Nonorientable hamilton cycle embeddings of complete tripartite graphs

M. N. Ellinghama,1,*, Justin Z. Schroedera,1

aDepartment of Mathematics, 1326 Stevenson Center, Vanderbilt University, Nashville, TN 37240, USA

Abstract

A cyclic construction is presented for building embeddings of the complete tripartite graph $K_{n,n,n}$ on a nonorientable surface such that the boundary of every face is a hamilton cycle. This construction works for several families of values of n, and we extend the result to all n with some methods of Bouchet and others. The nonorientable genus of $K_{t,n,n,n}$, for $t \geq 2n$, is then determined using these embeddings and a surgical method called the ‘diamond sum’ technique.

Keywords: complete tripartite graph, graph embedding, nonorientable genus, hamilton cycle

2000 MSC: 05C10

1. Introduction

An important topic in topological graph theory is embeddings of graphs on surfaces of minimum and maximum genera. Embeddings of minimum genus generally have faces as small as possible, while embeddings of maximum genus have faces as large as possible. Embeddings where the boundary of every face is a hamilton cycle serve both ends. A hamilton cycle embedding of a graph G, if it exists, is necessarily an embedding of G on a surface of maximum genus over all closed 2-cell embeddings of G. Additionally, a hamilton cycle embedding of G with m faces corresponds to a triangular embedding of $K_m + G$, the join of the edgeless graph K_m with G. This triangulation is necessarily a minimum genus embedding of $K_m + G$.

Some minimum genus results can be interpreted as hamilton cycle embeddings of familiar graphs. In 1970 Ringel and Youngs [15] determined the orientable genus of the complete tripartite graph $K_{n,n,n}$ for all n. The triangulations that achieve this genus correspond to orientable hamilton cycle embeddings of the complete bipartite graph $K_{n,n}$. More recently the first author, together with Stephens and Zha [7], determined the nonorientable genus of complete tripartite graphs $K_{t,m,n}$, where $t \geq m \geq n$. For $n \geq 4$, the embeddings constructed for the case $t = m = n$ correspond to nonorientable hamilton cycle embeddings of $K_{n,n}$.

Going in the other direction, the first author and Stephens [5, 6] constructed hamilton cycle embeddings of K_n and used them to obtain minimum genus embeddings of $K_m + K_n$ for $m \geq n - 1$. Hamilton cycle embeddings of $K_{n,n}$ also played a role in [6].
Hamilton cycle embeddings have also been related to minimum genus embeddings in a different way. Grannell, Griggs and Širáň [8] derived hamilton cycle embeddings of K_n from triangulations (hence minimum genus embeddings) of K_n.

In this paper we extend hamilton cycle embedding results to the complete tripartite graph $K_{n,n,n}$. Then, in Section 5 we show that hamilton cycle embeddings of $K_{n,n,n}$ can be used to obtain minimum genus embeddings of $K_{n,n,n}$ for $t \geq 2n$. Constructing the hamilton cycle embeddings requires several steps. First, Theorem 2.1 provides a general cyclic construction using “slope sequences” with certain properties. Next, slope sequences exhibiting these properties are given for several families of values. Finally, a connection to triangulations of quadripartite graphs and some covering triangulation results due to Bouchet and others [1, 2, 4] are used to obtain the general result. All the embeddings we construct are nonorientable, although our techniques (slope sequences, in particular) can also be used to obtain orientable embeddings.

A basic understanding of topological graph theory is assumed. In particular, a surface is a compact 2-manifold without boundary. The nonorientable surface N_k is obtained by adding k crosscaps to a sphere, and the nonorientable genus of a nonplanar graph G, denoted $\tilde{g}(G)$, is the minimum value of k for which G can be embedded on N_k. For a planar graph G, we use the convention that $\tilde{g}(G) = 0$. It is well known that a cellular embedding can be characterized, up to homeomorphism, by providing a set of facial walks that double cover the edges and yield a proper rotation at each vertex. To define a proper rotation, we must introduce the rotation graph at a vertex v, denoted R_v. This graph has as its vertex set the neighbors of v, and two vertices u_1 and u_2 are joined by one edge for each occurrence of the subsequence $(\cdots u_1v u_2 \cdots)$, or its reverse, in one of the facial walks. R_v is 2-regular; we say it is proper if R_v consists of a single cycle. This ensures that the neighborhood around each vertex is homeomorphic to a disk. The embedding is orientable if and only if the faces can be oriented so that each edge appears once in each direction. For additional details and terminology, see [9].

