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Abstract

A cyclic construction is presented for building embeddingsof the complete tripartite graphKn,n,n

on a nonorientable surface such that the boundary of every face is a hamilton cycle. This con-
struction works for several families of values ofn, and we extend the result to alln with some
methods of Bouchet and others. The nonorientable genus ofKt,n,n,n, for t ≥ 2n, is then determined
using these embeddings and a surgical method called the ‘diamond sum’ technique.
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1. Introduction

An important topic in topological graph theory is embeddings of graphs on surfaces of min-
imum and maximum genera. Embeddings of minimum genus generally have faces as small as
possible, while embeddings of maximum genus have faces as large as possible. Embeddings
where the boundary of every face is a hamilton cycle serve both ends. A hamilton cycle embed-
ding of a graphG, if it exists, is necessarily an embedding ofG on a surface of maximum genus
over all closed 2-cell embeddings ofG. Additionally, a hamilton cycle embedding ofG with m
faces corresponds to a triangular embedding ofKm + G, the join of the edgeless graphKm with
G. This triangulation is necessarily a minimum genus embedding of Km +G.

Some minimum genus results can be interpreted as hamilton cycle embeddings of familiar
graphs. In 1970 Ringel and Youngs [15] determined the orientable genus of the complete tri-
partite graphKn,n,n for all n. The triangulations that achieve this genus correspond to orientable
hamilton cycle embeddings of the complete bipartite graphKn,n. More recently the first author,
together with Stephens and Zha [7], determined the nonorientable genus of complete tripartite
graphsK`,m,n, where` ≥ m ≥ n. Forn ≥ 4, the embeddings constructed for the case` = m = n
correspond to nonorientable hamilton cycle embeddings ofKn,n.

Going in the other direction, the first author and Stephens [5, 6] constructed hamilton cycle
embeddings ofKn and used them to obtain minimum genus embeddings ofKm+Kn for m ≥ n−1.
Hamilton cycle embeddings ofKn,n also played a role in [6].
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Hamilton cycle embeddings have also been related to minimumgenus embeddings in a dif-
ferent way. Grannell, Griggs anďSiráň [8] derived hamilton cycle embeddings ofKn from trian-
gulations (hence minimum genus embeddings) ofKn.

In this paper we extend hamilton cycle embedding results to the complete tripartite graph
Kn,n,n. Then, in Section 5 we show that hamilton cycle embeddings ofKn,n,n can be used to obtain
minimum genus embeddings ofKt,n,n,n for t ≥ 2n. Constructing the hamilton cycle embeddings
requires several steps. First, Theorem 2.1 provides a general cyclic construction using “slope
sequences” with certain properties. Next, slope sequencesexhibiting these properties are given
for several families of values. Finally, a connection to triangulations of quadripartite graphs
and some covering triangulation results due to Bouchet and others [1, 2, 4] are used to obtain
the general result. All the embeddings we construct are nonorientable, although our techniques
(slope sequences, in particular) can also be used to obtain orientable embeddings.

A basic understanding of topological graph theory is assumed. In particular, asurface is a
compact 2-manifold without boundary. The nonorientable surfaceNk is obtained by addingk
crosscaps to a sphere, and thenonorientable genus of a nonplanar graphG, denoted ˜g(G), is the
minimum value ofk for which G can be embedded onNk. For a planar graphG, we use the
convention that ˜g(G) = 0. It is well known that a cellular embedding can be characterized, up
to homeomorphism, by providing a set of facial walks that double cover the edges and yield a
proper rotation at each vertex. To define a proper rotation, we must introduce therotation graph
at a vertexv, denotedRv. This graph has as its vertex set the neighbors ofv, and two vertices
u1 andu2 are joined by one edge for each occurrence of the subsequence(· · ·u1vu2 · · · ), or its
reverse, in one of the facial walks.Rv is 2-regular; we say it isproper if Rv consists of a single
cycle. This ensures that the neighborhood around each vertex is homeomorphic to a disk. The
embedding is orientable if and only if the faces can be oriented so that each edge appears once
in each direction. For additional details and terminology,see [9].

