describe how to assemble permutations from smaller objects.

If G is a simple graph, each edge end incident with v can be uniquely identified by specifying the other

end of that edge. Therefore, we may regard the rotation graph Rv as having vertex set N(v) (the set of

neighbors of v), with an edge uw for each sequence uvw in an element of F . The graphs in this paper are

simple, so for convenience we modify our definition of rotation graph in this way.

In this paper we construct nonorientable embeddings. An embedding represented by a multiset of

nontrivial closed walks F is orientable if and only if there is an orientation of the elements of F such that
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every edge of G is used exactly once in each direction. (In that case, it is also possible to assign orientations

to the rotation graphs in a consistent manner.) To prove that our embeddings are nonorientable we shall

demonstrate that F cannot be oriented in this way.

2. Hamilton cycle embeddings of complete graphs

In this section we prove the following theorem.

Theorem 2.1. For n = 4 or n ≥ 6, Kn has a nonorientable embedding on N(n−2)(n−3)/2 in which all faces

are hamilton cycles. Moreover, when n is odd there is such an embedding that is 2-face-colorable. For n = 5

there is no embedding (orientable or nonorientable) of K5 in which all faces are hamilton cycles.

A similar result is claimed by Wei and Liu [24]. They claim to show that Kn has an embedding on

N(n−2)(n−3)/2 with all faces hamilton cycles, presumably for n ≥ 4. This is not true for n = 5, the proof of

their construction is incomplete for n even, and their construction is incorrect for n odd. See Section 5 for

details.

The rest of this section describes the proof of Theorem 2.1. For n 6= 5 it is enough to show that there is

a nonorientable embedding with all faces hamilton cycles; the genus of the surface is then easily verified by

Euler’s formula. We assume that the vertex set of Kn is {0, 1, . . . , n− 2} ∪ {∞}, and we consider vertices 0,

1, . . ., n − 2 as elements of the group Zn−1. We denote edges of the graph by [u, v], paths in the graph by

[v1, . . . , vk], and cycles by (v1, v2, . . . , vk).

2.1.1. n is even, n ≥ 4

This is the easy case. We use a construction due to Wei and Liu [24], although we rediscovered it

independently. As explained in Section 5, Wei and Liu do not give a complete proof that this construction

is correct.

Write n = 2k + 2, so V (Kn) = Z2k+1 ∪ {∞}. For each i ∈ Z2k+1, let Ci be the hamilton cycle

(∞, i, i− 1, i + 1, i− 2, i + 2 . . . , i− k, i + k). The cycle C0 for n = 8 is shown at left in Figure 2.1, and Ci is

just a rotation i places clockwise. We claim that F = {Ci|i ∈ Z2k+1} represents a nonorientable embedding

of K2k+2.

Consider first R∞. Each Ci contains the path [i + k,∞, i] and hence R∞ contains the edges [i + k, i] for

i ∈ Z2k+1. Since gcd(k, 2k + 1) = 1, R∞ is a cycle, as desired.

Now consider Rv for v ∈ Z2k+1. In our construction all such v are similar, so it suffices to consider

R0. First, C0 contains [∞, 0,−1 = 2k] so R0 contains [∞, 2k] = [2k,∞]. For 1 ≤ i ≤ k, Ci contains

[i + (i − 1) = 2i − 1, i − i = 0, i + i = 2i], so R0 contains [2i − 1, 2i]. Thus, R0 has edges [1, 2], [3, 4], . . .,

[2k−1, 2k]. Now Ck+1 contains [(k+1)−k = 1, (k+1)+k = 0,∞] so R0 contains [1,∞] = [∞, 1]. Finally, for

2 ≤ i ≤ k, Ck+i contains [(k+i)−(k+1−i) = 2i−1, (k+i)+(k+1−i) = 2k+1 = 0, (k+i)−(k+2−i) = 2i−2]
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Figure 2.1: Examples of cycle C0

so R0 contains [2i−1, 2i−2] = [2i−2, 2i−1]. Thus, R0 has edges [2, 3], [4, 5], . . ., [2k−2, 2k−1]. Therefore,

R0 is a cycle, (∞, 1, 2, 3, . . . , 2k − 1, 2k), as required.

Suppose F has an orientation in which every edge is used once in each direction. We may assume that

C0 is oriented in the forwards direction (∞, 0,−1, 1,−2, . . . ,−k = k + 1, k). Now Ck+1 contains a subpath

[0,∞, k + 1, k]. So that [0,∞] is used in both directions, this subpath must be oriented forwards. However,

then [k + 1, k] is used twice in the same direction, a contradiction. Therefore, F is nonorientable.

2.1.2. n = 5

Suppose K5 has an embedding with 4 hamilton cycle faces. By Euler’s formula this embedding is

necessarily on N3. By adding a vertex at the center of each face, joined to all vertices of the face, we obtain

an embedding of K4 + K5 on N3. Since K4,4,1 is a subgraph of K4 + K5, there is then an embedding of

K4,4,1 on N3. However, it was shown in [5] that such an embedding does not exist.

2.1.3. n = 7

Here we use an ad hoc construction. We depart from our usual convention, and take V (K7) =

{0, 1, 2, 3, 4, 5, 6}, rather than Z6 ∪ {∞}. Let F = {C0, C1, C2, D0, D1, D2}, where

C0 = (0, 1, 2, 3, 4, 5, 6), D0 = (0, 1, 5, 6, 3, 2, 4),
C1 = (0, 2, 4, 6, 1, 3, 5), D1 = (0, 2, 6, 1, 4, 5, 3),
C2 = (0, 3, 6, 2, 5, 1, 4), D2 = (0, 6, 4, 3, 1, 2, 5).

This represents an embedding since the rotation graphs are all cycles:

R0 = (1, 4, 3, 2, 5, 6), R3 = (0, 5, 1, 4, 2, 6), R6 = (0, 4, 1, 2, 3, 5).
R1 = (0, 2, 3, 6, 4, 5), R4 = (0, 1, 5, 3, 6, 2),
R2 = (0, 4, 3, 1, 5, 6), R5 = (0, 2, 1, 6, 4, 3),

If C0 is oriented forwards, then for [6, 0] to be used once in each direction D2 must also be oriented forwards;

but then [1, 2] is used twice in the same direction. Thus, the embedding is nonorientable. It is not hard
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to verify that F1 = {C0, C1, C2} covers every edge exactly once, as does F2 = {D0, D1, D2}, so coloring

elements of F1 white and elements of F2 black yields a 2-face-coloring of the embedding.

