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Abstract. In an earlier paper the authors constructed a hamilton cycle embedding of Kn,n,n in a nonori-
entable surface for all n ≥ 1 and then used these embeddings to determine the genus of some large families
of graphs. In this two-part series, we extend those results to orientable surfaces for all n 6= 2. In part II,
a voltage graph construction is presented for building embeddings of the complete tripartite graph Kn,n,n

on an orientable surface such that the boundary of every face is a hamilton cycle. This construction works
for all n = 2p such that p is prime, completing the proof started by Part I (which covers the case n 6= 2p)
that there exists an orientable hamilton cycle embedding of Kn,n,n for all n ≥ 1, n 6= 2. These embeddings
are then used to determine the genus of several families of graphs, notably Kt,n,n,n for t ≥ 2n and, in some

cases, Km + Kn for m ≥ n − 1.

1. Introduction

In [2], the present authors constructed nonorientable hamilton cycle embeddings of Kn,n,n for all n ≥ 2.
In the first part of this series [3] we extended those results to the orientable case for all n ≥ 3 such that
n 6= 2p for every prime p. In this paper we complete the orientable case, constructing orientable hamilton
cycle embeddings of Kn,n,n for all n = 2p where p is prime. To construct these embeddings, we present a
voltage graph whose derived graph is the desired embedding. We use these embeddings, together with the
embeddings found in [3], to determine the genus of several families of graphs, including Kt,n,n,n for t ≥ 2n

and, in certain cases, Km + Kn for m ≥ n − 1.
A basic understanding of topological graph theory is assumed. A surface is a compact 2-manifold without

boundary. The orientable surface Sh is obtained by adding h handles to a sphere, and the genus of a graph
G, denoted g(G), is the minimum value of h for which G can be embedded on Sh. It is well known that
a cellular embedding can be characterized, up to homeomorphism, by providing a set of facial walks that
double cover the edges and yield a proper rotation at each vertex. To define a proper rotation, we must
introduce the rotation graph at a vertex v, denoted Rv. If G is loopless, then Rv has as its vertex set the edges
incident with v, and two edges u1v and u2v are joined by one edge for each occurrence of the subsequence
(· · ·u1vu2 · · · ), or its reverse, in one of the facial walks. Rv is 2-regular; we say it is proper if Rv consists of
a single cycle. This ensures that the neighborhood around each vertex is homeomorphic to a disk. If G is a
simple graph, we can think of Rv as a graph on the neighbors of v by identifying the edge uv with the vertex
u; in this paper, we will use both interpretations of Rv. The embedding is orientable if and only if the faces
can be oriented so that each edge appears once in each direction. For additional details and terminology, see
[7]. For further background information on hamilton cycle embeddings, see [2].

We let A = {a0, ..., an−1}, B = {b0, ..., bn−1} and C = {c0, ..., cn−1} be the vertices of Kn,n,n so that
A, B and C are the maximal independent sets. A hamilton cycle face of the form (aj0bk0

c`0aj1bk1
c`1 · · ·

ajn−1
bkn−1

c`n−1
) is called an ABC cycle; when this cycle is the boundary of a face we will refer to it as an

ABC face. We call the edge aibj an AB-edge of slope j − i, and similarly for BC edges and CA edges.

2. Preliminaries

We will use two main tools in this paper. A voltage graph is a common method used to build embeddings
of highly symmetric graphs, while the diamond sum is a surgical technique that allows us to combine two
known embeddings to get a new embedding.
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2.1. Voltage graphs. We assume the reader is familiar with voltage graphs and embedded voltage graphs;
for a detailed explanation see [7]. We want to build a voltage graph Gn with voltage assignment α :
E(Gn) → Zn such that the derived graph Gα

n is Kn,n,n. To achieve this, we let V (Gn) = {a, b, c} – one
vertex corresponding to each of the independent sets A, B and C – and let E(Gn) contain n edges directed
from a to b, n edges from b to c, and n edges from c to a. Each voltage from the abelian group Zn will be
assigned to one of the edges between each pair of vertices. If the edge e from a to b has voltage i, then e

represents all AB-edges of slope i, and similarly for BC and CA edges. Since the vertices and edges of our
voltage graph are known ahead of time, all we will need to do is specify the rotation around each vertex. It
will suffice, then, to show that all of the faces in the derived embedding are hamilton cycles.

We will use iv to denote the edge with voltage i that originates from vertex v, where v ∈ {a, b, c}.
Additionally, we will use e to denote that e is traced in the reverse direction. We do this to keep track of
the directions in which each edge is traced, which will allow us to verify that the embeddings we construct
are orientable. The following theorem and corollary will simplify the proofs in Section 3.

Theorem 2.1 (Gross and Tucker, Theorem 2.1.3 in [7]). Let W be a closed walk of length k bounding a
face in the embedded voltage graph (G → Σ, α), and let the net voltage |W | have order n in the voltage

group Γ. Then W yields |Γ|
n

faces of size kn in the derived embedding of Gα.

Corollary 2.2. Let W1 = (ia jb kc) and W2 = (pc qb ra) be closed facial walks (described as a sequence of
edges) in an embedding of Gn as described above. If gcd(i + j + k, n) = 1 (resp. gcd(−p − q − r, n) = 1),
then W1 (resp. W2) yields a single hamilton cycle face in the derived embedding.

Proof. Theorem 2.1 implies that both W1 and W2 yield a single face of length 3n in the derived embedding.
We must show that these faces are actually hamilton cycles. The resulting faces are shown below. For
convenience, we set β = i + j + k and γ = p + q + r.

W1 : (a0 bi ci+j aβ bi+β ci+j+β a2β bi+2β ci+j+2β · · · a(n−1)β bi+(n−1)β ci+j+(n−1)β)
W2 : (a0 c−p b−p−q a−γ c−p−γ b−p−q−γ a−2γ c−p−2γ b−p−q−2γ · · · a−(n−1)γ c−p−(n−1)γ b−p−q−(n−1)γ)

Because β and γ are both of order n in Zn, these are hamilton cycles. �

2.2. Diamond sum. The so-called “diamond sum” technique was introduced in dual form by Bouchet [1],
reinterpreted by Magajna, Mohar and Pisanski [10], developed further by Mohar, Parsons, and Pisanski
[11], and generalized by Kawarabayashi, Stephens and Zha [9]. In particular, the diamond sum construction
allows us to combine embeddings of Kt1,n,n,n with genus g1 and Kt2,3n with genus g2 to get an embedding
of Kt1+t2−2,n,n,n with genus g1 + g2. This is achieved by removing a disk containing a vertex of degree 3n

and all of its incident edges from each embedding and identifying the boundaries of the resulting holes in a
suitable fashion; we will do this in such a way that the final embedding is a genus embedding. For similar
applications of the diamond sum, see [4, 5, 6], and for more information on this technique, see [12, pages
117–118].

