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Abstract. A distinguishing partition for an action of a group Γ on a set
X is a partition of X that is preserved by no nontrivial element of Γ. As a
special case, a distinguishing partition of a graph is a partition of the vertex
set that is preserved by no nontrivial automorphism. In this paper we provide
a link between distinguishing partitions of complete equipartite graphs and
asymmetric uniform hypergraphs. Suppose that m ≥ 1 and n ≥ 2. We show
that an asymmetric n-uniform hypergraph with m edges exists if and only if
m ≥ f(n), where f(2) = f(14) = 6, f(6) = 5, and f(n) = blog2(n + 1)c + 2
otherwise. It follows that a distinguishing partition of Km(n) = Kn,n,...,n,
or equivalently for the wreath product action Sn Wr Sm, exists if and only if
m ≥ f(n).

1. Introduction

A coloring of the vertices of a graph G, c : V (G) → {1, 2, ..., r}, is said to be r-
distinguishing if there are no nontrivial color-preserving automorphisms of G. The
distinguishing number D(G) of G is the smallest r for which such a coloring exists.
Let V (G) = {v1, v2, ..., vn}; the coloring c(vi) = i is trivially n-distinguishing, so
the distinguishing number is well-defined for all graphs. Albertson and Collins
introduced these ideas in [1]; since then this topic has been well studied (c.f. [2, 4,
7]). These ideas were generalized to group actions by Tymoczko in [9]. Let Γ be a
group acting on a set X . A coloring of X , c : X → {1, 2, ..., r}, is r-distinguishing if
the only element in Γ that preserves the coloring is the identity. The distinguishing

number of this action, denoted DΓ(X), is the smallest r for which such a coloring
exists. Thus, D(G) = DAut G(V (G)). For further study in the setting of group
actions see [5, 6, 8, 10].

Colorings of a set X are closely related to partitions. Any coloring of X gives a
partition of X into color classes, while any partition yields colorings by assigning a
unique color to the elements of each part. If a group Γ acts on X , each element of
Γ that preserves a coloring also preserves the associated partition, but the converse
is not necessarily true. For example, the only graph automorphism that preserves
the coloring in Figure 1 is the identity (so it is a distinguishing coloring), but the
automorphism (uw)(vx) preserves the color class partition {{u, v}, {w, x}}.

Therefore, the idea of a distinguishing coloring may be modified to give the re-
lated but not identical idea of a distinguishing partition. A partition of X is a
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Figure 1. The automorphism (uw)(vx) preserves the partition
but not the coloring.

distinguishing partition if the only element in Γ that preserves the partition is the
identity. In a graph, this translates to a partition of V (G) such that there are no
nontrivial automorphisms that preserve this partition. Distinguishing partitions
seem to be a natural concept, as other important ideas for group actions, such as
primitivity, are defined in terms of the effect of elements of Γ on partitions of X . Un-
like distinguishing colorings, not all group actions or graphs admit a distinguishing
partition. For example, if n ≥ 2 then Kn does not. Thus, a fundamental question
for a group action or graph is whether or not it has a distinguishing partition.

This appears to be a difficult question. In this paper we explore a general
property of distinguishing partitions. Then we show that even for the complete
equipartite graph Km(n) = Kn,n,...,n (having m parts of size n) it is not totally
straightforward to say when it has a distinguishing partition. For a fixed n, we
provide lower bounds for m and show these are best possible. To arrive at these
bounds, a connection to asymmetric uniform hypergraphs is established.

2. Hypergraphs and a General Property

A hypergraph H is a triple (V (H), E(H), I(H)), where V (H) is a finite set of
elements called vertices , E(H) is a finite set of elements called edges , and I(H) ⊆
V (H) × E(H) is the incidence relation. If (v, e) ∈ I(H), then we say the vertex
v is incident with the edge e. Often the incidence relation I(H) is presented as
an incidence matrix M(H) = (mij), with rows indexed by vertices vi and columns
indexed by edges ej . The entry mij = 1 if (vi, ej) ∈ I(H), and mij = 0 otherwise.
If v is incident with exactly n edges, then we say the degree of v is n; if all vertices
v ∈ V (H) have degree n, then H is n-regular . Similarly, if there are exactly n
vertices incident with an edge e, then we say the size of e is n; if all edges e ∈ E(H)
have size n, then H is n-uniform. A graph is simply a 2-uniform hypergraph.