2.1.4. n is odd, n ≥ 9

Let n = 2k +1, and take V (Kn) = Z2k ∪{∞}. For i ∈ Z2k, let Ci = (∞, i, i− 1, i+1, i− 2, i+2, . . . , i−

(k − 1), i + (k − 1), i − k). The cycle C0 for n = 9 is shown at right in Figure 2.1, and Ci is just a rotation

i places clockwise. Note that Ci = Ck+i for each i. Thus, although {Ci|i ∈ Z2k} covers every edge twice, it

does not represent an embedding because the rotation graphs will all be unions of 2-cycles. However, let us

take the distinct cycles here as a starting point and form F1 = {Ci|0 ≤ i ≤ k − 1}. F1 covers every edge of

Kn exactly once using k = n−1
2 hamilton cycles. Consider the rotation graphs Rv(F1).

For Rv(F1) with v 6= ∞, we may think of F1 as containing cycles Cv, Cv+1, . . . , Cv+k−1. Now Cv contains

[∞, v, v−1], and for 1 ≤ i ≤ k−1, Cv−i contains [(v+i)+(i−1) = v+2i−1, (v+i)−i = v, (v+i)+i = v+2i].

So, Rv(F1) contains [∞, v− 1 = v +2k− 1], and [v +2i− 1, v+2i] for 1 ≤ i ≤ k− 1. In other words, Rv(F1)

is a matching {[v + 1, v + 2], [v + 3, v + 4], . . . , [v + 2k − 3, v − 2k + 2], [v + 2k − 1,∞]}.

For R∞(F1), each Ci contains [i − k = i + k,∞, i] so R∞(F1) is a matching M∞ = {[0, k], [1, k +

1], . . . , [k − 1, 2k − 1]}.

Now all the rotation graphs Rv(F1) are distinct, because they have different vertex sets. However,

suppose we rename the vertex ∞ to v in Rv(F1), and call the resulting graph R′
v(F1) (if v = ∞ there is no

change). Then R′
v(F1) is one of only three graphs: it is the matching M0 = {[1, 2], [3, 4], . . . , [2k − 3, 2k −

2], [2k − 1, 0]} when v is even, the matching M1 = {[0, 1], [2, 3], . . . , [2k − 2, 2k − 1]} when v is odd, and the

matching M∞ when v = ∞. Therefore, working with the graphs R′
v(F1) rather than the graphs Rv(F1)

greatly reduces the number of cases we must consider.

For example, suppose n = 9. Then k = 4 and F1 consists of

C0 = (∞, 0, 7, 1, 6, 2, 5, 3, 4), C2 = (∞, 2, 1, 3, 0, 4, 7, 5, 6),
C1 = (∞, 1, 0, 2, 7, 3, 6, 4, 5), C3 = (∞, 3, 2, 4, 1, 5, 0, 6, 7).

The graphs R3(F1), R′
3(F1) = M1, and R∞(F1) = R′

∞(F1) = M∞ are shown in Figure 2.2.
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Figure 2.2: Some rotation graphs for n = 9
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In general, for a multiset F of nontrivial closed walks in K2k+1 we define R′
v(F) to be the graph obtained

from Rv(F) by renaming ∞ as v (when v = ∞, R′
v(F) is the same as Rv(F)). R′

v(F) is always a graph on

vertex set Z2k = {0, 1, 2, . . . , 2k − 1}. R′
v(F) is isomorphic to Rv(F), so F represents an embedding if and

only if each R′
v(F) is a cycle.

Now F1 will provide half of the hamilton cycles for our embedding. We obtain the remaining cycles

by applying a permutation to F1, as follows. Let σ be a permutation of V (K2k+1). If we think of σ

as just a renaming of the vertices, then there is a natural action of σ on any structure (e.g., subgraph,

walk, or multiset of walks) associated with K2k+1. For example, for a subgraph H we have σ(H) with

V (σ(H)) = {σ(v)|v ∈ V (H)} and E(σ(H)) = {σ(u)σ(v)|uv ∈ E(H)}. If F is a multiset of nontrivial closed

walks in K2k+1, then since σ is just a renaming of the vertices, we see that Rσ(v)(σ(F)) = σ(Rv(F)) for

all v. Moreover, if σ(∞) = ∞, then the renaming of the vertices in forming the graphs R′
v commutes with

the renaming given by σ in the sense that R′
σ(v)(σ(F)) = σ(R′

v(F)) for all v. This may be restated as

R′
u(σ(F)) = σ(R′

σ−1(u)(F)) for all u.

Therefore, if we apply a permutation σ with σ(∞) = ∞ to F1, we obtain σ(F1) with the property that

for any u, R′
u(σ(F1)) is σ(M0) when σ−1(u) is even, σ(M1) when σ−1(u) is odd, or σ(M∞) when u = ∞.

For each v, R′
v(F1 ∪ σ(F1)) = R′

v(F1)∪R′
v(σ(F1)). Therefore, R′

v(F1 ∪ σ(F1)) is a union of two matchings:

M0∪σ(M0), M0∪σ(M1), M1∪σ(M0), M1∪σ(M1), or M∞∪σ(M∞). To ensure that F1∪σ(F1) represents

an embedding we need only choose σ such that each of these five subgraphs of K2k is a cycle.

An embedding found in this way will always be 2-face-colorable because each edge is covered once by F1

and once by σ(F1). We may color the faces in F1 white and those in σ(F1) black to obtain a 2-face-coloring

of the embedding.

For example, suppose n = 9 and σ = [σ(0), σ(1), . . . , σ(7), σ(∞)] = [0, 2, 6, 3, 5, 1, 7, 4,∞]. Then σ(F1)

consists of
σ(C0) = (∞, 0, 4, 2, 7, 6, 1, 3, 5), σ(C2) = (∞, 6, 2, 3, 0, 5, 4, 1, 7),
σ(C1) = (∞, 2, 0, 6, 4, 3, 7, 5, 1), σ(C3) = (∞, 3, 6, 5, 2, 1, 0, 7, 4).

From Figure 2.3 we can see that all of M0∪σ(M0), M0∪σ(M1), M1∪σ(M0), M1∪σ(M1) and M∞∪σ(M∞) are

hamilton cycles. The modified rotation graphs are R′
0 = M0 ∪σ(M0), R′

1 = M1 ∪ σ(M1), R′
2 = M0 ∪σ(M1),

R′
3 = M1 ∪ σ(M1), R′

4 = M0 ∪ σ(M1), R′
5 = M1 ∪ σ(M0), R′

6 = M0 ∪ σ(M0), R′
7 = M1 ∪ σ(M0), and

R′
∞ = R∞ = M∞ ∪ σ(M∞). As these are all cycles, the actual rotation graphs Rv are all cycles, and

F1 ∪ σ(F1) represents an embedding.