3. Voltage graph constructions

We begin by presenting some special case constructions for p = 2 and p = 3.

Lemma 3.1. For p = 2 or 3, there exists a voltage graph G2p such that the derived embedding is an
orientable hamilton cycle embedding of K2p,2p,2p with at least one ABC face.

Proof. Let G4 be the voltage graph over Z4 given by the rotation scheme

Ra : (0a 1a 2a 3a 0c 3c 2c 1c),
Rb : (0a 0b 3a 2b 2a 1b 1a 3b),
Rc : (0c 0b 1c 1b 2c 3b 3c 2b);

and let G6 be the voltage graph over Z6 given by the rotation scheme

Ra : (0a 1c 1a 2c 2a 5c 4c 4a 0c 3a 3c 5a),
Rb : (0a 2b 1a 3b 4a 5b 3a 4b 2a 1b 5a 0b),
Rc : (0b 5c 1b 2c 4b 0c 3b 3c 5b 4c 2b 1c).

We leave it to the reader to verify that G4 and G6 yield the required embeddings of K4,4,4 and K6,6,6,
respectively. In each case, (0a0b1c) is a triangle face that yields an ABC face in the derived embedding via
Corollary 2.2. �
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We are now going to give a general construction for n = 2p, where p ≥ 5 is prime. This voltage graph
will be constructed in several steps. To start out, we will present the closed walks we want to be facial
boundaries in our voltage graph by describing their sequence of edges. Then, we will show that these walks
yield hamilton cycles in the derived embedding. Finally, we will verify our voltage graph is well-defined
by showing that the rotation graph around every vertex is proper. The voltage group we will be using for
these graphs is Zp ×Z2; this group is isomorphic to Z2p but is preferred for notational convenience. For the
remainder of this section, we simply write x for (x, 0) and x∗ for (x, 1).

Definition 3.2. Let p ≥ 5 be prime, and define the sequences ωi = ia (i + 3)b (p − 2i − 2)c and θi =

(p − 2i)c (i − 1)b ia. Define Ω to be the closed walk given by the following sequence of edges.

Ω : (1∗a (p − 1)∗b 0∗c 0∗a 3b (p − 2)c ω1 ω2 · · · ωp−3 ωp−2

(p − 1)∗c 2∗b (p − 3)∗a θ1 θ2 · · · θp−3 θp−2 2c (p − 2)b (p − 1)∗a)

Lemma 3.3. For all prime p ≥ 5, Ω yields 2p hamilton cycle faces in the derived embedding of K2p,2p,2p.

Proof. It will suffice to show that one of the resulting faces in the derived embedding is a hamilton cycle.
Starting with the vertex a0, we obtain the following facial boundary in the embedding of K2p,2p,2p.

(a0 b1∗ c0 a0∗ b0 c3 a1 b2 c6 a2 b4 c9 a3 b6 c12 · · ·
a(p−4) b(p−8) c(p−9) a(p−3) b(p−6) c(p−6) a(p−2) b(p−4) c(p−3)

a(p−1) c0∗ b(p−2) a1∗ c3∗ b3∗ a2∗ c6∗ b5∗ a3∗ c9∗ b7∗ · · ·
a(p−3)∗ c(p−9)∗ b(p−5)∗ a(p−2)∗ c(p−6)∗ b(p−3)∗ a(p−1)∗ c(p−3)∗ b(p−1)∗)

For the sake of clarity, we list the vertices below by the order in which they appear within each independent
set. Note that the net voltages of ωi and θi are both 1, the net voltages of the sequences (i + 3)b (p − 2i −

2)c (i+1)a and ia (p − 2i − 2)c ib are both 2, and the net voltages of the sequences (p−2i−2)c (i+1)a (i+4)b

and (i − 1)b ia (p − 2i − 2)c are both 3. This is evident in the following sequences.

A : (a0 a0∗ a1 a2 · · · a(p−2) a(p−1) a1∗ a2∗ · · · a(p−2)∗ a(p−1)∗),
B : (b1∗ b0 b2 b4 · · · b(p−4) b(p−2) b3∗ b5∗ · · · b(p−3)∗ b(p−1)∗),
C : (c0 c3 c6 c9 · · · c(p−6) c(p−3) c0∗ c3∗ · · · c(p−6)∗c(p−3)∗).

This cycle is clearly a hamilton cycle. Since Ω was a walk of length 6p, it must be true that |Ω| = 0. From
Theorem 2.1, we know Ω yields 2p faces of length 6p, each of which must be a hamilton cycle. �

The closed walk Ω provides half of our desired voltage graph. Before we build the remaining half, we want
to construct the partial rotations at each vertex in the voltage graph as determined by Ω. In the observation
that follows, we use the notation [a b c · · · d] to denote a path in the corresponding rotation (i.e. a is not
adjacent to d in the rotation graph).

Lemma 3.4. The partial rotations determined by Ω consist of the following paths with the given endpoints.
Each path is labeled for reference later in this section.

a : PA
1 = [(p − 3)∗a · · · 1∗a], PA

3 = [(p − 1)∗a 1∗a], PA
5 = [0∗c 0∗a],

b : PB
1 = [2b · · · (p − 1)b], PB

3 = [2∗b (p − 3)∗a], PB
5 = [0∗a · · · (p − 1)∗a], PB

7 = [1∗a (p − 1)∗b ],

c : PC
1 = [(p − 1)b · · · 2b], PC

3 = [(p − 1)∗c 2∗b ], PC
5 = [(p − 1)∗b 0∗c ].

Proof. Let Ω1 = (ω0 ω1 · · ·ωp−1) and Ω2 = (θ0 θ1 · · · θp−1). The rotation around a determined by the closed
walks Ω1 and Ω2 is given by

Q1 = (0a (p − 2)c 1a (p − 4)c 2a (p − 6)c · · · (p − 2)a 2c (p − 1)a0c).

To construct Ω from Ω1 and Ω2, we must first remove the subsequence ωp−1 ω0 from Ω1 and the subsequence
θp−1 θ0 from Ω2. By doing so, we lose the subsequence (p− 2)a 2c (p− 1)a 0c 0a (p− 2)c 1a from Q1, which
results in a partial rotation around a given by

Q2 = [1a (p − 4)c 2a (p − 6)c · · · (p − 2)a].

Finally, we add the sequences θp−2 2c (p − 2)b (p − 1)∗a 1∗a (p − 1)∗b 0∗c 0∗a 3b (p − 2)c ω1 and ωp−2 (p − 1)∗c 2∗b
(p − 3)∗a θ1, which induce the following partial rotations around a.