We letA = {a0, ..., an−1}, B = {b0, ..., bn−1} andC = {c0, ..., cn−1} be the vertices ofKn,n,n so that
A, B andC are the maximal independent sets. A hamilton cycle face of the form (a j0bk0c`0a j1bk1c`1
· · · a jn−1bkn−1c`n−1) is called anABC cycle.

2. Slope sequence construction

In this section we describe the general construction on which the proofs in Section 3 are
based. Some preliminary definitions are required. LetS = ((s0, t0), (s1, t1), ..., (sn−1, tn−1)). If
s j , t j for all j ∈ Zn and the collection{s0, ..., sn−1, t0, ..., tn−1} covers every element ofZn twice,
we sayS is a slope sequence. Form the graphGS with vertices{v0, v1, ..., vn−1} andm edges
joining distinct verticesv j1 andv j2, wherem = |{s j1, t j1} ∩ {s j2 , t j2}|. We callGS the induced
pair graph for the slope sequenceS . This graph is 2-regular, soGS decomposes into a union of
cycles. As Theorem 2.1 shows, it will be desirable to have induced pair graphs that consist of a
single cycle.

Theorem 2.1. Suppose S = ((s0, t0), (s1, t1), ..., (sn−1, tn−1)) is a slope sequence such that the
following hold:

(i) { j + s j | j ∈ Zn} = { j + t j | j ∈ Zn} = Zn;
(ii) t j − s j is relatively prime to n for all j ∈ Zn;
(iii) the induced pair graph GS consists of a single cycle of length n.
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Then the collection of cycles X = {Xi | i ∈ Zn} andY = {Yi | i ∈ Zn}, given by

Xi : (a0bici+s0a1bi+1ci+1+s1 · · · a jbi+ jci+ j+s j · · ·an−1bi+n−1ci+n−1+sn−1),
Yi : (a0bici+t0a1bi+1ci+1+t1 · · · a jbi+ jci+ j+t j · · ·an−1bi+n−1ci+n−1+tn−1),

form a hamilton cycle embedding of Kn,n,n with all ABC cycle faces.

Proof. First, we must show thatXi andYi are indeed hamilton cycles. It is clear that everyA and
B vertex appears in everyXi andYi. Since j + s j coversZn, it follows thati + j + s j also covers
Zn, so everyC vertex appears inXi. The same argument withj + t j shows that everyC vertex
also appears inYi. By construction, these cycles are allABC cycles.

Next, we show that these hamilton cycles form a double cover of Kn,n,n. The cyclesXk− j and
Yk− j both cover the edgea jbk for all j, k ∈ Zn. Similarly the cyclesX`−( j−1)−s j−1 andY`−( j−1)−t j−1

both cover the edgec`a j for all j, ` ∈ Zn. Finally, consider an edgebkc`. We know fromS being a
slope sequence that there existj′ and j′′ such that one of the following holds: (1)s j′ = t j′′ = `−k,
(2) s j′ = s j′′ = ` − k, or (3) t j′ = t j′′ = ` − k. These cases correspond to the following: (1) the
cyclesXk− j′ andYk− j′′ both cover the edgebkc`, (2) the cyclesXk− j′ andXk− j′′ both cover the
edgebkc`, or (3) the cyclesYk− j′ andYk− j′′ both cover the edgebkc`. This holds for allk, ` ∈ Zn;
therefore,X ∪ Y forms a double cover ofKn,n,n.

To show that these hamilton cycles can be sewn together alongcommon edges to yield an
embedding ofKn,n,n, it remains to prove that the rotation graph around each vertex is a single
cycle of length 2n. Since this collection consists of allABC faces, we know that the rotation
graph around a vertexa j ∈ A will be bipartite with alternatingB andC vertices. If all of the
C vertices appear in the same component ofRa j , then all of theB vertices must be in the same
component as well. Thus, it will suffice to prove that theC vertices are contained in the same
cycle in the rotation graph around everyA vertex. Similarly, it will suffice to prove that theA
vertices are contained in the same cycle in the rotation graph around everyB andC vertex.