Define the sets EH(v) = {e ∈ E(H) | (v, e) ∈ I(H)} and VH(e) = {v ∈
V (H) | (v, e) ∈ I(H)} (we simply write E(v) and V (e) if H is understood). Two
vertices v1, v2 ∈ V (H) are said to be duplicate vertices if E(v1) = E(v2); similarly
two edges e1, e2 ∈ E(H) are said to be duplicate edges if V (e1) = V (e2). A hyper-
graph is vertex-simple or edge-simple if there are no duplicate vertices or duplicate
edges, respectively.

While we define a hypergraph as an incidence structure, it is sometimes conve-
nient to consider a hypergraph (particularly an edge-simple one) as a set structure
where we identify the edge e with the set V (e). We will at various times consider
a hypergraph as a set structure without explicitly making the transition.
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An automorphism of a hypergraph H is a pair (π, σ), where π is a permutation
of V (H) and σ is a permutation of E(H) such that (v, e) ∈ I(H) if and only if
(π(v), σ(e)) ∈ I(H) for all v ∈ V (H) and for all e ∈ E(H). The automorphisms of
H form a group under composition, denoted Aut H . The image of the projection
(π, σ) 7→ π is denoted AutV H , while the image of the projection (π, σ) 7→ σ is
denoted AutE H . The members of AutV H and AutE H are called vertex automor-

phisms and edge automorphisms , respectively. If AutH is the trivial group, we say
H is asymmetric. A pair of duplicate vertices or edges gives rise to an automor-
phism that simply swaps these vertices or edges, so an asymmetric hypergraph is
necessarily vertex-simple and edge-simple.

The dual of H , denoted H∗, is a hypergraph (V (H∗), E(H∗), I(H∗)), where
V (H∗) = E(H), E(H∗) = V (H), and I(H∗) = {(e, v) | (v, e) ∈ I(H)}. In other
words, the dual H∗ swaps the vertices and edges of H . The map (π, σ) ∈ Aut H 7→
(σ, π) ∈ AutH∗ gives rise to the following observation.

Observation 2.1. For every hypergraph H , AutH ∼= AutH∗.

Many vertex properties of hypergraphs translate naturally to edge properties
using the dual construction. For example, H is n-regular if and only if H∗ is n-
uniform, and H is vertex-simple if and only if H∗ is edge-simple. In addition, we
have the following lemma.

Lemma 2.2. Let H be a hypergraph.

(i) If H is edge-simple, then the projection (π, σ) 7→ π is an isomorphism from
Aut H to AutV H .

(ii) If H is vertex-simple, then the projection (π, σ) 7→ σ is an isomorphism
from AutH to AutE H .

Proof. (i) We know the given projection is a surjective homomorphism, so it remains
to show that it is injective. Assume (π, σ1), (π, σ2) ∈ Aut H are two elements that
project to π. Since (π, σ1) is an automorphism, we must have V (σ1(e)) = π(V (e))
for all e ∈ E(H). Similarly we must have V (σ2(e)) = π(V (e)) for all e ∈ E(H).
But this implies V (σ1(e)) = V (σ2(e)) for all e ∈ E(H). Since there are no duplicate
edges, this means σ1(e) = σ2(e) for all e ∈ E(H). Hence σ1 = σ2, and the projection
is injective as desired.

(ii) This follows by applying part (i) to H∗ and using Observation 2.1. �

Suppose we have a function f : X → Y . A subset {x1, x2, ..., xk} ⊆ X is mapped
to the subset {f(x1), f(x2), ..., f(xk)} ⊆ Y . This induces a function f ′ : 2X → 2Y

from subsets of X to subsets of Y . Similarly f ′ induces a function f ′′ : 22X

→ 22Y

from collections of subsets of X to collections of subsets of Y . Moreover, if f is
injective, then so are f ′ and f ′′. Commonly f ′ and f ′′ are just denoted by f , but
for our purposes it will be helpful to distinguish between f , f ′ and f ′′.