We let $A = \{a_0, \ldots, a_{n-1}\}$, $B = \{b_0, \ldots, b_{n-1}\}$ and $C = \{c_0, \ldots, c_{n-1}\}$ be the vertices of $K_{n,n,n}$, so that A, B and C are the maximal independent sets. A hamilton cycle face of the form $(a_j, b_0, c_0, a_j, b_1, c_1, \ldots, a_{j-1}, b_{n-1}, c_{n-1})$ is called an ABC cycle.

2. Slope sequence construction

In this section we describe the general construction on which the proofs in Section 3 are based. Some preliminary definitions are required. Let $S = ((s_0, t_0), (s_1, t_1), \ldots, (s_{n-1}, t_{n-1}))$. If $s_j \neq t_j$ for all $j \in \mathbb{Z}_n$ and the collection $\{s_0, \ldots, s_{n-1}, t_0, \ldots, t_{n-1}\}$ covers every element of \mathbb{Z}_n twice, we say S is a slope sequence. Form the graph G_S with vertices $\{v_0, v_1, \ldots, v_{n-1}\}$ and m edges joining distinct vertices v_j and $v_{j'}$, where $m = |s_j, t_{j'}| \cap |s_{j'}, t_j|$. We call G_S the induced pair graph for the slope sequence S. This graph is 2-regular, so G_S decomposes into a union of cycles. As Theorem 2.1 shows, it will be desirable to have induced pair graphs that consist of a single cycle.

Theorem 2.1. Suppose $S = ((s_0, t_0), (s_1, t_1), \ldots, (s_{n-1}, t_{n-1}))$ is a slope sequence such that the following hold:

(i) $\{j + s_j | j \in \mathbb{Z}_n\} = \{j + t_j | j \in \mathbb{Z}_n\} = \mathbb{Z}_n$;

(ii) $t_j - s_j$ is relatively prime to n for all $j \in \mathbb{Z}_n$;

(iii) the induced pair graph G_S consists of a single cycle of length n.
Then the collection of cycles \(X = \{ X_i \mid i \in \mathbb{Z}_n \} \) and \(Y = \{ Y_i \mid i \in \mathbb{Z}_n \} \), given by

\[
X_i : (a_0 b_i c_{i+1} a_i b_{i+1} c_{i+1} a_{i+1} c_{i+2} \cdots a_j b_i c_{j+j_i} a_j b_{j+i} c_{j+i} a_{j+i} c_{j+i+1}),
\]

\[
Y_i : (a_0 b_i c_{i+1} a_i b_{i+1} c_{i+1} a_{i+1} c_{i+2} \cdots a_{n-1} b_i c_{n-1} a_{n-1} c_{n-1+i+1}),
\]

form a Hamilton cycle embedding of \(K_{n,n,n} \) with all ABC face cycles.

Proof. First, we must show that \(X_i \) and \(Y_i \) are indeed Hamilton cycles. It is clear that every \(A \) and \(B \) vertex appears in every \(X_i \) and \(Y_i \). Since \(j + s_j \) covers \(\mathbb{Z}_n \), it follows that \(i + j + s_j \) also covers \(\mathbb{Z}_n \), so every \(C \) vertex appears in \(X_i \). The same argument with \(j + t_j \) shows that every \(C \) vertex also appears in \(Y_i \). By construction, these cycles are all \(ABC \) cycles.

Next, we show that these Hamilton cycles form a double cover of \(K_{n,n,n} \). The cycles \(X_{k-j} \) and \(Y_{k-j} \) both cover the edge \(a_j b_k \) for all \(j, k \in \mathbb{Z}_n \). Similarly the cycles \(X_{l-(j-1)-s_{j-1}} \) and \(Y_{l-(j-1)-t_{j-1}} \) both cover the edge \(c_j a_{j-1} \) for all \(j, l \in \mathbb{Z}_n \). Finally, consider an edge \(b_k c_{j-1} \). We know from \(S \) being a slope sequence that there exist \(j' \) and \(j'' \) such that one of the following holds: (1) \(s_{j'} = t_{j'} = \ell - k \), (2) \(s_{j'} = s_{j''} = \ell - k \), or (3) \(t_{j'} = t_{j''} = \ell - k \). These cases correspond to the following: (1) the cycles \(X_{k-j} \) and \(Y_{l-j} \) both cover the edge \(b_k c_{j-1} \), (2) the cycles \(X_{k-j} \) and \(Y_{l-j} \) both cover the edge \(b_k c_{j-1} \), or (3) the cycles \(Y_{l-j} \) and \(Y_{l-j} \) both cover the edge \(b_k c_{j-1} \). This holds for all \(k, l \in \mathbb{Z}_n \); therefore, \(X \cup Y \) forms a double cover of \(K_{n,n,n} \).