Consider the vertexa j. We know the cycleX`−( j−1)−s j−1 contains the sequence

(· · · c`a jb`+1−s j−1 · · · )

and the cycleY`−( j−1)−s j−1 contains the sequence

(· · · c`−s j−1+t j−1a jbi+ j · · · ).

Thus the vertexc`−s j−1+t j−1 follows the vertexc` in the rotation graph arounda j. Continuing this
argument, we find theC vertices form the cyclic sequence

(ckck+(t j−1−s j−1)ck+2(t j−1−s j−1) · · · ck+(n−1)(t j−1−s j−1))

in the rotation graph arounda j. Sincet j−1 − s j−1 is relatively prime ton, this includes everyC
vertex.

Consider the vertexbk. We know the cycleXk− j contains the sequence

(· · ·a jbkck+s j · · · ).

SinceS double coversZn, there existsj′ such that either (1)s j′ = s j or (2) t j′ = s j. In either case
we know the vertexv j arising from the pair (s j, t j) is adjacent in the slope graphGS to the vertex
v j′ arising from the pair (s j′ , t j′). SinceGS is a single cycle of lengthn, we write

GS = (v jvδ( j)vδ2( j) · · · vδn−1( j)),
3



whereδ( j) = j′. In case (1), the cycleXk− j′ contains the sequence

(· · · a j′bkck+s j′
· · · ).

Likewise in case (2), the cycleYk− j′ contains the sequence

(· · · a j′bkck+t j′
· · · ).

Since either (1)k + s j′ = k + s j or (2) k + t j′ = k + s j, we have thata j′ = aδ( j) follows a j in
the rotation graph aroundbk. Repeating this argument, we see that theA vertices form the cyclic
sequence

(a jaδ( j)aδ2( j) · · · aδn−1( j))

in the rotation graph aroundbk, which includes everyA vertex. An analogous argument shows
that theA vertices form the cyclic sequence

(a j+1aδ( j)+1aδ2( j)+1 · · · aδn−1( j)+1)

lying in a single component in the rotation graph aroundc`.

3. Applications of slope sequence construction

j s j t j t j − s j j s j t j t j − s j

0 1 2 1 2r + 2 −2r + 2 −2r −2
1 −1 −2 −1 2r + 3 −2r 2r − 5 −6
2 1 −2 −3 2r + 4 2r − 5 2r − 7 −2
3 −1 2r 2r + 1 2r + 5 2r − 7 2r − 9 −2

4 2r 2r − 2 −2
...

...
...

...

5 2r − 2 2r − 4 −2 3r 5 3 −2
..
.

..

.
..
.

..

. 3r + 1 3 −2r + 3 2r + 1
r + 1 6 4 −2 3r + 2 −2r + 3 −2r + 1 −2
r + 2 4 0 −4 3r + 3 −2r + 1 −3 2r − 4
r + 3 0 2r − 1 2r − 1 3r + 4 −3 −5 −2
r + 4 2r − 1 2r − 3 −2 3r + 5 −5 −7 −2

r + 5 2r − 3 −4 2r
...

...
...

...

r + 6 −4 −6 −2 4r − 2 −2r + 9 −2r + 7 −2
r + 7 −6 −8 −2 4r − 1 −2r + 7 −2r + 5 −2
...

...
...

... 4r −2r + 5 2 2r − 3

Table 1: Slope sequences for nonorientable hamilton cycle embeddings ofKn,n,n wheren = 4r + 1, r ≥ 4.

Lemma 3.1. There exists a nonorientable hamilton cycle embedding of Kn,n,n for all n ≡ 1 (mod
4) such that n ≥ 5 and 3, 7 - n.
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Figure 1: The slope graphGS for the slope sequences given in Table 1 and Table 2.

