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Abstract

A cyclic construction is presented for building embeddiafjhe complete tripartite gragknnn
on a nonorientable surface such that the boundary of evegyifaa hamilton cycle. This con-
struction works for several families of valuesmfand we extend the result to allwith some
methods of Bouchet and others. The nonorientable geriig,@f, fort > 2n, is then determined
using these embeddings and a surgical method called thmdaid sum’ technique.

Keywords: complete tripartite graph, graph embedding, nonoriertgbhus, hamilton cycle
2000 MSC: 05C10

1. Introduction

An important topic in topological graph theory is embeddiof§ graphs on surfaces of min-
imum and maximum genera. Embeddings of minimum genus ginbewve faces as small as
possible, while embeddings of maximum genus have facesrgs #& possible. Embeddings
where the boundary of every face is a hamilton cycle servie dods. A hamilton cycle embed-
ding of a graplG, if it exists, is necessarily an embedding®bn a surface of maximum genus
over all closed 2-cell embeddings Gf Additionally, a hamilton cycle embedding &f with m
faces corresponds to a triangular embedding,pf G, the join of the edgeless gragh, with
G. This triangulation is necessarily a minimum genus embegldf K, + G.

Some minimum genus results can be interpreted as hamilide embeddings of familiar
graphs. In 1970 Ringel and Youngs [15] determined the aatdetgenus of the complete tri-
partite graptKnnn for all n. The triangulations that achieve this genus correspondéntable
hamilton cycle embeddings of the complete bipartite grigph More recently the first author,
together with Stephens and Zha [7], determined the nontatidsgenus of complete tripartite
graphsK,mn, where? > m > n. Forn > 4, the embeddings constructed for the casem = n
correspond to nonorientable hamilton cycle embeddind,af

Going in the other direction, the first author and Stephen§][8onstructed hamilton cycle
embeddings oK, and used them to obtain minimum genus embeddin#s,efK, form > n—1.
Hamilton cycle embeddings &, also played a role in [6].
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Hamilton cycle embeddings have also been related to minigemus embeddings in a dif-
ferent way. Grannell, Griggs argiran [8] derived hamilton cycle embeddingsigf from trian-
gulations (hence minimum genus embeddingHof

In this paper we extend hamilton cycle embedding resulthiéocbmplete tripartite graph
Knnn- Then, in Section 5 we show that hamilton cycle embeddind& qf, can be used to obtain
minimum genus embeddings Kf ,nn for t > 2n. Constructing the hamilton cycle embeddings
requires several steps. First, Theorem 2.1 provides a gecyalic construction using “slope
sequences” with certain properties. Next, slope sequedubiting these properties are given
for several families of values. Finally, a connection t@amgulations of quadripartite graphs
and some covering triangulation results due to Bouchet &émer® [1, 2, 4] are used to obtain
the general result. All the embeddings we construct are memtable, although our techniques
(slope sequences, in particular) can also be used to olriaimable embeddings.

A basic understanding of topological graph theory is assunhe particular, asurface is a
compact 2-manifold without boundary. The nonorientabléage N is obtained by adding
crosscaps to a sphere, and tioaorientable genus of a nonplanar grap6, denotedy(G), is the
minimum value ofk for which G can be embedded dxk. For a planar grapls, we use the
convention thag(G) = 0. It is well known that a cellular embedding can be charazger up
to homeomorphism, by providing a set of facial walks thatldewcover the edges and yield a
proper rotation at each vertex. To define a proper rotati@ynust introduce theotation graph
at a vertexv, denotedR,. This graph has as its vertex set the neighborg @ihd two vertices
u; andu, are joined by one edge for each occurrence of the subseq@enagn;, - - ), or its
reverse, in one of the facial walkR, is 2-regular; we say it iproper if R, consists of a single
cycle. This ensures that the neighborhood around eachxvsrtomeomorphic to a disk. The
embedding is orientable if and only if the faces can be oeisb that each edge appears once
in each direction. For additional details and terminolsge [9].