In fact, instead of finding a permutation and checking that certain associated matchings have desirable

properties, we look for the matchings first. Note that M0∪M1 is a hamilton cycle in K2k. For any matchings

L0 and L1 such that L0 ∪ L1 is a hamilton cycle in K2k, there exist permutations (in fact, 2k of them) σ

of Z2k = V (K2k) with σ(M0) = L0 and σ(M1) = L1. M∞ is the matching joining antipodal vertices of the

cycle M0∪M1, so for every such σ the matching L∞ joining antipodal vertices of L0∪L1 = σ(M0∪M1) will

be σ(M∞). Therefore, to find an embedding it suffices to find matchings L0 and L1 such that all of L0 ∪L1,

M0 ∪ L0, M0 ∪ L1, M1 ∪ L0, M1 ∪ L1 and M∞ ∪ L∞ are hamilton cycles.
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Figure 2.3: Matchings and their images under σ for n = 9

Given L0 and L1, for definiteness we restrict ourselves to one possible permutation σ, as follows. Write

L0∪L1 = (v0, v1, . . . , v2k−1) where v0 = 0 and [v0, v1] ∈ L1. We take σ = [σ(0), σ(1), . . . , σ(2k− 1), σ(∞)] =

[v0, v1, . . . , v2k−1,∞].

In our example for n = 9, it suffices to find the matchings L0 = {[0, 4], [1, 7], [2, 6], [3, 5]} and L1 =

{[1, 5], [0, 2], [3, 6], [4, 7]}. Then L∞ is the antipodal matching of the cycle L0 ∪ L1 = (0, 2, 6, 3, 5, 1, 7, 4),

i.e., L∞ = {[0, 5], [1, 2], [6, 7], [3, 4]}. The pictures in Figure 2.3 verify that we have the required prop-

erties. There are eight permutations with σ(∞) = ∞, σ(M0) = L0 and σ(M1) = L1. For example,

we could take σ = [σ(0), σ(1), . . . , σ(7), σ(∞)] = [3, 6, 2, 0, 4, 7, 1, 5,∞]. However, for definiteness we take

σ = [0, 2, 6, 3, 5, 1, 7, 4,∞].

An Euler’s formula calculation shows that embedding we obtain for K9 has Euler characteristic 8 + 9−

36 = −19, which is odd. Therefore, the embedding must be nonorientable.

Below we find suitable matchings L0 and L1 for all even n ≥ 8. We deal with n ≡ 1 mod 4 and 3 mod

4 separately. Once we have found an embedding, we show it is nonorientable.

2.1.4.1. n ≡ 1 mod 4, n ≥ 9

Then k is even and 2k ≥ 8. We generalize our previous example when n = 9. Take L0 = {[0, k]} ∪

{[i,−i]|1 ≤ i ≤ k − 1}, and L1 = {[1, k + 1], [k − 1, k + 2], [k, k + 3]} ∪ {[1 + i, 1 − i]|1 ≤ i ≤ k − 3}. For

example, L0 and L1 for n = 21 are shown in Figure 2.4. It is easy to verify that M0 ∪L0, M0 ∪L1, M1 ∪L0

and M1 ∪ L1 are all hamilton cycles in K2k. L0 ∪ L1 is the cycle (0, 2,−2, 4,−4, . . . , 2 − k, k − 2, k − 1, 1 −

k, 1,−1, 3,−3, . . . , k−3, 3−k, k) giving L∞ = {[0, 1−k], [k−1, k]}∪{[2i−1, 2i], [−(2i−1),−2i]|1 ≤ i ≤ k−2
2 }.

For example, L∞ for n = 21 is shown in Figure 2.4. It is also not difficult to verify that M∞∪L∞ is a hamilton
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Figure 2.4: Matchings for n = 21

cycle. Therefore, L0 and L1 determine a permutation σ for which F1 ∪ σ(F1) represents an embedding.

Euler’s formula shows that we have an embedding on a surface whose Euler characteristic is 2 −

(n−2)(n−3)
2 . Since n ≡ 1 mod 4, this is odd. Therefore, the embedding must be nonorientable.

2.1.4.2. n ≡ 3 mod 4, n ≥ 11

Then k is odd and 2k ≥ 10. Write k = 2p + 1, so n = 4p + 3. As when n ≡ 1 mod 4, we take

L0 = {[0, k]} ∪ {[i,−i]|1 ≤ i ≤ k − 1} which is now {[0, 2p + 1]} ∪ {[i,−1]|1 ≤ i ≤ 2p}. But now we take L1

constructed in a different way: L1 = {[2, 1−2p], [p+3,−p], [p+4, 1−p]}∪{[2+ i, 2− i]|1≤ i ≤ p and p+3 ≤

i ≤ k − 1 = 2p}. For example, L0 and L1 for n = 35 are shown in Figure 2.5. It is again easy to verify that

M0 ∪ L0, M0 ∪ L1, M1 ∪ L0 and M1 ∪ L1 are all hamilton cycles.

We must still show that L0 ∪L1 is a cycle, and then that L∞ ∪M∞ is a cycle. It helps to keep in mind

that all edges of L0 join a vertex i to −i, except for [0, 2p + 1], and that all edges of L1 join a vertex i to

4 − i, except for [2,−(2p − 1)], [p + 3,−p], and [p + 4, 1 − p]. The details depend on the value of p mod 4,

i.e., n mod 16, although they are similar in all four cases. We describe one case in full.

Suppose that p ≡ 0 mod 4, i.e., n ≡ 3 mod 16. Then L0 ∪ L1 is a cycle (v0, v1, . . . , v4p+1 = v−1), where

we index its vertices by elements of Z2k = Z4p+2. Because of page width limitations, we display it as the

union of six consecutive paths P0, P1, . . ., P5 (of unequal length), where Pi is antipodal to P3+i. To assist

in determining L∞, we list these in the order P0, P3, P1, P4, P2, P5. For each path, most of the edges are the

‘regular’ edges of L0 or L1; the ‘irregular’ edges occur only as the first or last edge. To show the resulting

σ, each vertex vi is also labelled above or below with its position i; recall that σ maps i to vi.
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Figure 2.5: Matchings for n = 35

0 1 2 3 . . . p
2 − 1 p

2

P0 = [ 0, 4, −4, 8, . . . , p, −p ]
P3 = [ −2p, 2p, 4 − 2p, 2p − 4, . . . , p + 4, 1 − p ]