To see that these Hamilton cycles can be sewn together along common edges to yield an embedding of \(K_{n,n,n} \), it remains to prove that the rotation graph around each vertex is a single cycle of length \(2n \). Since this collection consists of all \(ABC \) faces, we know that the rotation graph around a vertex \(a_j \in A \) will be bipartite with alternating \(B \) and \(C \) vertices. If all of the \(C \) vertices appear in the same component of \(R_{a_j} \), then all of the \(B \) vertices must be in the same component as well. Thus, it will suffice to prove that the \(C \) vertices are contained in the same cycle in the rotation graph around every \(A \) vertex. Similarly, it will suffice to prove that the \(A \) vertices are contained in the same cycle in the rotation graph around every \(B \) and \(C \) vertex.

Consider the vertex \(a_j \). We know the cycle \(X_{l-(j-1)-s_{j-1}} \) contains the sequence

\[
(\cdots c_{l-j} a_j b_{j+1} - s_{j-1} \cdots)
\]

and the cycle \(Y_{l-(j-1)-t_{j-1}} \) contains the sequence

\[
(\cdots c_{l-t_{j-1}+s_{j-1}} a_j b_{j+1} \cdots).
\]

Thus the vertex \(c_{l-t_{j-1}+s_{j-1}} \) follows the vertex \(c_{l-j} \) in the rotation graph around \(a_j \). Continuing this argument, we find the \(C \) vertices form the cyclic sequence

\[
(c_0 \cdots c_{k \cdot s_{j-1} - t_{j-1}} c_{k \cdot s_{j-1} - t_{j-1} + 1} \cdots c_{k \cdot s_{j-1} + n - 1 - t_{j-1}})
\]

in the rotation graph around \(a_j \). Since \(t_{j-1} - s_{j-1} \) is relatively prime to \(n \), this includes every \(C \) vertex.

Consider the vertex \(b_k \). We know the cycle \(X_{k-j} \) contains the sequence

\[
(\cdots a_k b_k c_{k+s_{j-1}} \cdots).
\]

Since \(S \) double covers \(\mathbb{Z}_n \), there exists \(j' \) such that either (1) \(s_{j'} = s_j \) or (2) \(t_{j'} = s_j \). In either case we know the vertex \(v_j \) arising from the pair \((s_j, t_j)\) is adjacent in the slope graph \(G_S \) to the vertex \(v_{j'} \) arising from the pair \((s_j, t_{j'})\). Since \(G_S \) is a single cycle of length \(n \), we write

\[
G_S = (v_j v_{0(j)} v_{0(j)} v_{0(j)} \cdots v_{0(j)}).
\]
where $\delta(j) = f'$. In case (1), the cycle $X_{k-f'}$ contains the sequence

$$\cdots a_f b_k c_{k+s_j} \cdots.$$

Likewise in case (2), the cycle $Y_{k-f'}$ contains the sequence

$$\cdots a_f b_k c_{k+t_j} \cdots.$$

Since either (1) $k + s_f = k + s_j$ or (2) $k + t_f = k + s_j$, we have that $a_f = a_{\delta(j)}$ follows a_j in the rotation graph around b_k. Repeating this argument, we see that the A vertices form the cyclic sequence

$$(a_j a_{\delta(j)} a_{\delta(j+1)} \cdots a_{\delta(j+|j|)})$$

in the rotation graph around b_k, which includes every A vertex. An analogous argument shows that the A vertices form the cyclic sequence

$$(a_{j+1} a_{\delta(j+1)} a_{\delta(j+1)} \cdots a_{\delta(j+1+1)})$$

lying in a single component in the rotation graph around c_f.

\[\square\]