The notation above, together with Lemma 2.2, provides a natural way to talk
about automorphisms of a hypergraph as a set structure. If H is an edge-simple
hypergraph and (π, σ) ∈ Aut H , then we must have σ = π′. Additionally, a per-
mutation π of V (H) is an automorphism of H if and only if π′′(E(H)) = E(H).
Equivalently, a permutation π of V (H) is an automorphism of H if and only if
π′′(E(v)) = E(π(v)) for all v ∈ V (H). These facts will be useful in the arguments
of Section 3.
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Let G be a graph (i.e., 2-uniform hypergraph). If G is simple in the usual sense
(i.e., edge-simple) then we will apply Lemma 2.2(i) and consider automorphisms as
just permutations of V (G). If uv ∈ E(G), we say u and v are adjacent and write
u ∼ v. A subset of vertices X ⊆ V (G) is a module if for every v ∈ V (G) \ X ,
either x ∼ v for all x ∈ X or x 6∼ v for all x ∈ X . If in addition X forms an
independent set or clique, then X is called an independent module or complete

module, respectively. In general, large independent or complete modules prevent
the existence of a distinguishing partition, as shown in the following result.

Theorem 2.3. Let G be a graph with |V (G)| = n. If G contains an independent or
complete module X with |X | > n+1

2 , then there exists no distinguishing partition
of G.

Proof. Assume G has a distinguishing partition. To avoid an automorphism that
simply swaps two vertices, each vertex must be in a different set of the partition,
and at most one vertex can be in a set by itself. Thus, every other vertex in X must
be in a partition with some element not in X , so n ≥ 2|X | − 1. But this implies
n+1

2 ≥ |X |, a contradiction. Therefore, no distinguishing partition exists. �

3. Reduction to hypergraphs

In this section we establish a connection between automorphisms of Km(n) pre-
serving a partition of its vertices and automorphisms of certain hypergraphs.

Let [k] denote the set {1, 2, . . . , k}. The graph Km(n) contains m induced copies

of Kn, and we can let V (Km(n)) = [m]× [n], where (i, j) denotes the jth vertex in

the ith copy of Kn. Let ρ : V (Km(n)) → [m] be the projection given by ρ(i, j) = i.

In the graph Km(n), any automorphism permutes the m copies of Kn along with

independently permuting the vertices within each Kn. Using the definitions of [3],
we see that (after reversing coordinates in V (Km(n)) = [m] × [n]) the action of
AutKm(n) is just the wreath product action Sn WrSm on the set [n] × [m], where
Sk is the symmetric group acting on [k].

The following theorem formalizes the link between asymmetric hypergraphs and
distinguishing partitions of complete equipartite graphs. The idea is to project
a partition of V (Km(n)) using ρ′′ to obtain a hypergraph with vertex set [m], or,
conversely, to lift a hypergraph to obtain a partition. Intuitively it is not hard to see
that the partition will be distinguishing if and only if the hypergraph is n-regular
and asymmetric, but verifying this rigorously requires some technical arguments.

Theorem 3.1. The following are equivalent for m, n ≥ 1:

(i) There exists a distinguishing partition of Km(n).
(ii) There exists a distinguishing partition of mKn (the union of m disjoint

copies of Kn).
(iii) There exists an asymmetric n-regular hypergraph with m vertices.
(iv) There exists an asymmetric n-uniform hypergraph with m edges.
(v) There exists a distinguishing partition of the wreath product Sn WrSm

acting on the set [n] × [m].

Proof. (i)⇔(ii) This follows because mKn = Km(n) and complementary graphs
have the same automorphism group.

(i)⇒(iii) Assume S = {S1, S2, ..., Sr} is a distinguishing partition for Km(n).
Thus, if α ∈ AutKm(n) such that α′′(S) = S, it follows that α = 1[m]×[n].
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For every (i, j) ∈ V (Km(n)), there exists a unique k such that (i, j) ∈ Sk; define
the function gi(j) = k for all (i, j) ∈ V (Km(n)). If two distinct vertices (i, j1) and
(i, j2) both belong to Sk then there is an automorphism of Km(n) swapping these
two vertices and preserving S, which is a contradiction. Therefore, each function
gi is injective. We can define g−1

i (k) precisely when i ∈ ρ′(Sk), and

(i, j) ∈ Sk ⇔ k = gi(j) ⇔ j = g−1
i (k). (∗)

Consider the set structure H obtained by setting V (H) = [m] and E(H) = ρ′′(S).
Since each gi is injective, n distinct elements of ρ′′(S) contain each i ∈ [m], and so
H is an n-regular hypergraph.