We letA = {ay, ..., an-1}, B = {bo, ..., bn-1} @andC = {co, ..., C,-1} be the vertices ok, n , SO that
A, BandC are the maximal independentsets. A hamilton cycle facesofittm (&;, b, Cz, ;, b, Cr,
---a;,,bk,,Cq, ,) is called anABC cycle.

2. Slope sequence construction

In this section we describe the general construction on lwttie proofs in Section 3 are
based. Some preliminary definitions are required. &et ((S, to), (S1,t1), ..., (Sh-1, th-1)). If
sj # tj forall j € Z, and the collectiortsy, ..., Sh-1, to, ..., th-1} cOvers every element &, twice,
we sayS is adope sequence. Form the graplGs with vertices{vo, v, ..., Vo_1} and m edges
joining distinct verticesy;, andv;,, wherem = [{sj,,tj,} N {sj,,t,}l. We callGs the induced
pair graph for the slope sequené This graph is 2-regular, 8s decomposes into a union of
cycles. As Theorem 2.1 shows, it will be desirable to haveiged pair graphs that consist of a
single cycle.

Theorem 2.1. Suppose S = ((So,to), (S1,11), ..., (S-1, th-1)) IS a slope sequence such that the
following hold:

(i) {j+sj|j€Zn}={j+tj|j€Zn}=Zn;
(i) t; —sjisrelatively primetonfor all j € Zn;
(i) theinduced pair graph Gs consists of a single cycle of length n.



Then the collection of cycles X = {X; | i € Zp} and Y = {Y; | | € Z,}, given by

Xi: (a0biCiis@1bii1Ciitrs, - - @D jCitjrs - - Bno1bitn-1Citn-14s,,)s
Yi . (aObiCi+toa1bi+1Ci+l+t1 te aj bi+jci+j+tj te an—lbi+n—10i+n—1+tn,1),

form a hamilton cycle embedding of K, with all ABC cycle faces.

Proof. First, we must show tha{; andY; are indeed hamilton cycles. Itis clear that evArgnd
B vertex appears in every; andY;. Sincej + s; coversZy, it follows thati + j + s; also covers
Zn, SO everyC vertex appears iX;. The same argument with+ t; shows that everg vertex
also appears il;. By construction, these cycles are ABC cycles.

Next, we show that these hamilton cycles form a double colv&ra,. The cyclesX._; and
Yk-j both cover the edgajby for all j,k € Zn. Similarly the cyclesX,(j-1)-s,, andYe_(j-1)-,,
both cover the edgea,; for all j, £ € Z,. Finally, consider an edd®c,. We know fromS being a
slope sequence that there exXisandj” such that one of the following holds: (%) = tj» = -k,
(2) sy = sj» = -k, or (3)t;y =tj» = £ — k. These cases correspond to the following: (1) the
cyclesX_; andYi_j- both cover the edgbyc,, (2) the cyclesX_; andXy_;~ both cover the
edgebyc,, or (3) the cycle®_j andYi_j~ both cover the edgexc,. This holds for alk, ¢ € Zy;
therefore X U Y forms a double cover df,nn.

To show that these hamilton cycles can be sewn together almmgnon edges to yield an
embedding oK, it remains to prove that the rotation graph around eactexésta single
cycle of length B. Since this collection consists of &BC faces, we know that the rotation
graph around a vertex; € A will be bipartite with alternating® andC vertices. If all of the
C vertices appear in the same componerRgf then all of theB vertices must be in the same
component as well. Thus, it will $lice to prove that th€ vertices are contained in the same
cycle in the rotation graph around evekyertex. Similarly, it will sufice to prove that thé
vertices are contained in the same cycle in the rotationtgaapund every andC vertex.