2p + 1 −2p 1 − 2p 2 − 2p . . . −(3p
2 + 2) −(3p

2 + 1)

p
2

p
2 + 1 p

2 + 2 p
2 + 3 . . . p − 1 p

P1 = [ −p, p + 3, −(p + 3), p + 7, . . . , 2p − 1, 1 − 2p ]
P4 = [ 1 − p, p − 1, 5 − p, p − 5, . . . , 3, 1 ]

−(3p
2 + 1) − 3p

2 1 − 3p
2 2 − 3p

2 . . . −(p + 2) −(p + 1)

p p + 1 p + 2 p + 3 p + 4 . . . 3p
2

3p
2 + 1 . . . 2p 2p + 1

P2 = [ −(2p− 1), 2, −2, 6, −6, . . . , 2 − p, p + 2, . . . , 2 − 2p, −2p ]
P5 = [ 1, −1, 5, −5, 9, . . . , p + 1, −(p + 1), . . . , 2p + 1, 0 ]

−(p + 1) −p 1 − p 2 − p 3 − p . . . −(p
2 + 1) − p

2 . . . −1 0

The matching L∞ can now be read off by matching corresponding elements of P0 and P3, of P1 and P4, and

of P2 and P5. Thus, L∞ = {[0,−2p], [4, 2p], . . .}.
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We wish to show that M∞ ∪ L∞ is a hamilton cycle in Z2k. We proceed indirectly. We know that

M∞ ∪ L∞ is a 2-regular graph with vertex set Z2k. Suppose we contract every edge of M∞ in M∞ ∪ L∞,

to produce L∗
∞. Then L∗

∞ is still a 2-regular graph, and it is a single cycle if and only if M∞ ∪ L∞ is a

single cycle. Contracting M∞ = {[i, i + k]|0 ≤ i ≤ k − 1} identifies each vertex i with its antipodal vertex

i+k. This corresponds to the natural projection of Z2k onto Zk = Z2p+1, where we take each vertex modulo

2p+1. Therefore, it suffices to show that when we project L∞ in this way, the result L∗
∞ is a cycle spanning

all vertices of Z2p+1.

From the endvertices of P0, . . ., P5 we obtain three edges of L∗
∞:

{[0,−2p], [−p, 1− p], [−(2p − 1), 1]} = {[0, 1], [−p, 1− p], [1, 2]}.

From the second, fourth, etc. vertices of P0 and P3 we get edges

{[4, 2p], [8, 2p− 4], . . . , [p, p + 4]} = {[4,−1], [8,−5], . . . , [p,−(p + 1)]}

= {[i, 3 − i] | i ≡ 0 mod 4, 4 ≤ i ≤ p},

and from the third, fifth, etc. vertices of P0 and P3 we get edges

{[−4,−(2p− 4)], [−8,−(2p− 8)], . . . , [−(p − 4),−(p + 4)]}

= {[−4, 5], [−8, 9], . . . , [−(p − 4), p − 3]}

= {[i, 1 − i] | i ≡ 1 mod 4, 5 ≤ i ≤ p − 3}.

From the second, fourth, etc. vertices of P1 and P4 we get edges

{[p + 3, p− 1], [p + 7, p − 5], . . . , [2p − 1, 3]} = {[2 − p, p− 1], [6 − p, p − 5], . . . , [−2, 3]}

= {[i, 1 − i] | i ≡ 3 mod 4, 3 ≤ i ≤ p − 1},

and from the third, fifth, etc. vertices of P1 and P4 we get edges

{[−(p + 3), 5 − p], [−(p + 7), 9 − p], . . . , [−(2p − 5),−3]}

= {[p − 2, 5 − p], [p − 6, 9 − p], . . . , [6,−3]}

= {[i, 3 − i] | i ≡ 2 mod 4, 6 ≤ i ≤ p − 2}.

From the second, fourth, etc. vertices of P2 and P5 we get edges

{[2,−1], [6,−5], . . . , [p − 2, 3 − p]} ∪ {[p + 2,−(p + 1)], [p + 6,−(p + 5)], . . . , [2p − 2,−(2p− 3)]}

= {[2,−1], [6,−5], . . . , [p − 2, 3 − p]} ∪ {[1 − p, p], [5 − p, p − 4], . . . , [−3, 4]}

= {[i, 1 − i] | i ≡ 2 or 4 mod 4, 2 ≤ i ≤ p},

and from the third, fifth, etc. vertices of P2 and P5 we get edges

{[−2, 5], [−6, 9], . . . , [2 − p, p + 1]} ∪ {[−(p + 2), p + 5], [−(p + 6), p + 9], . . . , [3, 0]}

= {[−2, 5], [−6, 9], . . . , [2 − p, p + 1]} ∪ {[p − 1, 4 − p], [p − 5, 8 − p], . . . , [3, 0]}

= {[i, 3 − i] | i ≡ 1 or 3 mod 4, 3 ≤ i ≤ p + 1}.

Altogether, we see that the edge set of L∗
∞ is {[0, 1], [1, 2], [−p, 1−p]}∪{[i, 3−i] | 3 ≤ i ≤ p+1}∪{[i, 1−i] | 2 ≤

i ≤ p}. This clearly forms a single cycle, as we illustrate in Figure 2.6 for the case n = 35. Therefore M∞∪L∞

is a hamilton cycle on Z2k = Z4p+2, as required.

Now we demonstrate that the embedding represented by F1∪σ(F1) is nonorientable. Initially, orient all

Ci in the direction in which they were originally described, and orient each σ(Ci) in the direction it inherits
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Figure 2.6: Cycle L∗
∞ for n = 35

from Ci. Notice that σ maps p
2 7→ −p, 2p + 1 7→ −2p, and −(p

2 + 1) 7→ p + 1. Therefore, the oriented edges

[p
2 ,−(p

2 +1)] and [2p+1,∞] in the oriented C0 map to oriented edges [−p, p+1] and [−2p,∞] in the oriented

σ(C0). Now C1 contains the oriented edges [p + 1,−p] and [−2p,∞]. These edges are incompatibly oriented

in σ(C0) and C1. If we have an orientation where every edge is used once in each direction, it must reverse

the initial orientation of exactly one of σ(C0) or C1 to use [−2p,∞] once in each direction. However, then

[−p, p + 1] is used twice in the same direction. Therefore, the embedding is nonorientable.

The details of verifying that L0 ∪ L1 and L∞ ∪ M∞ are cycles are similar for the other three cases,

n ≡ 7, 11 or 15 mod 16. We have to break L0 ∪ L1 up in slightly different ways, but in all cases L∗
∞ is the

cycle with edge set {[0, 1], [1, 2], [−p, 1− p]}∪ {[i, 3− i] | 3 ≤ i ≤ p + 1}∪ {[i, 1− i] | 2 ≤ i ≤ p}. If the reader

wishes to get an idea of the details, we suggest checking the special cases n = 39, 43 and 47, which are large

enough to illustrate the general principles.