We claim that H is edge-simple, i.e., that no two distinct edges are equal as sets.
Suppose ρ′(Sk1

) = ρ′(Sk2
). Then for every (i, ji,1) ∈ Sk1

there exists (i, ji,2) ∈ Sk2
.

The map that swaps these two elements for all i ∈ ρ′(Sk1
) forms an automorphism

α of Km(n) such that α′′(S) = S. But this implies α = 1[m]×[n]; hence, Sk1
= Sk2

and k1 = k2. Thus, H is edge-simple.
We want to show that AutH is trivial; since H is edge-simple, it will suffice to

show that AutV H is trivial. Let π ∈ AutV H . We know π′′(E(H)) = π′′(ρ′′(S)),
so we can define the permutation p on [r] by π′(ρ′(Sk)) = ρ′(Sp(k)). Set α(i, j) =

(π(i), g−1
π(i)(p(gi(j)))). We claim that (1) α is well-defined, (2) ρ ◦ α = π ◦ ρ, (3)

α ∈ Aut Km(n), and (4) α′′(S) = S.

For (1), it suffices to show that g−1
π(i)(p(gi(j))) is well-defined. This is true if and

only if π(i) ∈ ρ′(Sp(gi(j))) = π′(ρ′(Sgi(j))), which is true if and only if i ∈ ρ′(Sgi(j)).
But (i, j) ∈ Sgi(j) by definition of gi, so this is always true, and α is well-defined.

To prove (2), note that ρ ◦ α(i, j) = ρ(π(i), g−1
π(i)(p(gi(j)))) = π(i) = π(ρ(i, j)) =

π ◦ ρ(i, j) for all (i, j) ∈ V (Km(n)). We know π is a permutation of [m], so to

verify (3) it suffices to show that j 7→ g−1
π(i)(p(gi(j))) is a permutation of [n] for

each i ∈ [m]. We already know gi, p, and g−1
π(i) are injective, so the composition of

these maps is also injective. Since j 7→ g−1
π(i)(p(gi(j))) is an injective map from [n]

to [n], it must be a permutation. Finally, consider (4). Suppose (i, j) ∈ Sk. Then
α(i, j) = (π(i), g−1

π(i)(p(gi(j)))) = (π(i), g−1
π(i)(p(k))) ∈ Sp(k), using (∗) twice. Thus,

α′(Sk) ⊆ Sp(k) for all k. But
⋃r

k=1 α′(Sk) = V (Km(n)) =
⋃r

k=1 Sp(k), so we must
have α′(Sk) = Sp(k) for all k, and α′′(S) = S, as required.

From (3) and (4) it follows that α = 1[m]×[n], and from (2) we learn that π ◦ ρ =
ρ ◦ α = ρ ◦ 1[m]×[n] = ρ. Thus, π(i) = π(ρ(i, j)) = ρ(i, j) = i for all i ∈ [m], and
hence π = 1[m]. This shows AutV H is trivial, as desired.

(iii)⇒(i) Assume there is an asymmetric n-regular hypergraph H with V (H) =
[m]; we know it must be edge-simple. Let the edges be denoted T1, T2, ..., Tr,
and for each i define the distinct numbers gi(1), gi(2), ..., gi(n) such that E(i) =
{Tgi(1), Tgi(2), ..., Tgi(n)}. For each (i, j) ∈ [m]× [n] replace i in Tgi(j) by (i, j); each
edge Tk now becomes a set Sk ⊆ [m] × [n] = V (Km(n)). Let S = {S1, S2, ..., Sr};
this collection partitions V (Km(n)). We see that ρ′(Sk) = Tk for all k ∈ [r]. Let
α ∈ Aut Km(n) be an automorphism such that α′′(S) = S. We want to show
α = 1[m]×[n].

We can write α(i, j) = (π(i), hi(j)), where π is a permutation of [m] and each hi

is a permutation of [n]. Then π(ρ(i, j)) = π(i) = ρ(α(i, j)), so that π ◦ ρ = ρ ◦ α.
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Figure 2. An asymmetric 2-uniform hypergraph with 6 or more edges.

Define the permutation p on [r] by α′(Sk) = Sp(k). For each k,

π′(Tk) = π′(ρ′(Sk)) = (π ◦ ρ)′(Sk) = (ρ ◦ α)′(Sk)

= ρ′(α′(Sk)) = ρ′(Sp(k)) = Tp(k).