PA
1 = [(p − 3)∗a (p − 2)c 1a] Q2 [(p − 2)a 2c (p − 1)∗c ], PA

3 = [(p − 1)∗a 1∗a], PA
5 = [0∗c 0∗a].
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Cycle (ia jb kc) i j k Net Voltage
∆0 0 2∗ 0 2∗

∆1 3∗ 1∗ (p − 3)∗ 1∗

...
...

...
...

...

∆` (2` + 1)∗ (2` − 1)∗ (p − 2` − 1)∗ (2` − 1)∗

...
...

...
...

...

∆h−1 (p − 2)∗ (p − 4)∗ 2∗ (p − 4)∗

∆h p − 1 2 3∗ 4∗

∆h+1 2∗ 4∗ (p − 2)∗ 4∗

...
...

...
...

...

∆` (2` + 1)∗ (2` + 3)∗ (p − 2` − 1)∗ (2` + 3)∗

...
...

...
...

...

∆p−3 (p − 5)∗ (p − 3)∗ 5∗ (p − 3)∗

∆p−2 (p − 3)∗ (p − 2)∗ 1∗ (p − 4)∗

∆p−1 (p − 1)∗ 0∗ (p − 1)∗ (p − 2)∗

Table 1. Required 3-cycles of the form ∆ = (ia jb kc), where h = p−1
2 .

For the partial rotation around b determined by Ω, we again consider first the rotation around b determined
by Ω1 and Ω2, which is given by

R1 = (0a 3b 4a 7b 8a 11b · · · (p − 8)a (p − 5)b (p − 4)a (p − 1)b).

Removing ωp−1 ω0 and θp−1 θ0 results in a loss of the subsequences (p − 1)b 0a 3b and (p − 2)b (p − 1)a 2b

from R1; this splits R1 into the two partial rotations R2 and R3 shown below.

R2 = [3b 4a 7b 8a 11b · · · (p − 2)b],
R3 = [2b · · · (p − 8)a (p − 5)b (p − 4)a (p − 1)b].

Finally, we add in the remaining pieces of Ω to obtain the following partial rotations around b.

PB
1 = R3, PB

3 = [2∗b (p − 3)∗a], PB
5 = [0∗a 3b] R2 [(p − 2)b (p − 1)∗a], PB

7 = [1∗a (p − 1)∗b ].

Using a similar process on c, we get an initial rotation from Ω1 and Ω2 given by

S1 = (0c (p − 1)b 6c (p − 4)b 12c (p − 7)b · · · (p − 12)c 5b (p − 6)c 2b).

Removing ωp−1 ω0 and θp−1 θ0 results in a loss of the subsequences 2b 0c (p− 1)b, 3b (p− 2)c and 2c (p− 2)b

from S1; this splits S1 into three partial rotations. Note, however, that the subsequences 3b (p − 2)c and
2c (p− 2)b are included in the remaining pieces of Ω, so the removal of the subsequence 2b 0c (p− 1)b yields
a partial rotation around c given by

S2 = [(p − 1)b 6c (p − 4)b 12c (p − 7)b · · · (p − 12)c 5b (p − 6)c 2b].

Adding in the unused subsequences from Ω results in the following partial rotations around c.

PC
1 = S2, PC

3 = [(p − 1)∗c 2∗b ], PC
5 = [(p − 1)∗b 0∗c ].

�

We now progress to the 3-cycles that will complete our voltage graph. Because we want to use each edge
once as e and once as e, we present p 3-cycles with edge sequences of the form (ia jb kc) and p 3-cycles with
edge sequences of the form (ic jb ka). Cycles of the first form are presented in Table 1, while cycles of the

second form are presented in Table 2. In both tables, we let h = p−1
2 .

Before the main theorem is proved, we again make an observation about the partial rotations determined
by the ∆i’s and Λi’s.
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Cycle (ic jb ka) i j k Net Voltage
Λ0 0 (p − 1)∗ p − 1 2∗

Λ1 1∗ (p − 3)∗ 0∗ 2∗

Λ2 3∗ (p − 5)∗ (p − 5)∗ 7∗

...
...

...
...

...

Λ` (2` − 1)∗ (p − 2` − 1)∗ (p − 2` − 1)∗ (2` + 3)∗

...
...

...
...

...

Λh−2 (p − 6)∗ 4∗ 4∗ (p − 2)∗

Λh−1 (p − 4)∗ (p − 4)∗ 2∗ 6∗

Λh (p − 2)∗ (p − 6)∗ (p − 2)∗ 10∗

Λh+1 0∗ p − 1 0 1∗

Λh+2 2∗ (p − 8)∗ (p − 4)∗ 10∗

...
...

...
...

...

Λ` (2` − 1)∗ (p − 2` − 5)∗ (p − 2` − 1)∗ (2` + 7)∗

...
...

...
...

...

Λp−3 (p − 7)∗ 1∗ 5∗ 1∗

Λp−2 (p − 5)∗ (p − 2)∗ 3∗ 4∗

Λp−1 (p − 3)∗ 0∗ 1∗ 2∗

Table 2. Required 3-cycles of the form Λ = (ic jb ka), where h = p−1
2 .

Lemma 3.5. Let p ≥ 11. The partial rotations determined by the ∆i’s and Λj’s consist of the following
paths with the given endpoints. Each path is again labeled for future reference.

a : PA
2 = [(p − 1)∗c (p − 1)∗a], PA

4 = [1∗a · · · 0∗c ], PA
6 = [0∗a 1∗c (p − 3)∗a],

b : PB
2 = [(p − 1)b 0a 2∗b ], PB

4 = [(p − 3)∗a · · · 0∗a], PB
6 = [(p − 1)∗a 0∗b 1∗a], PB

8 = [(p − 1)∗b (p − 1)a 2b],

c : PC
2 = [2b · · · (p − 1)∗c ], PC

4 = [2∗b 0c (p − 1)∗b ], PC
6 = [0∗c (p − 1)b].

Proof. For the rotation around a, observe that the families {∆` | 1 ≤ ` ≤ h−1} and {Λ` | h+2 ≤ ` ≤ p−3}
yield the partial rotations

Q1 = [(p − 5)∗c 5∗a (p − 7)∗c 7∗a (p − 9)∗c 9∗a · · · 4
∗
c (p − 4)∗a 2∗c (p − 2)∗a],

Q2 = [(p − 3)∗c 3∗a],

and the families {∆` | h + 1 ≤ ` ≤ p − 3} and {Λ` | 2 ≤ ` ≤ h − 2} yield the partial rotations

Q3 = [(p − 4)∗c 4∗a (p − 6)∗c 6∗a (p − 8)∗c 8∗a · · · (p − 7)∗a 5∗c (p − 5)∗a 3∗c ],
Q4 = [(p − 2)∗c 2∗a].