Proof. Table 4 in Appendix A gives the necessary slope sequences forn = 5 and 13. It is a
straightforward exercise to show that these sequences meetall the required conditions of Theo-
rem 2.1, and that the resulting embeddings are nonorientable.

Table 1 gives the necessary slope sequences forn = 4r + 1, r ≥ 4. It is easy to see that the
collection{s0, ..., sn−1, t0, ..., tn−1} double coversZn. The slope graphGS consists of edgesv jv j+1

for all 3 ≤ j ≤ n − 1, along with the edgesv0v2, v2v1, andv1v3. This is a cycle of lengthn, as
seen in Figure 1. LetD = {t j − s j | j ∈ Zn}. From the table we see that

D = {−6,−4,−3,−2,−1, 1,2r− 4, 2r − 3, 2r − 1, 2r, 2r + 1}
=

{

−6,−4,−3,−2,−1, 1, n−9
2 ,

n−7
2 ,

n−3
2 ,

n−1
2 ,

n+1
2

}

.

Since 2, 3, 7 - n, we known is relatively prime to every element ofD. The last condition we
must prove is that{ j + s j | j ∈ Zn} = { j + t j | j ∈ Zn} = Zn. Note that for everyj we have
s j = k ⇔ s j+k = −k andt j = k ⇔ t j+k = −k. Let i ∈ Zn, and setk = si and j = i + k. It follows
that j+ s j = i+ k+ si+k = i+ k− k = i. Sincei was arbitrary, we know{ j+ s j | j ∈ Zn} = Zn. The
same argument shows that{ j + t j | j ∈ Zn} = Zn. Applying Theorem 2.1 yields a hamilton cycle
embedding ofKn,n,n. To determine the orientability of this embedding, consider the following
three cycles:

X1 : (a0b1c2a1b2c1a2b3c4 · · · ),
Y0 : (a0b0c2a1b1cn−1a2b2c0 · · · ),
Y1 : (a0b1c3a1b2c0a2b3c1 · · · ).

Assume this embedding admits an orientation, withX1 oriented forwards. Note thatY0 andX1

share the edgec2a1 and Y1 and X1 share the edgea0b1, so bothY0 andY1 must be oriented
backwards. However,Y0 andY1 share the edgeb2c0, so they must have different orientations.
This is a contradiction, so this embedding is nonorientable.

Lemma 3.2. There exists a nonorientable hamilton cycle embedding of Kn,n,n for all n ≡ 3 (mod
4) such that 3, 7 - n.

Proof. Table 4 in Appendix A gives the necessary slope sequence forn = 11. It is a straightfor-
ward exercise to show that this sequence meets all the required conditions of Theorem 2.1, and
that the resulting embedding is nonorientable.
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j s j t j t j − s j j s j t j t j − s j

0 1 2 1 2r + 4 −2r + 1 −2r − 1 −2
1 −1 −2 −1 2r + 5 −2r − 1 2r − 4 −6
2 1 −2 −3 2r + 6 2r − 4 2r − 6 −2
3 −1 2r + 1 2r + 2 2r + 7 2r − 6 2r − 8 −2

4 2r + 1 2r − 1 −2
..
.

..

.
..
.

..

.

5 2r − 1 2r − 3 −2 3r + 1 6 4 −2
...

...
...

... 3r + 2 4 −2r + 2 2r + 1
r + 1 7 5 −2 3r + 3 −2r + 2 −2r −2
r + 2 5 3 −2 3r + 4 −2r 0 2r
r + 3 3 2r 2r − 3 3r + 5 0 −4 −4
r + 4 2r 2r − 2 −2 3r + 6 −4 −6 −2
r + 5 2r − 2 −3 2r + 2 3r + 7 −6 −8 −2

r + 6 −3 −5 −2
...

...
...

...

r + 7 −5 −7 −2 n − 2 −2r + 6 −2r + 4 −2
.
..