3. Applications of slope sequence construction

<table>
<thead>
<tr>
<th>j</th>
<th>s_j</th>
<th>t_j</th>
<th>$t_j - s_j$</th>
<th>j</th>
<th>s_j</th>
<th>t_j</th>
<th>$t_j - s_j$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2r</td>
<td>2r + 2</td>
<td>-2r</td>
<td>-2</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>2r + 3</td>
<td>2r - 2</td>
<td>2r + 5</td>
<td>-6</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-2</td>
<td>-3</td>
<td>2r + 4</td>
<td>2r - 5</td>
<td>2r - 7</td>
<td>-2</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>2r</td>
<td>2r + 1</td>
<td>2r + 5</td>
<td>2r - 7</td>
<td>2r - 9</td>
<td>-2</td>
</tr>
<tr>
<td>4</td>
<td>2r</td>
<td>2r - 2</td>
<td>-2</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>5</td>
<td>2r - 2</td>
<td>2r - 4</td>
<td>-2</td>
<td>3r</td>
<td>5</td>
<td>3</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>3r + 1</td>
<td>3</td>
<td>-2r + 3</td>
<td>2r + 1</td>
</tr>
<tr>
<td>$r + 1$</td>
<td>6</td>
<td>4</td>
<td>-2</td>
<td>3r + 2</td>
<td>-2r + 3</td>
<td>-2r + 1</td>
<td>-2</td>
</tr>
<tr>
<td>$r + 2$</td>
<td>4</td>
<td>0</td>
<td>-4</td>
<td>3r + 3</td>
<td>-2r + 1</td>
<td>-3</td>
<td>2r - 4</td>
</tr>
<tr>
<td>$r + 3$</td>
<td>0</td>
<td>2r - 1</td>
<td>2r - 1</td>
<td>3r + 4</td>
<td>-3</td>
<td>-5</td>
<td>-2</td>
</tr>
<tr>
<td>$r + 4$</td>
<td>2r - 1</td>
<td>2r - 3</td>
<td>-2</td>
<td>3r + 5</td>
<td>-5</td>
<td>-7</td>
<td>-2</td>
</tr>
<tr>
<td>$r + 5$</td>
<td>2r - 3</td>
<td>-4</td>
<td>2r</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>$r + 6$</td>
<td>-4</td>
<td>-6</td>
<td>-2</td>
<td>4r - 2</td>
<td>-2r + 9</td>
<td>-2r + 7</td>
<td>-2</td>
</tr>
<tr>
<td>$r + 7$</td>
<td>-6</td>
<td>-8</td>
<td>-2</td>
<td>4r - 1</td>
<td>-2r + 7</td>
<td>-2r + 5</td>
<td>-2</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>4r</td>
<td>-2r + 5</td>
<td>2</td>
<td>2r - 3</td>
<td>:</td>
</tr>
</tbody>
</table>

Table 1: Slope sequences for nonorientable hamilton cycle embeddings of $K_{n,n}$ where $n = 4r + 1$, $r \geq 4$.

Lemma 3.1. There exists a nonorientable hamilton cycle embedding of $K_{n,n}$ for all $n \equiv 1 \pmod{4}$ such that $n \geq 5$ and $3, 7 \nmid n$.

4
Proof. Table 4 in Appendix A gives the necessary slope sequences for \(n = 5 \) and 13. It is a straightforward exercise to show that these sequences meet all the required conditions of Theorem 2.1, and that the resulting embeddings are nonorientable.

Table 1 gives the necessary slope sequences for \(n = 4r + 1 \), \(r \geq 4 \). It is easy to see that the collection \(\{ s_0, ..., s_{n-1}, t_0, ..., t_{n-1} \} \) double covers \(\mathbb{Z}_n \). The slope graph \(G_S \) consists of edges \(v_j v_{j+1} \) for all \(3 \leq j \leq n-1 \), along with the edges \(v_0 v_2, v_2 v_1, \) and \(v_1 v_3 \). This is a cycle of length \(n \), as seen in Figure 1. Let \(D = \{ t_j - s_j \mid j \in \mathbb{Z}_n \} \). From the table we see that

\[
D = \{ -6, -4, -3, -2, -1, 1, 2r - 4, 2r - 3, 2r - 1, 2r, 2r + 1 \}
\]

\[
= \{ -6, -4, -3, -2, -1, 1, \frac{n-9}{2}, \frac{n-7}{2}, \frac{n-3}{2}, \frac{n-1}{2} \}.
\]

Since \(2, 3, 7 \nmid n \), we know \(n \) is relatively prime to every element of \(D \). The last condition we must prove is that \(\{ j + s_j \mid j \in \mathbb{Z}_n \} = \{ j + t_j \mid j \in \mathbb{Z}_n \} = \mathbb{Z}_n \). Note that for every \(j \) we have \(s_j = k \Leftrightarrow s_{j+k} = -k \) and \(t_j = k \Leftrightarrow t_{j+k} = -k \). Let \(j \in \mathbb{Z}_n \), and set \(k = s_i \) and \(j = i + k \). It follows that \(j + s_j = i + k + s_{i+k} = i + k - k = i \). Since \(i \) was arbitrary, we know \(\{ j + s_j \mid j \in \mathbb{Z}_n \} = \mathbb{Z}_n \). The same argument shows that \(\{ j + t_j \mid j \in \mathbb{Z}_n \} = \mathbb{Z}_n \). Applying Theorem 2.1 yields a hamilton cycle embedding of \(K_{n,n,n} \). To determine the orientability of this embedding, consider the following three cycles:

\[
X_1 : (a_0 b_1 c_2 a_1 b_2 c_1 a_2 a_3 c_4 \cdots), \quad Y_0 : (a_0 b_2 c_2 a_1 b_1 c_{n-1} a_2 b_2 c_0 \cdots), \quad Y_1 : (a_0 b_1 c_3 a_1 b_2 b_0 a_2 b_3 c_1 \cdots).
\]