By considering the remaining 3-cycles – namely ∆0, ∆h, ∆p−2, ∆p−1, Λ0, Λ1, Λh−1, Λh, Λh+1, Λp−2 and

Λp−1, where h = p−1
2 – we learn that the partial rotations around a are the following.

PA
2 = [(p − 1)∗c (p − 1)∗a],

PA
4 = [1∗a (p − 3)∗c ] Q2 [3∗a (p − 5)∗c ] Q1 [(p − 2)∗a (p − 2)∗c ] Q4 [2∗a (p − 4)∗c ] Q3 [3∗c (p − 1)a 0c 0a 0∗c ],

PA
6 = [0∗a 1∗c (p − 3)∗a].

For the rotation around b, observe that the families {∆` | 1 ≤ ` ≤ h − 1} and {Λ` | h + 2 ≤ ` ≤ p − 3}
yield the partial rotations

R1 = [3∗a 1∗b 5∗a 3∗b 7∗a 5∗b · · · (p − 6)∗a (p − 8)∗b (p − 4)∗a (p − 6)∗b ],
R2 = [(p − 2)∗a (p − 4)∗b ].

and the families {∆` | h + 1 ≤ ` ≤ p − 3} and {Λ` | 2 ≤ ` ≤ h − 2} yield the partial rotation

R3 = [2∗a 4∗b 4∗a 6∗b 6∗a 8∗b · · · (p − 7)∗a (p − 5)∗b (p − 5)∗a (p − 3)∗b ].
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By considering the remaining ∆ and Λ cycles, we learn that the partial rotations around b are the following.

PB
2 = [(p − 1)b 0a 2∗b ],

PB
4 = [(p − 3)∗a (p − 2)∗b 3∗a] R1 [(p − 6)∗b (p − 2)∗a] R2 [(p − 4)∗b 2∗a] R3 (p − 3)∗b0

∗
a],

PB
6 = [(p − 1)∗a 0∗b 1∗a],

PB
8 = [(p − 1)∗b (p − 1)a 2b].

For the rotation around c, we consider two cases. If p ≡ 1 (mod 4), then h is even. Observe that the
families {∆` | 1 ≤ ` ≤ h − 1} and {Λ` | h + 2 ≤ ` ≤ p − 3} yield the partial rotations

S1 = [(p − 4)∗b 2∗c (p − 8)∗b 6∗c (p − 12)∗b 10∗c · · · 5
∗
b (p − 7)∗c 1∗b (p − 3)∗c ],

S2 = [(p − 6)∗b 4∗c (p − 10)∗b 8∗c (p − 14)∗b 12∗c · · · 7
∗
b (p − 9)∗c 3∗b (p − 5)∗c ],

and the families {∆` | h + 1 ≤ ` ≤ p − 3} and {Λ` | 2 ≤ ` ≤ h − 2} yield the partial rotations

S3 = [(p − 3)∗b 5∗c (p − 7)∗b 9∗c (p − 11)∗b 13∗c · · · 10∗b (p − 8)∗c 6∗b (p − 4)∗c ],
S4 = [3∗c (p − 5)∗b 7∗c (p − 9)∗b 11∗c (p − 13)∗b · · · 8

∗
b (p − 6)∗c 4∗b (p − 2)∗c ].

By considering the remaining ∆ and Λ cycles, we learn that the partial rotations around c are the following.

PC
2 = [2b 3∗c ] S4 [(p − 2)∗c (p − 6)∗b ] S2 [(p − 5)∗c (p − 2)∗b 1∗c (p − 3)∗b ] S3

[(p − 4)∗c (p − 4)∗b ] S1 [(p − 3)∗c 0∗b (p − 1)∗c ],

PC
4 = [2∗b 0c (p − 1)∗b ],

PC
6 = [0∗c (p − 1)b].

On the other hand, if p ≡ 3 (mod 4), then h is odd. Observe that the families {∆` | 1 ≤ ` ≤ h − 1} and
{Λ` | h + 2 ≤ ` ≤ p − 3} yield the partial rotations

S1 = [(p − 4)∗b 2∗c (p − 8)∗b 6∗c (p − 12)∗b 10∗c · · · 7
∗
b (p − 9)∗c 3∗b (p − 5)∗c ],

S2 = [(p − 6)∗b 4∗c (p − 10)∗b 8∗c (p − 14)∗b 12∗c · · · 5
∗
b (p − 7)∗c 1∗b (p − 3)∗c ],

and the families {∆` | h + 1 ≤ ` ≤ p − 3} and {Λ` | 2 ≤ ` ≤ h − 2} yield the partial rotations

S3 = [(p − 3)∗b 5∗c (p − 7)∗b 9∗c (p − 11)∗b 13∗c · · · 8
∗
b (p − 6)∗c 4∗b (p − 2)∗c ],

S4 = [3∗c (p − 5)∗b 7∗c (p − 9)∗b 11∗c (p − 13)∗b · · · 10∗b (p − 8)∗c 6∗b (p − 4)∗c ].

By considering the remaining ∆ and Λ cycles, we learn that the partial rotations around c are the following.

PC
2 = [2b 3∗c ] S4 [(p − 4)∗c (p − 4)∗b ] S1 [(p − 5)∗c (p − 2)∗b 1∗c (p − 3)∗b ] S3

[(p − 2)∗c (p − 6)∗b ] S2 [(p − 3)∗c 0∗b (p − 1)∗c ],

PC
4 = [2∗b 0c (p − 1)∗b ],

PC
6 = [0∗c (p − 1)b].

�

By concatenating the paths representing the partial rotations given by Lemmas 3.4 and 3.5, we get the
following cycles which, as we will see later, represent the complete rotation graphs around the vertices a, b

and c.

Lemma 3.6. Let p ≥ 5 be prime. The following are cycles of length 4p.

Ra : (PA
1 PA

2 PA
3 PA

4 PA
5 PA

6 ),

Rb : (PB
1 PB

2 PB
3 PB

4 PB
5 PB

6 PB
7 PB

8 ),

Rc : (PC
1 PC

2 PC
3 PC

4 PC
5 PC

6 ).