.

..
.
..

.

.. n − 1 −2r + 4 2 2r − 2

Table 2: Slope sequences for nonorientable hamilton cycle embeddings ofKn,n,n wheren = 4r + 3, r ≥ 3.

Table 2 gives the necessary slope sequences forn = 4r + 3, r ≥ 3. It is again easy to see
that the collection{s0, ..., sn−1, t0, ..., tn−1} double coversZn. The slope graphGS (Figure 1) is
identical to the slope graph constructed for the slope sequence in Table 1. LetD again be the set
of differences; from the table we see that

D = {−6,−4,−3,−2,−1, 1,2r− 3, 2r − 2, 2r, 2r + 1, 2r + 2}
=

{

−6,−4,−3,−2,−1, 1, n−9
2 ,

n−7
2 ,

n−3
2 ,

n−1
2 ,

n+1
2

}

.

This is the sameD as in the proof of Lemma 3.1, so again we known is relatively prime to every
element ofD. We also haves j = k ⇔ s j+k = −k and t j = k ⇔ t j+k = −k as in the proof of
Lemma 3.1, which implies that{ j + s j | j ∈ Zn} = { j + t j | j ∈ Zn} = Zn. Applying Theorem
2.1 yields a hamilton cycle embedding ofKn,n,n. Becauses0, s1, s2, t0, t1, andt2 are the same in
Tables 1 and 2, analyzingX1, Y0 andY1 in the same way as in the proof of Lemma 3.1 shows that
this embedding is nonorientable.

j 0 1 2 3 4 · · · n − 3 n − 2 n − 1
s j 1 1 3 3 5 · · · n − 3 n − 1 n − 1
t j 0 2 2 4 4 · · · n − 2 n − 2 0

t j − s j −1 1 −1 1 −1 · · · 1 −1 1

Table 3: Slope sequences for a nonorientable embedding ofKn,n,n wheren ≡ 2 (mod 4).

Lemma 3.3. There exists a nonorientable hamilton cycle embedding of Kn,n,n for all n ≡ 2 (mod
4).
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Proof. Table 3 gives the necessary slope sequences forn ≡ 2 (mod 4). Sincet j − s j = (−1)j+1,
we know t j − s j is relatively prime ton for all j ∈ Zn. SinceGS consists of the edgesv jv j+1

for all j ∈ Zn, it is clearly a single cycle of lengthn. Finally, note thatj + s j = 2 j + 1 if j is
even andj + s j = 2 j if j is odd. Sincen ≡ 2 (mod 4), this implies{ j + s j | j ∈ Zn, j even}
covers all the odd values ofZn and{ j+ s j | j ∈ Zn, j odd} covers all the even values ofZn. Thus,
{ j + s j | j ∈ Zn} = Zn. Using the fact thatj + t j = 2 j if j is even andj + t j = 2 j + 1 if j is odd,
we derive that{ j + t j | j ∈ Zn} = Zn as well. Applying Theorem 2.1 provides a hamilton cycle
embedding ofKn,n,n. To determine the orientability of this embedding, consider the following
three cycles:

X0 : (a0b0c1a1b1c2a2b2c5 · · · ),
Y0 : (a0b0c0a1b1c3a2b2c4 · · · ),
Y1 : (a0b1c1a1b2c4a2b3c5 · · · ).

Assume this embedding admits an orientation, withX0 oriented forwards. Note thatY0 andX0

share the edgea0b0 andY1 and X0 share the edgec1a1, so bothY0 andY1 must be oriented
backwards. However,Y0 andY1 share the edgeb2c4, so they must have different orientations.
This is a contradiction, so this embedding is nonorientable.