For the proofs of nonorientability, we can in each case examine just two faces. When n ≡ 7 mod 16, the

edges [p − 1,−(p + 2)] and [2p − 6, 4 − 2p] are incompatibly oriented in σ(C0) and C−1. When n ≡ 11 mod

16, the edges [∞, 0] and [2p − 2, 1 − 2p] are incompatibly oriented in σ(C0) and C0. Finally, when n ≡ 15

mod 16, the edges [−1, 3] and [1 − 2p, 2p] are incompatibly oriented in σ(C0) and C1. We omit the details.

This concludes the proof of Theorem 2.1.

3. The nonorientable genus of Km + Kn

In this section we determine the nonorientable genus of all graphs Km + Kn with m ≥ n − 1. First

we state a lower bound on the Euler genus of embeddings of Km + Kn in general, whether orientable or

nonorientable, and whether or not l ≥ m − 1. If n = 0, 1 or 2, the graphs Km + Kn are all planar, so we

take n ≥ 3.
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Theorem 3.1. Suppose m ≥ 0 and n ≥ 3. Then any embedding of Km + Kn has Euler genus γ such that

γ ≥

{
d (m−2)(n−2)

2 e if m ≥ n − 1,

d (2m+n−4)(n−3)
6 e if m ≤ n − 1.

Proof. Suppose we have an embedding of Km + Kn with minimum Euler genus γ. By a result of Youngs

[26], it is a cellular embedding, so we may apply Euler’s formula: if v = m + n, e = mn + 1
2n(n − 1) and f

denote the number of vertices, faces, and edges respectively, then γ = 2 + e − v − f .

Let fi denote the number of facial walks of length i. Since Km + Kn is simple, connected, and not

K2, fi = 0 for i ≤ 2. By simple counting f = f3 + f4 + f5 + . . . and 2e = 3f3 + 4f4 + 5f5 + . . ..

Therefore, 4f = 4f3 + 4f4 + 4f5 + . . . ≤ f3 + (3f3 + 4f4 + 5f5 + . . .) = f3 + 2e, or f ≤ 1
4 (f3 + 2e). Hence,

γ = 2 + e − v − f ≥ 2 + e − v − 1
4 (f3 + 2e) = 2 + 1

2e − v − 1
4f3. So, an upper bound on f3 will give a lower

bound on γ.

Any facial walk of length 3 must be a triangle (3-cycle). For 0 ≤ i ≤ 3 let ti be the number of triangles

in the embedding that use i edges of the Kn. Then t0 = t2 = 0. Since every edge of Kn is used by at most

two triangles, t1 ≤ n(n− 1) and t3 ≤ 1
3 [n(n− 1)− t1]. Thus, f3 = t1 + t3 ≤ 1

3 [n(n− 1)+2t1]. Every triangle

that uses exactly one edge of the Kn must also use two edges of the Km,n that joins Km to Kn. Since every

edge of the Km,n may be used by at most two triangles, we have t1 ≤ mn.

If m ≥ n− 1, t1 ≤ n(n− 1) is the stronger bound on t1, giving an upper bound on f3 that gives the first

bound on γ. If m ≤ n− 1, t1 ≤ mn is the stronger bound on t1, giving an upper bound on f3 that gives the

second bound on γ.

A natural conjecture then follows.

Conjecture 3.2. Suppose m ≥ 0 and n ≥ 3. Then, perhaps with a finite number of small exceptions,

g(Km + Kn) =

{
d (m−2)(n−2)

4 e if m ≥ n − 1,

d (2m+n−4)(n−3)
12 e if m ≤ n − 1,

and

g̃(Km + Kn) =

{
d (m−2)(n−2)

2 e if m ≥ n − 1,

d (2m+n−4)(n−3)
6 e if m ≤ n − 1.

Theorem 3.1 and Conjecture 3.2 are not new. They have been used implicitly for many years by many

researchers. However, we feel it is useful to provide a statement in complete generality, covering both the

case of ‘small’ m (m ≤ n− 1) and ‘large’ m (m ≥ n− 1). The conjectured embeddings for small and large m

have different qualities. The embeddings for small m would be triangulations, or very close to triangulations.

The embeddings for large m would be minimum genus embeddings of complete bipartite graphs with extra

edges added.

In the case of very small m the results on Conjecture 3.2 are intimately related to the results on the Map

Color Theorem due to Ringel, Youngs and others – see [22] for an overview. When m = 0 or 1, Km + Kn

is the complete graph Kn or Kn+1, respectively, whose genus conforms to the conjectured values except
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for g̃(K7). For m = 2, K2 + Kn = Kn+2 − K2 is obtained from a complete graph by deleting one edge.

In many cases in the Map Color Theorem, either the genus of Kn+2 − K2 must be the same as for Kn+2,

or else embeddings of Kn+2 are found by first embedding Kn+2 − K2 and then performing some kind of

manipulation. Therefore, much was known about the genus of Kn+2 −K2 = K2 + Kn as a result of proving

the Map Color Theorem. The orientable genus of Kn+2−K2 was determined [22, p. 180], except for the case

n + 2 ≡ 2 mod 24, which was settled by Jungerman [11]. The nonorientable genus of Kn+2 − K2 was also

determined [16, 20, 22] (see especially Satz 11 and the remark on p. 200 of [20]), except for the case n+2 ≡ 8

mod 12, n + 2 ≥ 20, which was settled by Korzhik [14]. Conjecture 3.2 holds for K2 + Kn = Kn+2 − K2 in

all cases except for g̃(K2 + K6 = K8 − K2).

The orientable genus of certain graphs K3 + Kn and K5 + Kn also played a role in the proof of the

Map Color Theorem. In addition, the orientable genus of various graphs Km + Kn with m = 3, 4, 5 and

6 were investigated during the 1970’s and early 1980’s by authors including Guy, Jungerman, Ringel and

Youngs. In general they investigated cases where a triangular embedding is to be expected, using current

graph techniques. We omit a detailed summary of the results supporting Conjecture 3.2, but refer the reader

to [8, 9, 10, 11, 12, 22]. Some orientable counterexamples to Conjecture 3.2 were found by Jungerman [10]

using a computer search, namely K3 + K6 = K9 − K3, K5 + K6 = K11 − K5, and K6 + K7 = K13 − K6.