Proof. By concatenating the corresponding paths, it is clear that Ra is a closed walk. Moreover, each of the
2p edges from a to b and each of the 2p edges from c to a appears either exactly once in the interior of one
of the partial rotation paths, or appears as the endpoint of two different partial rotation paths. Therefore
each edge appears exactly once in Ra, so Ra is a cycle of length 4p. Similar arguments apply for both Rb

and Rc. �

We are now able to construct hamilton cycle embeddings of Kn,n,n whenever n = 2p for a prime p.
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Cycle (ia jb kc) i j k Net Voltage Cycle (ic jb ka) i j k Net Voltage

p = 5

∆0 0 2∗ 0 2∗ Λ0 0 4∗ 4 3∗

∆1 3∗ 1∗ 2∗ 1∗ Λ1 1∗ 1∗ 0∗ 2∗

∆2 4 2 3∗ 4∗ Λ2 3∗ 3∗ 3∗ 4∗

∆3 2∗ 3∗ 1∗ 1∗ Λ3 0∗ 4 0 4∗

∆4 4∗ 0∗ 4∗ 3∗ Λ4 2∗ 0∗ 1∗ 3∗

p = 7

∆0 0 2∗ 0 2∗ Λ0 0 6∗ 6 5∗

∆1 3∗ 1∗ 4∗ 1∗ Λ1 1∗ 4∗ 0∗ 5∗

∆2 5∗ 3∗ 2∗ 3∗ Λ2 3∗ 3∗ 2∗ 1∗

∆3 6 2 3∗ 4∗ Λ3 5∗ 1∗ 5∗ 4∗

∆4 2∗ 4∗ 5∗ 4∗ Λ4 0∗ 6 0 6∗

∆5 4∗ 5∗ 1∗ 3∗ Λ5 2∗ 5∗ 3∗ 3∗

∆6 6∗ 0∗ 6∗ 5∗ Λ6 4∗ 0∗ 1∗ 5∗

Table 3. Required 3-cycles for p = 5 and 7.

Theorem 3.7. Let p ≥ 11 be prime. The embedding given by the faces Ω, ∆0, ..., ∆p−1, Λ0, ..., Λp−1 is a
voltage graph G2p whose derived embedding is an orientable hamilton cycle embedding of K2p,2p,2p with at
least one ABC face.

Proof. From the way the faces Ω, ∆0, ..., ∆p−1, Λ0, ..., Λp−1 were constructed, we know each edge is used once
as e and once as e; thus, the embedding given by these faces is orientable. Moreover, the rotation graphs
that we obtain from these faces are given by Lemma 3.6. Since Ra, Rb and Rc consist of a single cycle,
our voltage graph G2p is embedded in some orientable surface. It follows that the derived embedding is an
orientable embedding of K2p,2p,2p; thus, it remains to show that the boundary of every face is a hamilton
cycle. From Lemma 3.3 we know Ω yields 2p hamilton cycles in the derived embedding. To show that all
of the 3-cycles yield hamilton cycles, we use the isomorphism from Zp × Z2 to Z2p induced by mapping the
generator 1∗ to 1. Under this mapping, Corollary 2.2 implies that it suffices to show |∆i| and |Λi| are of
order 2p in the group Zp ×Z2. This is true as long as |∆i| = x∗ and |Λi| = y∗ for some x, y ∈ Zp \ {0}. From
Tables 1 and 2 this condition is satisfied, so all of the 3-cycles yield hamilton cycles as well. Thus, the derived
embedding from the voltage graph given by Ω, ∆0, ..., ∆p−1, Λ0, ..., Λp−1 is a hamilton cycle embedding of
K2p,2p,2p. Observe that the faces derived from the ∆i’s and Λi’s are all ABC faces. �

The following lemma covers the remaining cases p = 5 and p = 7 by making a slight modification to the
construction above.

Lemma 3.8. For p = 5 or 7, there exists a voltage graph such that the derived embedding is an orientable
hamilton cycle embedding of K2p,2p,2p with at least one ABC face.

Proof. The construction uses Ω together with the 3-cycles shown in Table 3. The resulting rotations for
p = 5 are

a : (0a 0∗c 0∗a 1∗c 2∗a 3c 1a 1c 2a 4c 3a 2c 4∗c 4∗a 1∗a 2∗c 3∗a 3∗c 4a 0c),
b : (0b 1a 4b 0a 2∗b 2∗a 3∗b 3∗a 1∗b 0∗a 3b 4∗a 0∗b 1∗a 4∗b 4a 2b 3a 1b 2a),
c : (0c 4∗b 0∗c 4b 1c 1b 2c 3b 3c 0b 4c 2b 3∗c 3∗b 1∗c 1∗b 2∗c 0∗b 4∗c 2∗b),

and for p = 7 are

a : (0a 0∗c 0∗a 1∗c 4∗a 5c 1a 3c 2a 1c 3a 6c 4a 4c 5a 2c 6∗c 6∗a 1∗a 4∗c 3∗a 2∗c 5∗a 5∗c 2∗a 3∗c 6a 0c),
b : (0b 1a 4b 5a 1b 2a 5b 6∗a 0∗b 1∗a 6∗b 6a 2b 3a 6b 0a 2∗b 4∗a 5∗b 3∗a 1∗b 5∗a 3∗b 2∗a 4∗b 0∗a 3b 4a),
c : (0c 6∗b 0∗c 6b 6c 3b 5c 0b 4c 4b 3c 1b 2c 5b 1c 2b 3∗c 3∗b 2∗c 5∗b 1∗c 4∗b 5∗c 1∗b 4∗c 0∗b 6∗c 2∗b).

�

4. Summary of orientable hamilton cycle embeddings of Kn,n,n

We first recall the following theorem from [3].

Theorem 4.1 (Theorem 9.1 of [3]). If n ≥ 1 such that n 6= 2 and n 6= 2p for every prime p, then there exists
an orientable face 2-colorable hamilton cycle embedding of Kn,n,n in which every face is an ABC face.
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Figure 1. Rotations and faces for hamilton cycle embedding of Kn.

Combining this result with the voltage graph construction, we can prove a complete result for orientable
hamilton cycle embeddings of Kn,n,n.

Theorem 4.2. There exists an orientable hamilton cycle embedding of Kn,n,n for all n ≥ 1, n 6= 2, with at
least one ABC face.

Proof. A simple exhaustive search shows that every hamilton cycle embedding of K2,2,2 must be nonori-
entable. If n ≥ 1 such that n 6= 2 and n 6= 2p for every prime p, then the desired embedding is given by
Theorem 4.1. If n = 4 or 6, then the desired embedding is given by Lemma 3.1. If n = 10 or 14, the desired
embedding is given by Lemma 3.8. Finally, if n = 2p for a prime p ≥ 11, the desired embedding is given by
Theorem 3.7. �

5. Genus of some joins of edgeless graphs with complete graphs

This section is an extension of the work of Ellingham and Stephens in [5]. We start by presenting two
useful lemmas; we note here that Lemma 5.2 was proved using the diamond sum technique described briefly
in Section 2.2.