4. Covering triangulations

In a series of papers [1, 2, 4] in the 1970’s and 1980’s, Bouchet – together with Bénard and
Fouquet – developed several methods for lifting triangulations of a graphG to triangulations of
G[Km], the lexicographic product ofG with the empty graphKm. These methods, which Bouchet
calls covering triangulations, are especially useful whenG is the complete multipartite graph
Kn1,...,nq, because the lexicographic productG[Km] is the complete multipartite graphKmn1,...,mnq.
Thus, these lifts yield a product construction for triangulations of complete multipartite graphs.
The following results are special cases of constructions presented in Bouchet’s papers and will
be needed in Section 5.

Corollary 4.1. If there exists a nonorientable triangulation of K2n,n,n,n with n even, then there
exists a nonorientable triangulation of K2mn,mn,mn,mn for every integer m ≥ 1.

Proof. Every vertex inK2n,n,n,n has even degree, thus it is an eulerian graph. The result follows
from Theorem 4 in [2].

Corollary 4.2. If there exists a nonorientable triangulation of K2n,n,n,n, then there exists a nonori-
entable triangulation of K2mn,mn,mn,mn for every integer m ≥ 1 such that 2, 3, 5 - m.

Proof. This follows from the second corollary on page 324 of [4].

Corollary 4.3. If there exists a nonorientable triangulation of K2n,n,n,n, then for every integer
p ≥ 0 there exists a nonorientable triangulation of K2mn,mn,mn,mn, where m = 3p.

Proof. Providing each independent set with a different color, it is easy to see thatK2n,n,n,n is
4-colorable. The result follows from Corollary 4.3 (and Lemma 3.1) in [1].
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5. Genus of some complete quadripartite graphs

Here we develop the connection between hamilton cycle embeddings ofKn,n,n and triangula-
tions of K2n,n,n,n and utilize the covering triangulations from Section 4. Thefollowing result is
the nonorientable counterpart to Lemma 4.1 in [6].

Lemma 5.1. The following are equivalent.

(1) There exists a nonorientable hamilton cycle embedding of G with p faces.
(2) There exists a nonorientable triangulation of Kp +G.

Moreover, if either (1) or (2) holds, then G is p-regular.

Lemma 5.1 leads to the following theorem; recall that we use the convention that the nonori-
entable genus of a planar graph is zero.

Theorem 5.2. For all n ≥ 1, g̃(K2n,n,n,n) = (n − 1)(3n − 2).

Proof. K2,1,1,1 is planar, so we will assumen ≥ 2. We know from [14] thatg(K2n,3n) = (3n −
2)(n − 1). SinceK2n,3n ⊂ K2n,n,n,n, we have ˜g(K2n,n,n,n) ≥ (n − 1)(3n − 2). From Euler’s for-
mula, an embedding that achieves this genus must be a triangulation, so it will suffice to find a
nonorientable triangulation ofK2n,n,n,n.

If n is odd, writen = 3p7qm, where 3, 7 - m. If m , 1, then Lemmas 3.1 and 3.2 imply the ex-
istence of a nonorientable hamilton cycle embedding ofKm,m,m. Lemma 5.1 yields a triangulation
of K2m,m,m,m. Applying Corollary 4.3 provides a triangulation ofK2(3pm),3pm,3pm,3pm, and applying
Corollary 4.2 gives us the desired triangulation ofK2n,n,n,n. If m = 1, then we use a nonorientable
hamilton cycle embedding of eitherK3,3,3 or K7,7,7 from Appendix A as our starting point before
applying Lemma 5.1 and the results of Section 4.

If n is even, writen = 2p2m, wherem is odd. By Lemma 3.3 there exists a nonorientable
hamilton cycle embedding ofK2m,2m,2m. Lemma 5.1 yields a triangulation ofK4m,2m,2m,2m, and
applying Corollary 4.1 gives us the desired triangulation of K2n,n,n,n. This completes the proof.

The construction of the necessary triangulations forn ≥ 2 in the proof of Theorem 5.2 leads
directly to the following result.

Corollary 5.3. There exists a nonorientable hamilton cycle embedding of Kn,n,n for all n ≥ 2.