Perhaps it is overly optimistic in Conjecture 3.2 to expect there to be only a finite number of exceptions

altogether. However, we believe strongly that there will be only a finite number of exceptions for each given

m.

For values of m that are small in the sense that m ≤ n−1, but not bounded by a fixed number, Korzhik

has conducted extensive investigations which are summarized in [15]. He obtains triangular embeddings for

Km + Kn in many situations, both orientable and nonorientable, again using current graph techniques. For

all of these results, m < n/2.

Much less has been done for the case of large m, when m ≥ n − 1. Craft [3, Theorem 5.3; 4, Theorem

1] has verified the conjectured orientable genus of Km + Kn when n is even and m ≥ 2n − 4. His method

involves a doubling construction starting from a ‘graphical surface’ constructed of ‘tubes’ and ‘spheres’, and

a surgical construction called ‘crowning’ which accomplishes some of the same ends as our diamond sum,

below.

In the remainder of this section we show that the conjectured formula for nonorientable genus of

Km + Kn is correct for m ≥ n − 1, except when (m, n) = (4, 5). Our proof is by reduction to a basis

case. The basis uses the embeddings of Kn with hamilton cycle faces that we found in Section 2. The

reduction uses a construction we call the ‘diamond sum’, which was also the reduction technique used to

determine the nonorientable genus of all complete tripartite graphs [5, 6, 13].

The Diamond Sum. Our reduction procedure was introduced in a different form by Bouchet [2], who used

it to obtain a new inductive proof for the genus of complete bipartite graphs. Magajna, Mohar and Pisanski
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reinterpreted Bouchet’s construction in the context of quadrangular embeddings [17], and more details were

given by Mohar, Parsons, and Pisanski [18]. The general version here is due to Kawarabayashi, Stephens

and Zha [13].

Suppose Ψ1 is an embedding of a simple graph G1 on surface Σ1 and Ψ2 is an embedding of a simple

graph G2 on Σ2. Let u be a vertex of degree k ≥ 1 in G1, with neighbors u0, u1, . . . , uk−1 in cyclic order

around u. Suppose there is a vertex v of degree k in G2, with neighbors v0, v1, . . . , vk−1 in cyclic order

around v. We can find a closed disk D1 that intersects G1 in u and the edges uu0, uu1, . . ., uuk−1, with

∂D1 ∩G1 = {u0, u1, . . . , uk−1}. Similarly, we can find a closed disk D2 that intersects G2 in v and the edges

vv0, vv1, . . ., vvk−1, with ∂D2 ∩ G2 = {v0, v1, . . . , vk−1}. Remove the interiors of D1 and D2, and identify

∂D1 with ∂D2 so that ui is identified with vi for 0 ≤ i ≤ k − 1. The result is called a diamond sum Ψ1♦Ψ2,

and it embeds a graph we denote by G1♦G2 on the surface Σ1#Σ2, where # denotes the connected sum of

two surfaces. Note that Ψ1♦Ψ2 will be nonorientable if either (or both) of Ψ1 or Ψ2 is nonorientable.

The diamond sum is not unique; it depends on u and v, and how we match the neighbors of u to the

neighbors of v. When k = 1 or 2, this does not determine the direction in which we identify ∂D1 with ∂D2,

and we also need to choose that direction. However, when we apply the diamond sum we will have k ≥ 3,

and every permutation of the neighbors of u will be an automorphism of G1, so given u and v the graph

G1♦G2 will be unique up to isomorphism.

In particular, we shall let n ≥ 3, and take G1 to be Kp + Kn with u one of the vertices of the Kp,

and G2 to be Kq,n = Kq + Kn with v one of the vertices of the Kq. Then the graph (Kp + Kn)♦Kq,n is

Kp+q−2 + Kn.

Theorem 3.3. Suppose m ≥ 0, n ≥ 0, and m ≥ n − 1. The nonorientable genus of Km + Kn is given by

g̃(Km + Kn) =





0 if n ≤ 2,

d (m−2)(n−2)
2 e if n ≥ 3 and (m, n) 6= (4, 5),

4 if (m, n) = (4, 5).

Proof. If n ≤ 2, Km + Kn is planar and the formula holds. In the other cases, d (m−2)(n−2)
2 e is a lower

bound on the genus, by Theorem 3.1, so except when (m, n) = (4, 5) we need only show that an embedding

with that genus exists.

Suppose that n ≥ 3 and n 6= 5. If n 6= 3 then by Theorem 2.1 there is an embedding of Kn on

N(n−2)(n−3)/2 with all faces hamilton cycles. This is also true for n = 3, recalling that N0 is the sphere.

By adding a vertex in the interior of the n − 1 hamilton cycle faces, and joining the new vertices to all

original vertices, we obtain an embedding of Kn−1 + Kn on N(n−2)(n−3)/2. By Ringel [21] there is an

embedding of Km−n+3,n on Nd(m−n+1)(n−2)/2e. Applying the diamond sum operation as described above,

we obtain an embedding of (Kn−1 + Kn)♦Km−n+3,n = Km + Kn on N(n−2)(n−3)/2#Nd(m−n+1)(n−2)/2e =

Nd(m−2)(n−2)/2e, as required.

Suppose that (m, n) = (4, 5). By Theorem 3.1, if K4 + K5 embeds on Nk then k ≥ 3. Suppose that

k = 3. Then this is a minimum Euler genus embedding, so by Youngs [26] it is a cellular embedding and
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Euler’s formula applies. Thus, f = 2+e−v−γ = 2+30+9−3 = 20. However, 2e = 60 = 3f3+4f4+5f5+. . . =

3f + (f4 + 2f5 + . . .) = 60+ (f4 + 2f5 + . . .), so 0 = f4 = f5 = . . . and all faces are triangles. Thus, removing

each vertex of the K4 leaves a face that is a hamilton cycle of the K5. Therefore, we obtain an embedding

of K5 with 4 hamilton cycle faces, which does not exist by Theorem 2. Hence, k 6= 3. We observe that

K4 + K5 ⊆ K4 + K6 and from above K4 + K6 embeds on N4, so g̃(K4 + K5) = 4.

Suppose that (m, n) = (5, 5). We must show that K5 + K5 embeds on N5. Such an embedding is shown

in Figure 3.1, where we represent N5 as a torus with three added crosscaps, shown as dotted circles with an

‘X’ in the center.

Figure 3.1: K5 + K5 on N5

Suppose that n = 5 and m ≥ 6. Observe first that K6 + K5 ⊆ K5 + K6 and from above K5 + K6

embeds on N6. Thus, K6 + K5 embeds on N6. Now by Ringel [21] there is an embedding of Km−4,5

on Nd3(m−6)/2e. Applying the diamond sum operation we obtain an embedding of (K6 + K5)♦Km−4,5 =

Km + K5 on N6#Nd3(m−6)/2e = Nd3(m−2)/2e, as required.