Lemma 5.1 (Lemma 4.1 in [5]). Let G be an m-regular simple graph on n vertices, with m ≥ 2. The
following are equivalent.

(i) G has an orientable hamilton cycle embedding.
(ii) Km + G has an orientable triangulation.
(iii) g(Km + G) = g(Km,n) and 4 | (m − 2)(n − 2).

Lemma 5.2 (Lemma 2.2 in [5]). Let n ≥ 1 and m ≥ n − 1 be integers. If g(Km + Kn) = g(Km,n) and

4 | (m − 2)(n − 2), then g(Km′ + Kn) = g(Km′,n) for all m′ ≥ m.

Using the first lemma, we can determine the genus of Kn−1 + Kn from orientable hamilton cycle embed-
dings of Kn. Using the second lemma, we can extend this result to Km + Kn for all m ≥ n − 1. To that
end, we present a recursive construction for orientable hamilton cycle embeddings of complete graphs. Our
construction is a slight extension of the following result.

Theorem 5.3 (Theorem 4.3 in [5]). Suppose n ≡ 2 (mod 4) and n ≥ 6. If Kn has an orientable hamilton
cycle embedding, then K2n−2 also has an orientable hamilton cycle embedding.

Instead of a recursive construction that roughly doubles the number of vertices, we will roughly triple it.

Theorem 5.4. Suppose n ≥ 4 and Kn has an orientable hamilton cycle embedding. Then K3n−3 also has
an orientable hamilton cycle embedding.

Proof. Suppose Kn has an orientable hamilton cycle embedding, and provide each vertex with a clockwise
rotation. This induces a counterclockwise direction on the boundary of each face.

Take one copy of the embedding, which we will denote by Ga, and label any vertex a∞. Label the
remaining vertices a0, a1, ..., an−2 in clockwise order as they appear in the rotation around a∞. For each
i ∈ Zn−1, let Ai denote the face that follows the path aia∞ai+1 as it passes through a∞. Let G′

a = Ga − a∞
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be the graph on vertex set Va = {ai | i ∈ Zn−1} obtained by removing a∞ and all of its incident edges
from Ga. Each face Ai now becomes a directed path A′

i = Ai − a∞ from ai+1 to ai in G′
a. This rotation

scheme and the resulting paths can be seen in Figure 1. We take another copy of the embedding of Kn and
construct the graph G′

b on vertex set Vb = {bi | i ∈ Zn−1} in an identical manner, replacing each ai and A′
i

with bi and B′
i, respectively. We take a third copy of the embedding of Kn and construct the graph G′

c on
vertex set Vc = {ci | i ∈ Zn−1} in a similar manner, only the vertices are labeled c0, cn−2, cn−3, ..., c2, c1 in
clockwise order as they appear in the rotation around c∞. The resulting C′

i is now a directed path from ci

to ci+1. This rotation scheme and the resulting paths can also be seen in Figure 1.
Let F∞ be the directed cycle (cn−2bn−2an−2cn−3bn−3an−3 · · · c1b1a1c0b0a0), and let F∞ be the underlying

undirected cycle. For each i ∈ Zn−1, let Fi be the directed cycle A′
i ∪ B′

i−1 ∪ C′
i−1 ∪ {aibi, bi−1ci−1, ciai+1}.

These new directed edges aibi, bi−1ci−1 and ciai+1 are the reverse of edges in F∞. Therefore, the collection
F = {Fi | i ∈ Zn−1}∪{F∞} covers every edge of the graph H1 = G′

a∪G′
b∪G′

c∪F∞ (on vertex set Va∪Vb∪Vc)
once in each direction. It is clear from construction that every face is actually a hamilton cycle in H1; we
claim the collection F determines an orientable hamilton cycle embedding of H1. To do so, it suffices to
show that the rotation around each vertex is a single cycle. We will prove this for an arbitrary vertex ai.
Assume the rotation around ai in Ga is given by the cycle (a∞aπ(1)aπ(2) · · · aπ(n−2)). This rotation stays the
same except for the subsequence (· · · aπ(n−2)a∞aπ(1) · · · ). Instead of the paths aπ(n−2)aia∞ and a∞aiaπ(1)

appearing in the cycles Ai and Ai−1, respectively, we have the paths aπ(n−2)aibi in Fi, biaici−1 in F∞, and
ci−1aiaπ(1) in Fi−1. Thus, the rotation around ai in H1 is given by (bici−1aπ(1)aπ(2) · · · aπ(n−2)), which is a
single cycle. An analogous argument works for the rotations around bi and ci, so our claim is correct.

By Theorem 4.2, there exists a hamilton cycle embedding of H2 = Kn−1,n−1,n−1 with at least one ABC

face, call it D. We can label the vertices of H2 so that D is the reverse of F∞; this forces Va, Vb, and Vc to
be the tripartition of H2.

Delete the interior of the face F∞ in H1 to get an embedding with boundary curve F∞. Also delete the
interior of the face D in H2 to get another embedding with boundary curve F∞. The two embeddings share
no edges except those in F∞, so we can glue them together by identifying their boundary curves. The result
is an orientable embedding of H1 ∪ H2 such that every face is a hamilton cycle on Va ∪ Vb ∪ Vc. Since Ga,
Gb and Gc are complete graphs on Va, Vb and Vc, respectively, and H2 is the complete tripartite graph with
independent sets Va, Vb and Vc, H1 ∪H2 is simply the complete graph on vertex set Va ∪ Vb ∪ Vc. Therefore,
we have an orientable hamilton cycle embedding of K3n−3. �

Starting with a known orientable hamilton cycle embedding of Kn, we can apply both the doubling
construction (if n ≡ 2 (mod 3)) and tripling construction (if n ≡ 2 or 3 (mod 4)) to obtain a family of
embeddings of complete graphs. By Lemmas 5.1 and 5.2, having an orientable hamilton cycle embedding
of Kn is equivalent to having a genus embedding of Km + Kn for all m ≥ n − 1. Note that the condition
m ≥ n − 1 allows us to view the embedding of Km + Kn as an embedding of Km,n with some edges added
to form a complete graph on the partite set of size n. Repeated application of the doubling construction to
an embedding of K10 led to the following result.

Theorem 5.5 (Theorem 4.4 in [5]). If n = 2p + 2 for some p ≥ 3, then g(Km + Kn) =
⌈

(m−2)(n−2)
4

⌉

for all

m ≥ n − 1.