But then π′′(E(H)) = E(H), so π ∈ AutV H . By asymmetry of H , this means
π = 1[m]. Thus, p = 1[r] as well. Now for every (i, j) ∈ Sk, we have α(i, j) =
(π(i), hi(j)) = (i, hi(j)) ∈ α′(Sk) = Sp(k) = Sk. However, (i, j), (i, hi(j)) ∈ Sk

implies j = hi(j). It follows that hi = 1[n] for all i ∈ [m], so α = 1[m]×[n]. This
shows S is a distinguishing partition for Km(n) as desired.

(iii)⇔(iv) This follows from considering the dual hypergraph and Observation
2.1.

(i)⇔(v) As discussed above, this action is precisely the automorphism group of
Km(n), from which the result follows. �

Henceforth we consider our problem as in Theorem 3.1(iv), in terms of asymmet-
ric uniform hypergraphs. Note the restriction m ≥ 1 in the theorem; this excludes
trivial asymmetric uniform hypergraphs with no edges and one or no vertices. From
the uniform hypergraph setting we are able to get a lower bound for m.

Corollary 3.2. Suppose that m ≥ 1 and n ≥ 2. If H is an asymmetric n-uniform
hypergraph with m edges, then m ≥ dlog2 ne + 1.

Proof. Pick any edge f . Since H is asymmetric, it must be vertex-simple, so the
sets E(u) must be distinct for all u ∈ V (f). For every edge g ∈ E(H) \ {f}, either
g ∈ E(u) or g /∈ E(u). Thus, there are at most 2m−1 possibilities for E(u). Since
they must all be distinct, it follows that n = |V (f)| ≤ 2m−1. Solving this inequality
yields m ≥ dlog2 ne + 1. �

The following small cases will be needed later in the paper.

Theorem 3.3.

(i) There are no asymmetric 0- or 1-uniform hypergraphs with 2 or more
edges.

(ii) There exists an asymmetric 2-uniform hypergraph with m ≥ 1 edges if and
only if m ≥ 6.

Proof. (i) This is clear.
(ii) An asymmetric 2-uniform hypergraph is simply a graph in the normal sense

with a trivial automorphism group. It is not hard to show that every graph with
fewer than 6 edges has some nontrivial automorphism. Furthermore, the tree ob-
tained from joining copies of the linear graphs P2, P3, and Pm−2, m ≥ 6, at a
common endpoint yields an m-edge graph with trivial automorphism group (see
Figure 2). �
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4. The vertex and edge power complement

To define the vertex power complement HV P of an edge-simple hypergraph H ,
we want to consider H as a set structure, so assume e = V (e) for all e ∈ E(H).
Let V (HV P ) = V (H), and let E(HV P ) = 2V (H) \E(H), where 2V (H) is the power
set of V (H). This yields an edge-simple hypergraph HV P with the same vertex set
as H and |E(HV P )| = 2|V (H)| − |E(H)|. Moreover, if H is n-regular, then HV P

is (2|V (H)|−1 − n)-regular. Since H and HV P are edge-simple, we have for any
permutation π of V (H)

π ∈ AutV H ⇔ π′′(E(H)) = E(H)

⇔ π′′(E(HV P )) = π′′(2V (H) \ E(H)) = 2V (H) \ E(H) = E(HV P )

⇔ π ∈ AutV HV P ,

which, together with Lemma 2.2(i), leads directly to the following observation.

Observation 4.1. For every edge-simple hypergraph H , AutH ∼= AutV H =
AutV HV P ∼= Aut HV P .

We can now define the edge power complement HEP of a vertex-simple hyper-
graph H by HEP = ((H∗)V P )∗. In other words, we swap the vertices and edges,
find the vertex power complement, then reverse the vertices and edges back to their
original roles. If we think of our hypergraph in a slightly unusual way, identifying
vertices with sets of edges, then V (HEP ) = 2E(H) \ V (H) and E(HEP ) = E(H).
Moreover, if H is n-uniform, then HEP is (2|E(H)|−1 − n)-uniform. As with the
vertex power complement, the edge power complement preserves the automorphism
group.

Corollary 4.2. For every vertex-simple hypergraph H , Aut H ∼= AutE H =
AutE HEP ∼= AutHEP .