Assume this embedding admits an orientation, with \(X_1 \) oriented forwards. Note that \(Y_0 \) and \(X_1 \) share the edge \(c_2 a_1 \) and \(Y_1 \) and \(X_1 \) share the edge \(a_0 b_1 \), so both \(Y_0 \) and \(Y_1 \) must be oriented backwards. However, \(Y_0 \) and \(Y_1 \) share the edge \(b_2 c_0 \), so they must have different orientations. This is a contradiction, so this embedding is nonorientable.

\[\square\]

Lemma 3.2. There exists a nonorientable hamilton cycle embedding of \(K_{n,n,n} \) for all \(n \equiv 3 \pmod{4} \) such that \(3, 7 \nmid n \).

Proof. Table 4 in Appendix A gives the necessary slope sequence for \(n = 11 \). It is a straightforward exercise to show that this sequence meets all the required conditions of Theorem 2.1, and that the resulting embedding is nonorientable.
Lemma 3.3. There exists a nonorientable hamilton cycle embedding of $K_{n,n,n}$ for all $n \equiv 2 \pmod{4}$.

Table 2: Slope sequences for nonorientable hamilton cycle embeddings of $K_{n,n,n}$ where $n = 4r + 3$, $r \geq 3$.

<table>
<thead>
<tr>
<th>j</th>
<th>s_j</th>
<th>t_j</th>
<th>$t_j - s_j$</th>
<th>j</th>
<th>s_j</th>
<th>t_j</th>
<th>$t_j - s_j$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2r + 4</td>
<td>$-2r + 1$</td>
<td>$-2r - 1$</td>
<td>-2</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>$2r + 5$</td>
<td>$-2r - 1$</td>
<td>$2r - 4$</td>
<td>-6</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-2</td>
<td>-3</td>
<td>$2r + 6$</td>
<td>$2r - 4$</td>
<td>$2r - 6$</td>
<td>-2</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>$2r + 1$</td>
<td>$2r + 2$</td>
<td>$2r + 7$</td>
<td>$2r - 6$</td>
<td>$2r - 8$</td>
<td>-2</td>
</tr>
<tr>
<td>4</td>
<td>$2r + 1$</td>
<td>$2r - 1$</td>
<td>-2</td>
<td>$r + 1$</td>
<td>7</td>
<td>5</td>
<td>-2</td>
</tr>
<tr>
<td>5</td>
<td>$2r - 1$</td>
<td>$2r - 3$</td>
<td>-2</td>
<td>$3r + 1$</td>
<td>6</td>
<td>4</td>
<td>-2</td>
</tr>
<tr>
<td>6</td>
<td>$2r - 2$</td>
<td>-3</td>
<td>$2r + 2$</td>
<td>$3r + 7$</td>
<td>-6</td>
<td>-8</td>
<td>-2</td>
</tr>
<tr>
<td>7</td>
<td>$n - 2$</td>
<td>-2</td>
<td>$2r + 1$</td>
<td>$-2r + 6$</td>
<td>$-2r + 4$</td>
<td>-2</td>
<td>$2r - 2$</td>
</tr>
</tbody>
</table>

Table 2 gives the necessary slope sequences for $n = 4r + 3$, $r \geq 3$. It is again easy to see that the collection \{$s_0, s_{n-1}, t_0, t_{n-1}$\} double covers \mathbb{Z}_n. The slope graph G_S (Figure 1) is identical to the slope graph constructed for the slope sequence in Table 1. Let D again be the set of differences; from the table we see that

$$D = \{-6, -4, -3, -2, -1, 1, 2r - 3, 2r - 2, 2r + 1, 2r + 2\}$$

This is the same D as in the proof of Lemma 3.1, so again we know n is relatively prime to every element of D. We also have $s_j = k \iff s_{j+k} = -k$ and $t_j = k \iff t_{j+k} = -k$ as in the proof of Lemma 3.1, which implies that \{$j + s_j \mid j \in \mathbb{Z}_n$\} = \{$j + t_j \mid j \in \mathbb{Z}_n$\} = \mathbb{Z}_n. Applying Theorem 2.1 yields a hamilton cycle embedding of $K_{n,n,n}$. Because $s_0, s_1, s_2, t_0, t_1,$ and t_2 are the same in Tables 1 and 2, analyzing X_1, Y_0 and Y_1 in the same way as in the proof of Lemma 3.1 shows that this embedding is nonorientable.