Now, if we take the underlying embeddings of Kn from Theorem 5.5 and repeatedly apply the tripling
construction, we obtain the following result. In the case when q is odd, this theorem presents the first infinite
family of values of n congruent to 3 modulo 4 for which the genus of Km + Kn is known for all m ≥ n − 1.

Theorem 5.6. If n = 3q
(

2p + 1
2

)

+ 3
2 for some p ≥ 3 and q ≥ 0, then g(Km+Kn) = g(Km,n) =

⌈

(m−2)(n−2)
4

⌉

for all m ≥ n − 1.

Proof. If q = 0, then this is equivalent to Theorem 5.5. For q ≥ 1 and a fixed p, take the orientable hamilton
cycle embedding of K2p+2 generated by Theorem 5.5 and Lemma 5.1; the result is obtained by induction on
q using Theorem 5.4 together with Lemmas 5.1 and 5.2. �

This easily extends to the following result.

Corollary 5.7. Let n = 3q
(

2p + 1
2

)

+ 3
2 for some p ≥ 3 and q ≥ 0. If G is any n-vertex simple graph, then

g(Km + G) = g(Km,n) =
⌈

(m−2)(n−2)
4

⌉

for all m ≥ n − 1.
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Figure 2. A tree showing m ∈ T (10) with m ≤ 500.

We can further extend these results using the following lemma.

Lemma 5.8 (Lemma 2.4 in [5]). If g(Km+Kn) = g(Km,n) for all m ≥ n−1, then g(Km′ +Kn−1) = Km′,n−1

for all m′ ≥ n.

Corollary 5.9. Let n = 3q
(

2p + 1
2

)

+ 1
2 for some p ≥ 3 and q ≥ 0. If G is any n-vertex simple graph, then

g(Km + G) = g(Km,n) =
⌈

(m−2)(n−2)
4

⌉

for all m ≥ n + 1.

So far, we have only used repeated applications of the doubling construction followed by repeated applica-
tions of the tripling construction; however, we can mix and match these constructions in any order, so long
as the congruence condition modulo 4 is satisfied. From any value n for which an orientable hamilton cycle
embedding of Kn is known to exist, we can construct an infinite set of values T (n) such that an orientable
hamilton cycle embedding of Km exists for all m ∈ T (n). The set is constructed recursively as follows: for
any value m ∈ T (n), if m ≡ 2 (mod 4), then 2m − 2 and 3m − 3 are also in T (n) by virtue of the doubling
construction given in [5] and the tripling construction given by Theorem 5.4, respectively; if m ≡ 3 (mod 4),
then only 3m − 3 is also in T (n). A tree depicting the first 20 values in T (10) and how they were obtained
is shown in Figure 2. An edge labeled by d represents a link formed by virtue of the doubling construction,
while an edge labeled t represents a link formed by virtue of the tripling construction.

All of the results in Theorems 5.5 and 5.6 and Corollaries 5.7 and 5.9 were obtained by repeated appli-
cations of the doubling and tripling constructions to an orientable hamilton cycle embedding of K10. If we
were to find more families of embeddings to serve as building blocks, this would greatly enhance the power of
these constructions. Of the 12 residual classes that need to be resolved modulo 24, the doubling and tripling
constructions imply only 6 of these are needed, as shown in the following result.

Proposition 5.10. Suppose there exists an orientable hamilton cycle embedding of K15 and of Kn for
all n ≥ 11 such that n ≡ 7, 11, 14, 19, 22 or 23 (mod 24). Then there exists an orientable hamilton cycle
embedding of Kn for all n ≡ 2 or 3 (mod 4), n 6∈ {2, 6, 7}.

Proof. There is trivially no such embedding when n = 2, and Jungerman [8] showed that there are no
orientable hamilton cycle embeddings of K6 or K7. We show how to cover the remaining residual classes,
proceeding by induction on n. The graph K3 has an obvious hamilton cycle embedding in the sphere, and
we know the required embedding exists for K10 from Theorem 5.5, so the proposition holds for n ≤ 10.
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Figure 3. Voltage graphs for embeddings Ψ1 and Ψ3.

Assume the proposition holds for all n′ < n, where n ≡ 2 or 3 (mod 4) and n ≥ 11. If n ≡ 7, 11, 14, 19, 22
or 23 (mod 24), then an orientable hamilton cycle embedding of Kn exists by assumption. If n ≡ 2, 3, 6, 10, 15
or 18 (mod 24), then either n ≡ 2 (mod 8), or n ≡ 3 or 6 (mod 12).

Suppose first that n ≡ 2 (mod 8), so n ≥ 18. Then n = 8p + 2 = 2(4p + 2) − 2, where 4p + 2 ≥ 10. By
induction K4p+2 has the required embedding, so by Theorem 5.3 Kn has the required embedding as well.

Suppose now that n ≡ 3 (mod 12). The required embedding exists for n = 15 by assumption, so we may
suppose that n ≥ 27. Then n = 12p + 3 = 3(4p + 2) − 3, where 4p + 2 ≥ 10. By induction K4p+2 has the
required embedding, so by Theorem 5.4 Kn has the required embedding as well.

Finally, suppose that n ≡ 6 (mod 12). Since n = 18 is covered by the case of n ≡ 2 (mod 8), we
may assume that n ≥ 30. Then n = 12p + 6 = 3(4p + 3) − 3, where 4p + 3 ≥ 11. By induction K4p+3

has the required embedding, so by Theorem 5.4 Kn has the required embedding as well, and the proof is
complete. �

6. Genus of some complete quadripartite graphs

We use Lemma 5.1 to prove the following theorem.

Theorem 6.1. For all n 6= 2, g(K2n,n,n,n) = g(K2n,3n) =
⌈

(n−1)(3n−2)
2

⌉

.

Proof. We know from [13] that g(K2n,3n) =
⌈

(n−1)(3n−2)
2

⌉

. Since K2n,3n ⊂ K2n,n,n,n, we have g(K2n,n,n,n) ≥
⌈

(n−1)(3n−2)
2

⌉

. From Euler’s formula, an embedding that achieves this genus must be a triangulation, so

it will suffice to find an orientable triangulation of K2n,n,n,n. By Theorem 4.2 there exists an orientable
hamilton cycle embedding of Kn,n,n, and the desired triangulation follows from Lemma 5.1. �

We would like to extend this theorem using the diamond sum technique. Before we can do that,
however, we must address the case when n = 2. Because there is no orientable hamilton cycle em-
bedding of K2,2,2, no orientable triangulation of K4,2,2,2 exists either; thus, contrary to expectations,

g(K4,2,2,2) >
⌈

(2−1)(6−2)
2

⌉

= 2. To provide a starting point for the diamond sum operation, we need to

show that g(K5,2,2,2) =
⌈

(5−2)(6−2)
4

⌉

= 3.