Consider the vertea;. We know the cycleX,(j-1)-s,_, contains the sequence

(' o C[aj b[+1—51'71 o )
and the cycler,_(j_1)-s., contains the sequence
(' o Cf—Sj,1+tj,1aj bl+j e )

Thus the vertex,_s, .41, , follows the vertexc, in the rotation graph arourdj. Continuing this
argument, we find th€ vertices form the cyclic sequence

(CkChr (t;1-511) Ck+ 2t 1-51) ** * Chr(n-1)(-1-5;-1))

in the rotation graph arours}. Sincet;_; — sj_1 is relatively prime ton, this includes everg
vertex.
Consider the vertels,. We know the cycle,_; contains the sequence

(. ..ajbkaJrSj )

SinceS double coverd,, there existg’ such that either (13 = s;j or (2)t; = s;. In either case
we know the vertex; arising from the pairg;, t;) is adjacent in the slope graf®s to the vertex
vj. arising from the pairgy, t;’). SinceGs is a single cycle of length, we write

Gs = (VjVis(j)Vez(j) - * - Voi(j))»
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whered(j) = j’. In case (1), the cycl¥_; contains the sequence

(. .. aj/bka+s,-/ .. )
Likewise in case (2), the cyclé._; contains the sequence

(. .. aj,bkathi/ . )
Since either (1k + s; = k+ 55 0r (2)k + tj = k+ sj, we have that; = as(j) follows a; in
the rotation graph arourat. Repeating this argument, we see thatAheertices form the cyclic
sequence

(@jas() @)+ Bmj)

in the rotation graph arounk, which includes every vertex. An analogous argument shows
that theA vertices form the cyclic sequence

(Aj+1805())+1862(j)+1 " * - Bon-1(j)+1)

lying in a single component in the rotation graph aroand O

3. Applications of slope sequence construction

] Sj Y |G- j Si y L —S;
0 1 2 1 2r+2 | -2r+2 =2r -2
1 -1 -2 -1 2r+3 -2r 2r-5 -6
2 1 -2 -3 2r+4| 2r-5 2r-7 -2
3 -1 2r 2r+1 ||l 2r+5| 2r-7 2r-9 -2
4 2r 2r-2 -2 : : : :
5 2r-2|2r-4 -2 3r 5 3 -2
: : : : 3r+1 3 -2r+3 | 2r+1
r+1 6 4 -2 Ir+2 | -2r+3 | -2r+1 -2
r+2 4 0 -4 Ir+3| -2r+1 -3 2r—-4
r+3 0 2r-1]2r-11| 3r+4 -3 -5 -2
r+4 | 2r-1| 2r-3 -2 3r+5 -5 -7 -2
r+5|2r-3 -4 2r : : : :
r+6 -4 -6 -2 4 -2 | =2r+9 | -2r+7 -2
r+7 -6 -8 -2 -1 | -2r+7 | -2r+5 -2
4r -2r+5 2 2r-3

Table 1: Slope sequences for nonorientable hamilton cynleeddings oKnnn wheren=4r + 1,r > 4.

Lemma 3.1. There exists a nonorientable hamilton cycle embedding of K, for all n= 1 (mod
4) suchthatn>5and 3,71 n.
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Figure 1: The slope grapBs for the slope sequences given in Table 1 and Table 2.

Proof. Table 4 in Appendix A gives the necessary slope sequencas f015 and 13. ltis a
straightforward exercise to show that these sequencesathéie¢ required conditions of Theo-
rem 2.1, and that the resulting embeddings are nonorientabl

Table 1 gives the necessary slope sequences fodr + 1,r > 4. It is easy to see that the
collection{sy, ..., S-1, to, ..., t-1} double cover&,. The slope grapfss consists of edgesv;.1
forall 3 < j < n-1, along with the edgegV,, v,v1, andvivs. This is a cycle of lengtm, as
seen in Figure 1. LeD = {t; — s; | j € Za}. From the table we see that

D {-6,-4,-3,-2,-1,1,2r-4,2r - 3,2r - 1,2r,2r + 1}

-9 n-7 n-3 n-1 1
= [-6-4-3-2-1.152 57 52 5 1),

Since 23,7 t n, we known is relatively prime to every element &. The last condition we
must prove is thatj + s | j € Zn} = {j +tj | ] € Zn} = Zn. Note that for everyj we have
sj =k © sj;x = —kandt; = k & tj,x = —k. Leti € Z,, and sek = s andj = i + k. It follows
thatj +s; = i + k+ s.« = i + k—k = i. Sincei was arbitrary, we knowj + s; | j € Zn} = Zn. The
same argument shows tHat+ t; | j € Zn} = Zn. Applying Theorem 2.1 yields a hamilton cycle
embedding oK, ,n. To determine the orientability of this embedding, consitie following
three cycles:

Xy 1 (agbiCragbyciaghacy - - -),

Yo : (aoboczaibicn1a2b2C0- ),

Y1: (aghbiCzaibzcoazbscy - - -).
Assume this embedding admits an orientation, Wthoriented forwards. Note thaf andX;
share the edge,a; andY; and X; share the edgeghb;, so bothY, andY; must be oriented
backwards. Howevelyy andY; share the edgb.cy, so they must have fierent orientations.
This is a contradiction, so this embedding is nonorientable O

Lemma 3.2. There exists a nonorientable hamilton cycle embedding of K, for all n = 3 (mod
4) suchthat 3,7 { n.

Proof. Table 4 in Appendix A gives the necessary slope sequenae#ot 1. It is a straightfor-
ward exercise to show that this sequence meets all the eetjaémditions of Theorem 2.1, and
that the resulting embedding is nonorientable.
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j Sj t ti-s j Si 4 tj— S
0 1 2 1 2r+4 | -2r+1 | -2r-1 -2
1 -1 -2 -1 2r+5| -2r-1| 2r-4 -6
2 1 -2 -3 2r+6 | 2r-4 2r-6 -2
3 -1 2r+1 | 2r+2 || 2r+7| 2r-6 2r-8 -2
4 2r+1 | 2r-1 -2 : : : :
5 2r-11]2r-3 -2 3r+1 6 4 -2
: : : 3r+2 4 -2r+2 | 2r+1
r+1 7 5 -2 Ir+3 | -2r+2 -2r -2
r+2 5 3 -2 3r+4 -2r 0 2r
r+3 3 2r 2r-3 || 3r+5 0 -4 -4
r+4 2r 2r-2 -2 3r+6 -4 -6 -2
r+5|2r-2 -3 2r+2 || 3r+7 -6 -8 -2
r+6 -3 -5 -2 : : : :
r+7 -5 -7 -2 n-2 | -2r+6 | -2r+4 -2
n-11|-2r+4 2 2r-2

Table 2: Slope sequences for nonorientable hamilton cynleeedings oKpnn wheren = 4r + 3,1 > 3.

Table 2 gives the necessary slope sequences fordr + 3,r > 3. It is again easy to see
that the collections, ..., $-1, o, ..., tn-1} double cover<,. The slope grapkss (Figure 1) is
identical to the slope graph constructed for the slope sezpim Table 1. LeD again be the set
of differences; from the table we see that

D

{-6,-4,-3,-2,-1,1,2r-3,2r-2,2r,2r + 1,2r + 2}

= {_61_41_31_21_11 17n;299 n;273 n;zgy n%ly n%l}-
This is the sam® as in the proof of Lemma 3.1, so again we knoig relatively prime to every
element ofD. We also haves; = k & sj,x = -k andt; = k © tj,x = —k as in the proof of
Lemma 3.1, which implies thdf + s; | j € Zn} = {j +t; | j € Zn} = Zyn. Applying Theorem
2.1 yields a hamilton cycle embedding §f ,n. Becauses, s1, S, to, t1, andt, are the same in
Tables 1 and 2, analyzing, Yo andY; in the same way as in the proof of Lemma 3.1 shows that

this embedding is nonorientable. O
j 0O |1| 2 |3]| 4 n-3|n-2|n-1
S 1113 |3|5 n-3|n-1|n-1
t] 02| 2 (4] 4 n-2|n-2 0
ti-s;|-1]1|-1]1]|-1 1 -1 1

Table 3: Slope sequences for a nonorientable embeddikgqf wheren = 2 (mod 4).