4. The nonorientable genus of Km + G

As a consequence of the results in the previous section, we can also determine the nonorientable genus

of a very general family of graphs, where we join an edgeless graph Km to a graph G on at most m + 1
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vertices.

Theorem 4.1. Suppose that m ≥ 0, and G is a graph on at most m + 1 vertices. Then the nonorientable

genus of Km + G is

g̃(Km + G) =






0 if |V (G)| ≤ 2,
4 if m = 4, |V (G)| = 5, and K1,4 ⊆ G or K4 ⊆ G,

d (m−2)(|V (G)|−2)
2 e otherwise.

Proof. Let n = |V (G)|. If n ≤ 2, Km + G is planar and the result holds, so suppose that n ≥ 3. Now

Km,n ⊆ Km + G ⊆ Km + Kn. If (m, n) 6= (4, 5), then by Ringel [21] and by Theorem 3.3, both Km,n

and Km + Kn have nonorientable genus d (m−2)(n−2)
2 e, and therefore that is also the nonorientable genus of

Km + G.

Suppose therefore that (m, n) = (4, 5). We have K4,5 ⊆ K4 + G ⊆ K4 + K5, where g̃(K4,5) = 3 by

Ringel [21] and g̃(K4 + K5) = 4 by Theorem 3.3. Therefore g̃(K4 + G) is either 3 or 4.

From [5] K4 + K1,4 = K4,4,1 does not embed on N3, so if K1,4 ⊆ G then g̃(K4 + G) = 4, as required.

Suppose K4 ⊆ G, and g̃(K4 + G) = 3. Then K4 + (K4 ∪ K1), which is a subgraph of K4 + G, has an

embedding on N3. This is a minimum Euler genus embedding, and hence Euler’s formula applies. We have

f = 2+e−v−γ = 2+26−9−3 = 16. We also have 2e = 52 = 3f3 +4f4 +5f5 + . . . = 3f +(f4 +2f5 + . . .) =

48 + (f4 + 2f5 + . . .). Therefore, f4 + 2f5 + . . . = 4. However, f3 ≤ 12 because every triangular face must

use one of the 6 edges of the K4. Hence f3 = 12, f4 = 4, every triangular face uses exactly one edge of the

K4 and one vertex of the K4, and every edge of the K4 appears in two triangular faces. Since the graph is

simple with no vertices of degree 1, all the faces of length 4 are 4-cycles. Each vertex of the K4 has degree

7 and is incident with 6 triangular faces; therefore it is incident with one 4-cycle face. The K1 vertex has

degree 4 and does not belong to any 3-cycles; therefore it belongs to all four 4-cycle faces. By adding one

edge in each 4-cycle face joining the K1 vertex to the K4 vertex, we obtain an embedding of K4 + K5 on

N3, which contradicts Theorem 3.3. Thus, if K4 ⊆ G then g̃(K4 + G) = 4, as required.

Finally, suppose that G contains neither K1,4 nor K4. Since K1,4 6⊆ G, G contains at least one edge

incident with every vertex. Moreover, since G 6= K4 ∪ K1, G contains two independent edges e1 and e2.

The vertex that is not a vertex of e1 or e2 must be a vertex of e3 ∈ E(G), and {e1, e2, e3} forms a subgraph

of G isomorphic to P3 ∪ K2. Thus, we may assume that G ⊆ P3 ∪ K2. Figure 4.1 shows an embedding of

K4 + P3 ∪ K2 on N3, represented as a torus with an added crosscap. Thus, g̃(K4 + G) = 3, as the formula

requires.

We can also use the diamond sum operation to obtain the nonorientable genus of some graphs that are

not covered by Theorem 4.1. We employ the following upper bound.

Lemma 4.2. Suppose that H is an m-vertex graph, where m ≥ 0, and suppose that G1, G2, . . . , Gk are
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Figure 4.1: K4 + P3 ∪ K2 on N3

disjoint graphs, where k ≥ 1. Then

g(H + (G1 ∪ G2 ∪ . . . ∪ Gk)) ≤ g(H + Kk) +

k∑

i=1

g(Km + (K1 ∪ G)), and

g̃(H + (G1 ∪ G2 ∪ . . . ∪ Gk)) ≤ g̃(H + Kk) +

k∑

i=1

g̃(Km + (K1 ∪ G)).

Proof. Take minimum genus embeddings (orientable or nonorientable, as appropriate) of H + Kk and of

each Km + (K1 ∪ Gi). Let the vertices of the Kk be v1, v2, . . . , vk. Do k simultaneous diamond sums,

identifying the neighbors of vi with the neighbors of the K1 in Km + (K1 ∪ Gi), for each i. The resulting

graph is H + (G1 ∪ G2 ∪ . . . ∪ Gk), and it has an embedding of the given genus.

The following corollary provides an example of when this can be used to calculate the nonorientable

genus exactly.

Corollary 4.3. Suppose that m ≥ 2, and G is a graph with k ≥ 1 components. Suppose further that

(i) each component of G has at most m vertices;

(ii) if m = 4, no component of G is isomorphic to K4;

(iii) either m is even, or else k is even and each component has an odd number of vertices.

Then

g̃(Km + G) =
(m − 2)(|V (G)| − 2)

2
.
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Proof. Apply Lemma 4.2 with H = Km. Since Km + Kk = Km,k, by Ringel [21] and (iii) we have

g̃(Km + Kk) = 1
2 (m − 2)(k − 2). Suppose the components of G are G1, G2, . . . , Gk, where each Gi has ni

vertices. By (i), Theorem 4.1 applies to Km +(K1∪Gi), and by (ii) and (iii) this gives g̃(Km +(K1∪Gi)) =

1
2 (m−2)(ni−1). Thus, Lemma 4.2 yields g̃(Km+G) ≤ 1

2 (m−2)(n1+n2+. . .+nk−2) = 1
2 (m−2)(|V (G)|−2).

However, since Km + G contains Km,|V (G)|, this is also a lower bound on g̃(Km + G), and the result follows.

Corollary 4.3 may apply when Theorem 4.1 does not. We illustrate with a concrete example. By

Corollary 4.3 we have g̃(K4 + 5K3) = 13. Theorem 4.1 does not apply here, because the edgeless graph K4

is too small relative to the other side of the join, 5K3.