Let Ψ1 : K3,3 ↪→ S1 be the embedding of K3,3 that is derived from the voltage graph G1 with voltage
group Z3 that is shown in Figure 3; this has three hamilton cycle faces C0, C1 and C2. By placing a new
vertex ci in the center of each hamilton cycle face Ci and placing an edge between ci and each vertex in Ci

in the natural way, for i ∈ {0, 1, 2}, we obtain a triangulation Ψ2 : K3,3,3 ↪→ S1. We can assume without
loss of generality that the rotation graph around a0 is given by the cycle (b0c0b1c1b2c2).

Now let Ψ3 : K4,4 ↪→ S2 be the embedding of K4,4 that is derived from the voltage graph G2 with voltage
group Z4 that is shown in Figure 3; this has two hamilton cycle faces F ′

0 and F ′
1 (derived from F0 and F1

in Figure 3, respectively) and four 4-cycle faces. By placing a new vertex fi in the center of each hamilton
cycle face F ′

i and placing an edge between fi and each vertex in F ′
i in the natural way, for i ∈ {0, 1}, we

obtain an embedding Ψ4 : K4,4,2 ↪→ S2. The rotation graph around d0 is given by the cycle (e0f0e1e3f1e2).
We now form the diamond sum of Ψ2 and Ψ4 by removing the vertex a0 and its neighborhood from Ψ2, re-

moving the vertex d0 and its neighborhood from Ψ4, and identifying the vertices around the boundaries of the
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Figure 4. Graph H that arises from diamond sum operation.

holes as shown in Figure 4. Doing so yields an embedding K5 + H ↪→ S3, where V (K5) = {a1, a2, d1, d2, d3}
and H is the graph shown in Figure 4. Note that H ∼= K2,2,1,1; thus, we have an embedding of K5,2,2,1,1

in the orientable surface S3. Since K5,6 ⊂ K5,2,2,2 ⊂ K5,2,2,1,1, we know 3 = g(K5,6) ≤ g(K5,2,2,2) ≤ 3, as
required.

We are now able to extend Theorem 6.1 using the application of the diamond sum technique alluded to
in Section 2.2.

Corollary 6.2. For all n ≥ 1 and all t ≥ 2n, except (n, t) = (2, 4), g(Kt,n,n,n) = g(Kt,3n) =
⌈

(t−2)(3n−2)
4

⌉

.

Also, g(K4,2,2,2) = 3.

Proof. We know that Kt,3n ⊆ Kt,n,n,n, and from [13] we know g(Kt,3n) =
⌈

(t−2)(3n−2)
4

⌉

, so g(Kt,n,n,n) ≥
⌈

(t−2)(3n−2)
4

⌉

. If n 6= 2, we apply the diamond sum construction to orientable minimum genus embeddings

of K2n,n,n,n and Kt−2n+2,3n. By Theorem 6.1 we know g(K2n,n,n,n) =
⌈

(n−1)(3n−2)
2

⌉

= (n−1)(3n−2)
2 , and

again by [13] we know g(Kt−2n+2,3n) =
⌈

(t−2n)(3n−2)
4

⌉

. Via the diamond sum construction, we learn that

g(Kt,n,n,n) ≤ (n−1)(3n−2)
2 +

⌈

(t−2n)(3n−2)
4

⌉

=
⌈

(t−2)(3n−2)
4

⌉

, and the result follows. If n = 2, we apply the

diamond sum construction to orientable minimum genus embeddings of K5,2,2,2 and Kt−3,6. As mentioned
before, g(K4,2,2,2) > 2; because K4,2,2,2 ⊂ K5,2,2,2, we know g(K4,2,2,2) ≤ g(K5,2,2,2) = 3 as well, so
g(K4,2,2,2) = 3. �

Remark 6.3. We can use the above results to determine the genus of some large families of graphs. Corollary
6.2 implies that for all n ≥ 1 and all t ≥ 2n, except (n, t) = (2, 4), and for any graph G satisfying K3n ⊆ G ⊆

Kn,n,n, the genus of Kt + G is the same as the genus of Kt,3n. In other words, g(Kt + G) =
⌈

(t−2)(3n−2)
4

⌉

.

If n = 2 and K6 ⊆ G ⊆ K2,2,2, then g(K4 + G) ∈ {2, 3}. Moreover, in the special case t = 2n and n 6= 2, we

also get g(G + H) =
⌈

(n−1)(3n−2)
2

⌉

for graphs G and H satisfying K3n ⊆ G ⊆ K2n,n and K2n ⊆ H ⊆ Kn,n.

References

[1] A. Bouchet, Orientable and nonorientable genus of the complete bipartite graph, J. Combin. Theory Ser. B 24 (1978),
24-33.

[2] M.N. Ellingham and Justin Z. Schroeder, Nonorientable hamilton cycle embeddings of complete tripartite graphs, Discrete
Math. 312 (2012), 1911-1917.

[3] M.N. Ellingham and Justin Z. Schroeder, Orientable hamilton cycle embeddings of complete tripartite graphs, Part I,
submitted.

[4] M.N. Ellingham and D. Christopher Stephens, The nonorientable genus of joins of complete graphs with large edgeless
graphs, J. Combin. Theory Ser. B 97 (2007), 827-845.

[5] M.N. Ellingham and D. Christopher Stephens, The orientable genus of some joins of complete graphs with large edgeless
graphs, Discrete Math. 309 (2009), 1190-1198.

[6] M.N. Ellingham, D. Christopher Stephens and Xiaoya Zha, The nonorientable genus of complete tripartite graphs, J.
Combin. Theory Ser. B 96 (2006), 529-559.

[7] J.L. Gross and T.W. Tucker, Topological Graph Theory, Wiley Interscience, New York, 1987.
[8] M. Jungerman, Orientable triangular embeddings of K18−K3 and K13−K3, J. Combin. Theory Ser. B 16 (1974) 293-294.
[9] K. Kawarabayashi, D. Christopher Stephens and Xiaoya Zha, Orientable and nonorientable genera for some complete

tripartite graphs, SIAM J. Discrete Math. 18 (2005), 479-487.



HAMILTON CYCLE EMBEDDINGS II 13

[10] Z. Magajna, B. Mohar and T. Pisanski, Minimal ordered triangulations of surfaces, J. Graph Theory 10 (1986), 451-460.
[11] B. Mohar, T.D. Parsons and T. Pisanski, The genus of nearly complete bipartite graphs, Ars Combin. 20B (1985), 173-183.
[12] B. Mohar and C. Thomassen, Graphs on Surfaces, Johns Hopkins University Press, Baltimore, 2001.
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