Table 3: Slope sequences for a nonorientable embedding of $K_{n,n,n}$ where $n \equiv 2 \pmod{4}$.
Proof. Table 3 gives the necessary slope sequences for \(n \equiv 2 \pmod{4} \). Since \(t_j - s_j = (-1)^{j+1} \), we know \(t_j - s_j \) is relatively prime to \(n \) for all \(j \in \mathbb{Z}_n \). Since \(G_S \) consists of the edges \(v_jv_{j+1} \) for all \(j \in \mathbb{Z}_n \), it is clearly a single cycle of length \(n \). Finally, note that \(j + s_j = 2j + 1 \) if \(j \) is even and \(j + s_j = 2j \) if \(j \) is odd. Since \(n \equiv 2 \pmod{4} \), this implies \(\{j + s_j : j \in \mathbb{Z}_n, j \text{ even}\} \) covers all the odd values of \(\mathbb{Z}_n \) and \(\{j + s_j : j \in \mathbb{Z}_n, j \text{ odd}\} \) covers all the even values of \(\mathbb{Z}_n \). Thus, \(\{j + s_j : j \in \mathbb{Z}_n\} = \mathbb{Z}_n \). Using the fact that \(j + t_j = 2j \) if \(j \) is even and \(j + t_j = 2j + 1 \) if \(j \) is odd, we derive that \(\{j + t_j : j \in \mathbb{Z}_n\} = \mathbb{Z}_n \) as well. Applying Theorem 2.1 provides a hamilton cycle embedding of \(K_{n,n,n} \). To determine the orientability of this embedding, consider the following three cycles:

- \(X_0 : (a_0b_0c_1a_1b_1c_2a_2b_2c_3 \cdots) \),
- \(Y_0 : (a_0b_0c_0a_1b_1c_3a_3b_3c_4 \cdots) \),
- \(Y_1 : (a_0b_1c_1a_1b_2c_2a_2b_3c_5 \cdots) \).

Assume this embedding admits an orientation, with \(X_0 \) oriented forwards. Note that \(Y_0 \) and \(X_0 \) share the edge \(a_0b_0 \) and \(Y_1 \) and \(X_0 \) share the edge \(c_1a_1 \), so both \(Y_0 \) and \(Y_1 \) must be oriented backwards. However, \(Y_0 \) and \(Y_1 \) share the edge \(b_2c_4 \), so they must have different orientations. This is a contradiction, so this embedding is nonorientable.

4. Covering triangulations

In a series of papers [1, 2, 4] in the 1970’s and 1980’s, Bouchet – together with Bénard and Fouquet – developed several methods for lifting triangulations of a graph \(G \) to triangulations of \(G[\overline{K}_m] \), the lexicographic product of \(G \) with the empty graph \(\overline{K}_m \). These methods, which Bouchet calls covering triangulations, are especially useful when \(G \) is the complete multipartite graph \(K_{n_1, \ldots, n_q} \), because the lexicographic product \(G[\overline{K}_m] \) is the complete multipartite graph \(K_{mn_1, \ldots, mn_q} \). Thus, these lifts yield a product construction for triangulations of complete multipartite graphs. The following results are special cases of constructions presented in Bouchet’s papers and will be needed in Section 5.

Corollary 4.1. If there exists a nonorientable triangulation of \(K_{2n,n,n,n} \) with \(n \) even, then there exists a nonorientable triangulation of \(K_{2mn,mm,mm,mm} \) for every integer \(m \geq 1 \).

Proof. Every vertex in \(K_{2n,n,n,n} \) has even degree, thus it is an eulerian graph. The result follows from Theorem 4 in [2].

Corollary 4.2. If there exists a nonorientable triangulation of \(K_{2n,n,n,n} \), then there exists a nonorientable triangulation of \(K_{2mn,mm,mm,mm} \) for every integer \(m \geq 1 \) such that \(2, 3, 5 \nmid m \).

Proof. This follows from the second corollary on page 324 of [4].

Corollary 4.3. If there exists a nonorientable triangulation of \(K_{2n,n,n,n} \), then for every integer \(p \geq 0 \) there exists a nonorientable triangulation of \(K_{2mn,mm,mm,mm} \), where \(m = 3^p \).