Proof. This follows from Lemma 2.2(ii), Observation 2.1, and Observation 4.1. �

Example 4.3. HV P and HEP can be represented simply in terms of incidence
matrices. Let H be the hypergraph with incidence matrix M(H) below.

M(H) =





1 1 0
1 0 0
0 1 1



 .

The hypergraph HV P is then given by the incidence matrix M(HV P ) that consists
of all binary columns not in M(H). Likewise, the hypergraph HEP is given by the
incidence matrix M(HEP ) that consists of all binary rows not in M(H).

M(HV P ) =





0 1 0 0 1
0 0 1 1 1
0 0 0 1 1



 , M(HEP ) =













0 0 0
0 1 0
0 0 1
1 0 1
1 1 1













.

The usefulness of the edge power complement to us lies in the following corollary.

Corollary 4.4. Suppose q ≥ 0 and 0 ≤ n ≤ 2q. There exists an asymmetric
n-uniform hypergraph with q + 1 edges if and only if there exists an asymmetric
(2q − n)-uniform hypergraph with q + 1 edges.
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Proof. From Corollary 4.2 we have that H is an asymmetric n-uniform hypergraph
with q + 1 edges if and only if HEP is an asymmetric (2q − n)-uniform hypergraph
with q + 1 edges. �

We are now able to improve the lower bound of Corollary 3.2.

Corollary 4.5. If m ≥ 1, n ≥ 3, and H is an asymmetric n-uniform hypergraph
with m ≥ 1 edges, then m ≥ blog2(n+1)c+2. Moreover, if n = 6 then m ≥ 5, and
if n = 14 then m ≥ 6.

Proof. We have 2q−1 + 1 ≤ n ≤ 2q, with q ≥ 2. The bound from Corollary 3.2 is
m ≥ q + 1, which is identical with the bound here except when n = 2q or 2q − 1,
or 2q − 2 with q = 3 or 4 (i.e., n = 6 or 14). In those cases the bound here is
m ≥ q + 2, so we must show that H cannot have q + 1 edges. If H did have q + 1
edges then we could apply Corollary 4.4 to obtain a 0-, 1- or 2-uniform asymmetric
hypergraph with q + 1 edges, contradicting Theorem 3.3. �

5. Constructions for n = 2q, 2q − 1, 2q − 2

Corollary 4.4 presents part of an inductive construction for asymmetric uniform
hypergraphs. However, Theorem 3.3 leaves some holes in this inductive process, so
we will need constructions for n = 2q and n = 2q − 1 for all q ≥ 2. Additionally,
we need special constructions for n = 3, 6, and 14.

Lemma 5.1. If n = 2q for q ≥ 2, then there exists an asymmetric n-uniform
hypergraph with q + 2 edges.

Proof. Let V (H) be all possible binary (q + 1)-tuples x = (x0, x1, x2, ..., xq), and

set Si = {x ∈ V (H) | xi = 1}, 0 ≤ i ≤ q. Let T = S0 = {x ∈ V (H) | x0 = 0}.
We have |Si| = |T | = 2q for all i. Furthermore, |Si ∩ Sj | = 2q−1 for all i 6= j,
|Si ∩ T | = 2q−1 for all i ≥ 1, and |S0 ∩ T | = 0. For 1 ≤ k ≤ q − 1, let v(k) ∈ T
be the vertex with v(k)k = 1 and v(k)` = 0 for all ` 6= k; also, let w(k) /∈ T
be the vertex with w(k)0 = 1, w(k)` = 0 for 1 ≤ ` ≤ k − 1, and w(k)` = 1
for k ≤ ` ≤ q. Set T ′ = T \ {v(1), v(2), ..., v(q − 1)} ∪ {w(1), w(2), ..., w(q − 1)}.
Set E(H) = {S0, S1, ..., Sq, T