Lemma 3.3. There exists a nonorientable hamilton cycle embedding of Knn» for all n = 2 (mod
4).
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Proof. Table 3 gives the necessary slope sequences 0P (mod 4). Since; — s; = (-1)*2,
we knowt; — s; is relatively prime ton for all j € Z,. SinceGs consists of the edgegvi.1
for all j € Zy, itis clearly a single cycle of length. Finally, note thatj + s; = 2j + 1 if jis
even andj + s; = 2j if j is odd. Sincen = 2 (mod 4), this impliedj + s | j € Zn, j even
covers all the odd values @, and{j + S; | j € Z, j odd covers all the even values @f. Thus,
{j+Sj|]j€Zn) =Zn Using the fact thaj + t; = 2j if jisevenand +t; = 2j + 1if j is odd,
we derive thatj + tj | j € Zn} = Zn as well. Applying Theorem 2.1 provides a hamilton cycle
embedding oK. To determine the orientability of this embedding, consithe following
three cycles:

Xo: (aghoCiarhbiCrazbycs---),

Yo : (aoboCoarbiCzazhacs---),

Y1 : (aghiciaibyciarbscs - - -).

Assume this embedding admits an orientation, Whoriented forwards. Note thafy andXg
share the edgaghy andY; and Xy share the edge;a;, so bothY, andY; must be oriented
backwards. Howevelyy andY; share the edgb.c,4, so they must have fierent orientations.
This is a contradiction, so this embedding is nonorientable O

4. Coveringtriangulations

In a series of papers [1, 2, 4] in the 1970’s and 1980’s, Bouehegether with Bénard and
Fouquet — developed several methods for lifting triangoitet of a graplG to triangulations of
G[Kn], the lexicographic product @ with the empty grapl,,. These methods, which Bouchet
calls covering triangulations, are especially useful whe@ is the complete multipartite graph
Thus, these lifts yield a product construction for triaregidns of complete multipartite graphs.
The following results are special cases of constructiorsgated in Bouchet's papers and will
be needed in Section 5.

Corollary 4.1. If there exists a nonorientable triangulation of Kunnnn With n even, then there
exists a nonorientabl e triangul ation of Kamn mn.mn,mn fOr every integer m > 1.

Proof. Every vertex inKannnn has even degree, thus it is an eulerian graph. The reswwisl
from Theorem 4 in [2]. O

Corollary 4.2. If there exists a nonorientabletriangul ation of Kan nnn, then there exists a nonori-
entable triangulation of Kamnmnmnmn fOr every integer m > 1 suchthat 2,3,5¢ m.

Proof. This follows from the second corollary on page 324 of [4]. O

Corollary 4.3. If there exists a nonorientable triangulation of Kannnn, then for every integer
p > O there exists a nonorientable triangulation of Kam,mnmnm, Wherem = 3P.

Proof. Providing each independent set with dfelient color, it is easy to see thiibnnnn IS
4-colorable. The result follows from Corollary 4.3 (and L 3.1) in [1]. O



5. Genus of some complete quadripartite graphs

Here we develop the connection between hamilton cycle edibgs ofK, nn and triangula-
tions of Konnnn and utilize the covering triangulations from Section 4. Tokowing result is
the nonorientable counterpart to Lemma 4.1 in [6].

Lemma 5.1. The following are equivalent.

(1) There exists a nonorientable hamilton cycle embedding of G with p faces.
(2) There exists a nonorientabletriangulation of Ky + G.

Moreover, if either (1) or (2) holds, then G is p-regular.

Lemma 5.1 leads to the following theorem; recall that we hsecbnvention that the nonori-
entable genus of a planar graph is zero.

Theorem 5.2. For all n > 1, §(Kannnn) = (N —1)(3n-2).

Proof. K111 is planar, so we will assume > 2. We know from [14] thag(Kzn3n) = (3n -
2)(n - 1). SinceKanan € Konnnn: We haveg{Konnnn) = (n—1)(3n - 2). From Euler’s for-
mula, an embedding that achieves this genus must be a ttaingy so it will sufice to find a
nonorientable triangulation &€n nnn-

If nis odd, writen = 3°79m, where 374 m. If m # 1, then Lemmas 3.1 and 3.2 imply the ex-
istence of a nonorientable hamilton cycle embeddingef,n. Lemma 5.1 yields a triangulation
of Kommmm. Applying Corollary 4.3 provides a triangulation Kbpm) 3pm3rm3em, and applying
Corollary 4.2 gives us the desired triangulatiogf , n n. If m= 1, then we use a nonorientable
hamilton cycle embedding of eith&g 3 3 or K777 from Appendix A as our starting point before
applying Lemma 5.1 and the results of Section 4.