Proof. Providing each independent set with a different color, it is easy to see that \(K_{2n,n,n,n} \) is 4-colorable. The result follows from Corollary 4.3 (and Lemma 3.1) in [1].

7
5. Genus of some complete quadripartite graphs

Here we develop the connection between hamilton cycle embeddings of $K_{n,n,n}$ and triangulations of $K_{2n,n,n,n}$ and utilize the covering triangulations from Section 4. The following result is the nonorientable counterpart to Lemma 4.1 in [6].

Lemma 5.1. The following are equivalent.

(1) There exists a nonorientable hamilton cycle embedding of G with p faces.
(2) There exists a nonorientable triangulation of $\hat{K}_p + G$.

Moreover, if either (1) or (2) holds, then G is p-regular.

Lemma 5.1 leads to the following theorem; recall that we use the convention that the nonorientable genus of a planar graph is zero.

Theorem 5.2. For all $n \geq 1$, $\bar{g}(K_{2n,n,n,n}) = (n-1)(3n-2)$.

Proof. $K_{2,1,1,1}$ is planar, so we will assume $n \geq 2$. We know from [14] that $g(K_{2n,3n}) = (3n-2)(n-1)$. Since $K_{2n,3n} \subset K_{2n,n,n,n}$, we have $\bar{g}(K_{2n,n,n,n}) \geq (n-1)(3n-2)$. From Euler’s formula, an embedding that achieves this genus must be a triangulation, so it will suffice to find a nonorientable triangulation of $K_{2n,n,n,n}$.

If n is odd, write $n = 3^t7^tm$, where $3, 7 \nmid m$. If $m \neq 1$, then Lemmas 3.1 and 3.2 imply the existence of a nonorientable hamilton cycle embedding of $K_{m,m,m}$. Lemma 5.1 yields a triangulation of $K_{2m,m,m,m}$. Applying Corollary 4.3 provides a triangulation of $K_{2(3^t7^tm),3^t7^tm,3^t7^tm}$, and applying Corollary 4.2 gives us the desired triangulation of $K_{2n,n,n,n}$. If $m = 1$, then we use a nonorientable hamilton cycle embedding of either $K_{3,3,3}$ or $K_{7,7,7}$ from Appendix A as our starting point before applying Lemma 5.1 and the results of Section 4.

If n is even, write $n = 2^t2^tm$, where m is odd. By Lemma 3.3 there exists a nonorientable hamilton cycle embedding of $K_{2n,2n,2n,2n}$. Lemma 5.1 yields a triangulation of $K_{4m,2m,2m,2m}$, and applying Corollary 4.1 gives us the desired triangulation of $K_{2n,n,n,n}$. This completes the proof.

The construction of the necessary triangulations for $n \geq 2$ in the proof of Theorem 5.2 leads directly to the following result.

Corollary 5.3. There exists a nonorientable hamilton cycle embedding of $K_{n,n,n}$ for all $n \geq 2$.

Unfortunately, the hamilton cycle faces in the embeddings of $K_{n,n,n}$ obtained from Bouchet’s covering triangulations of $K_{2n,n,n,n}$ are not, in general, ABC cycles.

The following extension of Theorem 5.2 is obtained using the ‘diamond sum’ technique. This surgical technique was introduced in dual form by Bouchet [3], reinterpreted by Magajna, Mohar and Pisanski [11], developed further by Mohar, Parsons, and Pisanski [12], and generalized by Kawarabayashi, Stephens and Zha [10]. In particular, the diamond sum construction allows us to combine minimum genus embeddings of $K_{t_1,n,n,n}$ and $K_{t_2,2n,n,n}$ to get a minimum genus embedding of $K_{t_1+t_2-2,n,n,n}$. This is achieved by removing a disk containing a vertex of degree $3n$ and all of its incident edges from each embedding and identifying the boundaries of the resulting holes in a suitable fashion. For similar applications of the diamond sum, see [5, 6, 7], and for more information on this technique, see [13, pages 117–118].