′}. We claim the set structure H is an asymmetric
2q-uniform hypergraph with q + 2 edges. The uniformity and size of E(H) are
clear from construction. To show there are no automorphisms, we consider each
edge’s intersection with T ′. To get from T to T ′ we replaced q − 1 vertices with
v(k)0 = 0 with q − 1 vertices with w(k)0 = 1, so that |S0 ∩ T ′| = q − 1. For i ≥ 1,
v(k)i = 0 and w(k)i = 1 for 1 ≤ k ≤ i − 1, while v(k)i = w(k)i for k ≥ i, so that
|Si ∩ T ′| = 2q−1 + i − 1. Since 2q−1 + i − 1 > q − 1 for all i ≥ 1 and q ≥ 2, the size
of the intersection Si ∩ T ′ is unique for every edge Si. T ′ is the only edge to have
all unique intersection sizes, so any automorphism of H must fix T ′. But this also
fixes every Si according to the size of its intersection with T ′. Thus, there are no
nontrivial edge automorphisms of H . Since H is clearly vertex-simple, by Lemma
2.2(ii) H is asymmetric. �

Corollary 5.2. If n = 2q−1 for some integer q ≥ 2, then there exists an asymmetric
n-uniform hypergraph with q + 2 edges.

Proof. In the construction of H above, x = (1, 1, ..., 1) is incident with every edge.
Thus, removing it creates an edge-simple (2q − 1)-uniform hypergraph H − x with
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q + 2 edges. Any (vertex) automorphism π of H − x can be extended to an auto-
morphism of H by setting π(x) = x, so H − x must be asymmetric as well. �

The construction in Corollary 5.2 is valid when n = 3, but gives a hypergraph
with 3 vertices of degree 1. Later we will need a hypergraph with fewer vertices of
degree 1.

Lemma 5.3. There exist asymmetric hypergraphs H as follows.

(i) H is 3-uniform with 4 edges, and 2 vertices of degree 1.
(ii) H is 6-uniform with 5 edges.
(iii) H is 14-uniform with 6 edges.

Proof. For each proof below, the transpose of the incidence matrix, M(H)T , is
given. The columns (vertices) are indexed by v1, v2, ..., v2n, where n = 3, 6 and 14,
respectively, and the rows (edges) are indexed by e1, e2, ..., em, where m = 4, 5, and
6, respectively. To prove the induced hypergraph H is asymmetric, the sizes of the
edge intersections are provided in a second matrix A = (aij), with aij = |ei ∩ ej|
(alternatively, A = M(H)T M(H)). If two rows (edges) ei and ej have a different
multiset of intersection sizes, then there can be no (edge) automorphism σ such that
σ(ei) = ej. If all rows of A consist of distinct multisets, then the automorphism
group is trivial. This covers parts (ii) and (iii) below, while an additional argument
is needed for part (i).

(i)

M(H)T =









1 1 1 0 0 0
1 1 0 1 0 0
1 0 0 1 1 0
0 0 1 1 0 1









, A =









3 2 1 1
2 3 2 1
1 2 3 1
1 1 1 3









.

From A it might still be possible for an edge automorphism to swap e1 and e3.
However, e3 contains a vertex of degree 1, while e1 does not; thus, no such auto-
morphism exists. Note that v5 and v6 are the vertices of degree 1.

(ii)

M(H)T =













1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 1 1 1 0 0 0
1 1 0 1 0 0 1 1 0 1 0 0
1 0 0 1 1 0 1 0 0 1 1 0
1 0 0 0 0 0 1 1 0 1 1 1













,

A =













6 3 3 3 1
3 6 4 2 3
3 4 6 4 4
3 2 4 6 4
1 3 4 4 6













.

(iii)

M(H)T =

















1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 1 1 1 1 0 0 0
1 1 0 0 1 0 0 1 1 0 0 1 1 0
1 0 1 0 0 1 0 1 0 1 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 1 1 1 0 0 0 0
1 0 0 1 1 0 0 1 1 0 1 1 0 0
1 1 0 1 0 1 0 1 0 1 1 0 1 0
1 1 1 1 1 1 0 1 1 1 1 1 1 1

















,

A =

















14 7 8 7 6 1
7 14 7 6 7 7
8 7 14 7 8 7
7 6 7 14 7 8
6 7 8 7 14 9
1 7 7 8 9 14

















.

�

6. Main result

Our overall argument proceeds by induction on n, but for each n we also need
to apply induction on m, as provided by the following lemma.

Lemma 6.1. Suppose that m ≥ 1 and n ≥ 2. If there exists an asymmetric n-
uniform hypergraph with m edges and at most n−1 vertices of degree 1, then there
exists an asymmetric n-uniform hypergraph with m′ edges for all m′ ≥ m.