We note that Craft [3, Theorem 5.6] showed that the orientable genus of Km+G is d(m−2)(|V (G)|−2)/4e

provided every component of G has even order and order at most m/2. In fact, although Craft’s techniques

are different from ours, his results suggested to us that it would be profitable to look at the case where G is

disconnected. Craft also has several other interesting results on the orientable genus of joins.

5. Problems with Wei and Liu’s paper [24]

Wei and Liu [24] claim to prove that Kn has an embedding on the surface N(n−2)(n−3)/2 with all faces

hamilton cycles of Kn. However, as we have stated earlier, there are problems with Wei and Liu’s paper,

and we describe them in this section.

When n is even, Wei and Liu give a correct construction, essentially the same as we give in 2.1.1. They

correctly show that the embedding is nonorientable. However, they fail to show that their collection of facial

cycles actually represents an embedding. If n = 2k + 2, Wei and Liu construct n − 1 paths by letting

P1 = [0, 2k, 1, 2k − 1, 2, 2k − 2, . . . , k + 1, k − 1, k]

and for i, 2 ≤ i ≤ n − 1, they obtain Pi by adding i − 1 modulo n − 1 = 2k + 1 to each vertex of P1.

Then for each i a cycle Ci is formed by joining both ends of Pi to the vertex n − 1. In their proof that this

construction gives an embedding (their Lemma 2.4, Case 1), they state ‘By symmetry, we are allowed to

consider only the edges incident with the vertex n− 1.’ But their vertex n− 1 corresponds to our vertex ∞,

which is not obviously similar to the other vertices in the construction. Wei and Liu therefore fail to prove

that the rotation graph around vertices 0, 1, 2, . . . , n − 2 is a cycle.

For the case where n is odd, Wei and Liu’s construction does not give an embedding. We quote their

construction, with explanations added in brackets [ ]:

‘Let us start from the n − 1 circuits of Kn−1 [i.e., C1, C2, . . . , Cn−2 as constructed above] to get n − 1

circuits which form an SCDC [small cycle double cover] of Kn. In C1 (the first row), put the vertex n−1

between the vertices n−2 and 0. The new circuit is denoted by C′
1. In Ci (2 ≤ i ≤ n−2), put the vertex
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n − 1 between the vertices L(i, 1) and L(i, 2) [the first two vertices in Pi] where L(i, 2) − L(i, 1) = −1.

The new circuit is denoted by C′
i. The (n − 1)-th circuit C′

n−1 is (n − 1, n − 2, 0, 1, . . . , n − 3).’

For example, for n = 9 this gives the following 8 cycles:

C′
1 = (0, 6, 1, 5, 2, 4, 3, 7, 8), C′

5 = (4, 8, 3, 5, 2, 6, 1, 0, 7),
C′

2 = (1, 8, 0, 2, 6, 3, 5, 4, 7), C′
6 = (5, 8, 4, 6, 3, 0, 2, 1, 7),

C′
3 = (2, 8, 1, 3, 0, 4, 6, 5, 7), C′

7 = (6, 8, 5, 0, 4, 1, 3, 2, 7),
C′

4 = (3, 8, 2, 4, 1, 5, 0, 6, 7), C′
8 = (8, 7, 0, 1, 2, 3, 4, 5, 6).

The rotation graph at vertex 0 then consists of two cycles, (8, 2, 3, 4, 5, 6) and (1, 7), not a single cycle.

Therefore, this does not describe an embedding. In general, the rotation graph at vertex 0 consists of cycles

(n − 1, 2, 3, . . . , n − 3) and (1, n − 2), and we do not have an embedding.

Wei and Liu have another construction for odd n, but they claim only that it is a cycle double cover of

Kn, not that it is an embedding, and in fact it also does not give an embedding.

6. Conclusion

We observe that arguments from this paper may be used to replace some of the more technical arguments

in our paper with Zha on the nonorientable genus of complete tripartite graphs. In particular, embeddings

of Km,m,1 on N(m−1)(m−2)/2 when m is even are treated as special cases in [6], and the argument for m ≡ 0

mod 4 is particularly complicated. By regarding Km,m,1 as Km + K1,m we obtain the required embeddings

from Theorem 4.1. In more generality, Theorem 4.1 gives an alternate proof of the value of g̃(Kl,m,n) when

l ≥ m + n − 1.

In future work we would naturally like to determine the orientable genus of Km + Kn with m ≥ n − 1,

which is approachable using the diamond sum technique. We have some partial results. In particular,

Conjecture 3.2 holds for g(Km + Kn) if n is even, n = 4, n = 8 or n ≥ 12, and m ≥ n.

We would also like to determine the orientable genus of Kl,m,n, with l ≥ m ≥ n, which White [25]

conjectured to be d(l − 2)(m + n − 2)/4e. Again we can use the diamond sum technique. In collaboration

with Zha, we have some partial results confirming White’s conjecture. The proof depends on the values of

m and n modulo 4. Of the sixteen cases, we can determine the genus completely for seven: where (m, n)

modulo 4 is (0, 0), (0, 2), (2, 0), (2, 1), (2, 2), (2, 3) and (4, 4). We have results for all but very small n in five

other cases: (1, 1) for n ≥ 5, (0, 3) and (1, 3) for n ≥ 7, and (0, 1) and (3, 1) for n ≥ 9.

The genus problems for both complete tripartite graphs and for Km + Kn with m ≥ n−1 can be thought

of as special cases of a more general problem. Consider a genus embedding (orientable or nonorientable)

of Km,n. This will be a quadrangulation (all faces 4-cycles), or close to a quadrangulation. For simplicity,

consider only the cases that are quadrangulations (when (m−2)(n−2) is even for nonorientable embeddings,

or divisible by 4 for orientable embeddings). A minimum genus embedding of Km,n = Km + Kn then has

mn/2 quadrangular faces, exactly m of which are incident with each vertex of the Kn. We may ask the

following question.
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Question 6.1. Given an n-vertex graph G with maximum degree at most m, when is the genus (orientable

or nonorientable) of Km + G the same as for Km,n? In other words, when can we minimally embed Km,n =

Km +Kn so that the edges of G can be added between the vertices of the Kn, without increasing the genus?

Even more generally, we may ask the following.

Question 6.2. When it is possible to take an m-vertex graph F of maximum degree at most n, and an

n-vertex graph G of maximum degree at most m, such that |E(F )| + |E(G)| ≤ mn/2, and find a minimum

genus embedding of Km,n that can be extended to an embedding of F + G without increasing the genus?

Another area for future research is the genus (orientable or nonorientable) of Km + Kn with m < n−1.

As previously mentioned, Korzhik [15] has some very general results here, but much still remains to be done.

In particular, we know of no results for n/2 ≤ m < n − 1.
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