Corollary 5.4. For all $n \geq 1$ and all $t \geq 2n$, $\bar{g}(K_{t,n,n,n}) = \left\lceil \frac{(t-2)(3n-2)}{2} \right\rceil = \bar{g}(K_{t,3n})$.
Proof. We know that \(K_{1,3n} \subseteq K_{1,n,n,n} \) and from [14] we know \(\tilde{g}(K_{1,3n}) = \left\lceil \frac{(t-2)(3n-2)}{2} \right\rceil \). We now apply the diamond sum construction to minimum genus nonorientable embeddings of \(K_{2n,n,n,n} \) and \(K_{1,n,n,n} \). By Theorem 5.2 we know \(\tilde{g}(K_{2n,n,n,n}) = (n - 1)(3n - 2) \) and again by [14] we know \(\tilde{g}(K_{1,n,n,n}) = \left\lceil \frac{(t-2)(3n-2)}{2} \right\rceil \). Via the diamond sum construction, we learn that \(\tilde{g}(K_{n,n,n,n}) \leq (n - 1)(3n - 2) \). By Theorem 5.2 we know \(\tilde{g}(K_{n,n,n,n}) = (n - 1)(3n - 2) \). Moreover, in the special case \(t = 2n \), we also get \(\tilde{g}(G + H) = (n - 1)(3n - 2) \) for graphs \(G \) and \(H \) satisfying \(K_{3n} \subseteq G \subseteq K_{2n,n,n} \) and \(K_{2n} \subseteq H \subseteq K_{n,n,n} \).

Remark 5.5. Corollary 5.4 implies that for any graph \(G \) satisfying \(K_{3n} \subseteq G \subseteq K_{n,n,n} \) and for all \(t \geq 2n \), the nonorientable genus of \(K_t \) + \(G \) is the same as the nonorientable genus of \(K_{1,3n} \). In other words, \(\tilde{g}(K_t + G) = \left\lceil \frac{(t-2)(3n-2)}{2} \right\rceil \). Moreover, in the special case \(t = 2n \), we also get \(\tilde{g}(G + H) = (n - 1)(3n - 2) \) for graphs \(G \) and \(H \) satisfying \(K_{3n} \subseteq G \subseteq K_{2n,n,n} \) and \(K_{2n} \subseteq H \subseteq K_{n,n,n} \).

Appendix A. Special case constructions

This appendix presents the required nonorientable hamilton cycle embeddings of \(K_{n,n,n} \) when \(n \in \{3, 5, 7, 11, 13\} \).

By checking all possible cases, we know there does not exist a slope sequence construction for a nonorientable embedding of \(K_{3,3,3} \). The desired embedding is given by the following facial boundaries:

\[
(a_0b_0c_0a_1b_1c_1a_2b_2c_2), \quad (a_0b_0c_1a_1b_1c_2a_2b_2c_0), \\
(a_0b_1c_1a_1b_2c_2a_2b_0c_0), \quad (a_0b_2c_0a_2b_1c_1a_1b_0c_1), \\
(a_0b_2c_1a_2b_0c_0a_1b_0c_2), \quad (a_0b_1c_0a_2b_0c_2a_1b_2c_1).
\]

For \(n \in \{5, 7, 11, 13\} \), Table 4 provides a slope sequence that yields a nonorientable hamilton cycle embedding of \(K_{n,n,n} \). To show that these embeddings are indeed nonorientable, in the same way as in the proof of Lemma 3.1, consider the following sequences of faces and edges, where \(F \) and \(F' \) implies \(F \) and \(F' \) share the edge \(e \):

\[
\begin{align*}
n &= 5 \quad : \quad X_2 \quad a_0b_2 \quad Y_2 \quad b_3c_1 \quad Y_1 \quad c_4a_4 \quad X_2; \\
n &= 7 \quad : \quad X_0 \quad b_0c_1 \quad X_4 \quad a_0b_4 \quad Y_4 \quad c_5a_5 \quad X_0; \\
n &= 11 \quad : \quad X_0 \quad a_0b_0 \quad Y_0 \quad c_8a_6 \quad X_9 \quad b_9c_1 \quad X_0; \\
n &= 13 \quad : \quad X_0 \quad a_0b_0 \quad Y_0 \quad c_8a_5 \quad X_{11} \quad b_9c_1 \quad X_0.
\end{align*}
\]

References

Table 4: Slope sequences for $n \in \{5, 7, 11, 13\}$.

<table>
<thead>
<tr>
<th>n</th>
<th>j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>s_j</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>t_j</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$t_j - s_j$</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>s_j</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>t_j</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$t_j - s_j$</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>s_j</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>t_j</td>
<td>2</td>
<td>9</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$t_j - s_j$</td>
<td>1</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>1</td>
<td>9</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>s_j</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>9</td>
<td>7</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>t_j</td>
<td>2</td>
<td>11</td>
<td>11</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>9</td>
<td>7</td>
<td>10</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>$t_j - s_j$</td>
<td>1</td>
<td>12</td>
<td>10</td>
<td>7</td>
<td>1</td>
<td>11</td>
<td>9</td>
<td>5</td>
<td>11</td>
<td>6</td>
<td>11</td>
<td>3</td>
<td>11</td>
</tr>
</tbody>
</table>