If nis even, writen = 2P2m, wheremis odd. By Lemma 3.3 there exists a nonorientable
hamilton cycle embedding domomom. Lemma 5.1 yields a triangulation &f4m 2m2m2m, and
applying Corollary 4.1 gives us the desired triangulatidiKg, nnn. This completes the proof.

O

The construction of the necessary triangulationsifor2 in the proof of Theorem 5.2 leads
directly to the following result.

Corollary 5.3. There exists a nonorientable hamilton cycle embedding of K, , for all n > 2.

Unfortunately, the hamilton cycle faces in the embeddirfgs.@,, obtained from Bouchet's
covering triangulations ok nnn are not, in generalABC cycles.

The following extension of Theorem 5.2 is obtained usinddiemond sum’ technique. This
surgical technique was introduced in dual form by Bouchgtf8nterpreted by Magajna, Mohar
and Pisanski [11], developed further by Mohar, Parsons RPasahski [12], and generalized by
Kawarabayashi, Stephens and Zha [10]. In particular, thednd sum construction allows us to
combine minimum genus embeddingskaf nnn andKg, 3, to get a minimum genus embedding
of Ki,+,—2nnn- This is achieved by removing a disk containing a vertex @frde 3 and all
of its incident edges from each embedding and identifyimgtbundaries of the resulting holes
in a suitable fashion. For similar applications of the dimtheum, see [5, 6, 7], and for more
information on this technique, see [13, pages 117-118].

Corollary 5.4. For all n > 1andall t > 2n, §(Kinnn) = [ 282 = §(Kyan).
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Proof. We know thaK 3, C Kinnn, and from [14] we knovg(K 3n) = [%23”‘2)1 Sog(Kennn) =

ij‘”’z)] We now apply the diamond sum construction to minimum gemum®rientable em-
eddings 0Kynnnn andKi_oni230. By Theorem 5.2 we know(Kznnnn) = (n—1)(3n - 2), and

again by [14] we knovg(Ki_zn23n) = [wf“‘zﬂ Via the diamond sum construction, we learn

that§(Kiann) < (N— 1)(3n - 2) + [ L2432 - [(LAEA] and the result follows. O

Remark 5.5. Corollary 5.4 implies that for any graph satisfyingKs, € G € Ky, and for
all t > 2n, the nonorientable genus &f + G is the same as the nonorientable genu&gf.
In other words g{K; + G) = [=24=2]. Moreover, in the special case= 2n, we also get

§(G + H) = (n - 1)(3n - 2) for graph<G andH satisfyingKs, € G € Konn andKz, € H € Kpp.

Appendix A. Special case constructions

This appendix presents the required nonorientable hamglfole embeddings d&f,», when
ne{3,57,11,13.

By checking all possible cases, we know there does not esisipee sequence construction
for a nonorientable embedding K 3 3. The desired embedding is given by the following facial
boundaries:

(aoboCoarbiCrazb2Co),  (aoboCianbrCra2b2C0),
(aob1Cra1baCrab0C0),  (aob2CodrbiCra1b0Cs),
(aobzCrazbcoanbocz),  (obiCoarbocra1b2Cy).

Forne {5,7,11 13}, Table 4 provides a slope sequence that yields a nonorierttamilton
cycle embedding oK, . To show that these embeddings are indeed nonorientalthes same
way as in the proof of Lemma 3.1, consider the following seqes of faces and edges, where
F eF’ impliesF andF’ share the edge

n=5: X5 aob2 Ys b3C]_ Y, Cpay
Nn=7: Xo boct Xs aghs Ys cCsas
n=11: Xp aobo Yo Cgag Xg boC]_
n=13: Xo aobo Yo Cgas Xi1 boC]_

NN
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