Unfortunately, the hamilton cycle faces in the embeddings of Kn,n,n obtained from Bouchet’s
covering triangulations ofK2n,n,n,n are not, in general,ABC cycles.

The following extension of Theorem 5.2 is obtained using the‘diamond sum’ technique. This
surgical technique was introduced in dual form by Bouchet [3], reinterpreted by Magajna, Mohar
and Pisanski [11], developed further by Mohar, Parsons, andPisanski [12], and generalized by
Kawarabayashi, Stephens and Zha [10]. In particular, the diamond sum construction allows us to
combine minimum genus embeddings ofKt1,n,n,n andKt2,3n to get a minimum genus embedding
of Kt1+t2−2,n,n,n. This is achieved by removing a disk containing a vertex of degree 3n and all
of its incident edges from each embedding and identifying the boundaries of the resulting holes
in a suitable fashion. For similar applications of the diamond sum, see [5, 6, 7], and for more
information on this technique, see [13, pages 117–118].

Corollary 5.4. For all n ≥ 1 and all t ≥ 2n, g̃(Kt,n,n,n) =
⌈

(t−2)(3n−2)
2

⌉

= g̃(Kt,3n).
8



Proof. We know thatKt,3n ⊆ Kt,n,n,n, and from [14] we know ˜g(Kt,3n) =
⌈

(t−2)(3n−2)
2

⌉

, sog̃(Kt,n,n,n) ≥
⌈

(t−2)(3n−2)
2

⌉

. We now apply the diamond sum construction to minimum genus nonorientable em-
beddings ofK2n,n,n,n andKt−2n+2,3n. By Theorem 5.2 we know ˜g(K2n,n,n,n) = (n − 1)(3n − 2), and
again by [14] we know ˜g(Kt−2n+2,3n) =

⌈

(t−2n)(3n−2)
2

⌉

. Via the diamond sum construction, we learn

that g̃(Kt,n,n,n) ≤ (n − 1)(3n − 2)+
⌈

(t−2n)(3n−2)
2

⌉

=

⌈

(t−2)(3n−2)
2

⌉

, and the result follows.

Remark 5.5. Corollary 5.4 implies that for any graphG satisfyingK3n ⊆ G ⊆ Kn,n,n and for
all t ≥ 2n, the nonorientable genus ofKt + G is the same as the nonorientable genus ofKt,3n.
In other words, ˜g(Kt + G) =

⌈

(t−2)(3n−2)
2

⌉

. Moreover, in the special caset = 2n, we also get

g̃(G + H) = (n − 1)(3n − 2) for graphsG andH satisfyingK3n ⊆ G ⊆ K2n,n andK2n ⊆ H ⊆ Kn,n.

Appendix A. Special case constructions

This appendix presents the required nonorientable hamilton cycle embeddings ofKn,n,n when
n ∈ {3, 5, 7, 11, 13}.

By checking all possible cases, we know there does not exist aslope sequence construction
for a nonorientable embedding ofK3,3,3. The desired embedding is given by the following facial
boundaries:

(a0b0c0a1b1c1a2b2c2), (a0b0c1a1b1c2a2b2c0),
(a0b1c1a1b2c2a2b0c0), (a0b2c0a2b1c2a1b0c1),
(a0b2c1a2b1c0a1b0c2), (a0b1c0a2b0c2a1b2c1).

For n ∈ {5, 7, 11, 13}, Table 4 provides a slope sequence that yields a nonorientable hamilton
cycle embedding ofKn,n,n. To show that these embeddings are indeed nonorientable, inthe same
way as in the proof of Lemma 3.1, consider the following sequences of faces and edges, where
F e F′ impliesF andF′ share the edgee:

n = 5 : X2 a0b2 Y2 b3c1 Y1 c4a4 X2;
n = 7 : X0 b0c1 X4 a0b4 Y4 c3a5 X0;
n = 11 : X0 a0b0 Y0 c8a6 X9 b0c1 X0;
n = 13 : X0 a0b0 Y0 c8a5 X11 b0c1 X0.
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