Proof. Let H be an asymmetric n-uniform hypergraph with m edges and vertices
v1, v2, ..., vk of degree 1, where k ≤ n−1. We may assume H has no vertex of degree
0 (any such vertex may be deleted). Form the edge e = {w, v1, v2, ..., vk, x1, ...,
xn−k−1}, where w w /∈ V (H), and the xi’s are any other distinct vertices in V (H).
The hypergraph H + e contains only one vertex of degree 1, namely w. The edge e
containing w must be fixed under any automorphism, and it follows that any edge
automorphism of H + e must also be an edge automorphism of H . Thus, the only
automorphism of H + e is the trivial one, and we have an asymmetric n-uniform
hypergraph with m + 1 edges. Since we now have only one vertex of degree 1, we
can repeat this process to get an asymmetric n-uniform hypergraph with m′ edges
for all m′ ≥ m. �

Remark 6.2. Since a vertex-simple hypergraph with m edges can have at most m
vertices of degree 1, the degree 1 requirement holds automatically for m ≤ n − 1.

Theorem 6.3. Let m, n be integers with m ≥ 1 and n ≥ 2. There exists an
asymmetric n-uniform hypergraph with m edges if and only if m ≥ f(n), where:

f(n) =















6 if n = 2
5 if n = 6
6 if n = 14
blog2(n + 1)c + 2 if n > 2, n 6= 6, 14

Proof. The case n = 2 is covered by Theorem 3.3(ii). For n ≥ 3, applying Corollary
4.5 and Lemma 6.1 means it suffices to find such a hypergraph for m = f(n) with
at most n − 1 vertices of degree 1. Since f(n) ≤ n − 1 for all n ≥ 5, Remark 6.2
says we can ignore the degree 1 requirement except when n = 3 or 4. We proceed
by induction on n. Note that for 3 ≤ k ≤ n we always have f(k) ≤ f(n).
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Case 1. If 2q−1 +1 ≤ n ≤ 2q − 2 with q ≥ 3 and n 6= 6 or 14, then let n = 2q − k
with 2 ≤ k ≤ 2q−1 − 1 < n. Since f(k) ≤ f(n) (when k = 2 this follows because
n 6= 6 or 14), by the inductive assumption there exists an asymmetric k-uniform
hypergraph with f(n) = q + 1 edges. Applying Corollary 4.4 provides the desired
n-uniform hypergraph.

Case 2. The cases n = 6 and 14 follow from Lemma 5.3(ii) and (iii).
Case 3. If n = 2q − 1 with q ≥ 3, then the result follows from Corollary 5.2.
Case 4. If n = 3, then the result follows from Lemma 5.3(i).
Case 5. If n = 2q with q ≥ 2, then the result follows from Lemma 5.1. Note

that for n = 4 the construction produces only 3 vertices of degree 1.
This exhausts all cases and completes the proof. �

Corollary 6.4. Let m, n be integers with m ≥ 1 and n ≥ 2, and let f(n) be
defined as in Theorem 6.3.

(i) There exists a distinguishing partition of Km(n) if and only if m ≥ f(n).
(ii) There exists a distinguishing partition of mKn if and only if m ≥ f(n).
(iii) There exists an asymmetric n-regular hypergraph with m vertices if and

only if m ≥ f(n).
(iv) There exists a distinguishing partition for the wreath product Sn WrSm

acting on [n] × [m] if and only if m ≥ f(n).

Proof. Apply Theorem 3.1 to Theorem 6.3. �

7. Final comments

An obvious next step would be to try to extend our main result to other complete
multipartite graphs. Dealing with all complete multipartite graphs may be difficult,
so it may be sensible to focus on some special classes.

If we fix m, there are only finitely many complete m-partite graphs with a
distinguishing partition. Arguments similar to those elsewhere in this paper show
that a distinguishing partition has at most 2m − 1 parts, and each part has size at
most m, so if the total number of vertices is large there cannot be a distinguishing
partition. (Better bounds on the number of vertices could be obtained, but we just
wish to establish the general idea.) For example, for complete bipartite graphs it
is not hard to show the following.

Proposition 7.1. The only complete bipartite graph Kr,s, 1 ≤ r ≤ s, with a
distinguishing partition is K1,2.

It therefore seems more interesting to look at complete multipartite graphs
Kn1,n2,...,nm

with arbitrarily large m, but where n1, n2, . . . , nm take only a small
number of distinct values.
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