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Abstract. Given graphs G and H , we say G is H-linked if for every injective mapping

` : V (H) → V (G) we can find a subgraph H ′ of G that is a subdivision of H , with `(v) being

the vertex of H ′ corresponding to each vertex v of H . In this paper we prove two results on

H-linkage for 4-vertex graphs H . Goddard showed that 4-connected planar triangulations

are 4-ordered, or in other words C4-linked. We strengthen this by showing that 4-connected

planar triangulations are (K4 − e)-linked. X. Yu characterized certain graphs related to

P4-linkage. We use his characterization to show that every 7-connected graph is P4-linked,

and to construct 6-connected graphs that are not P4-linked.

1. Introduction

A graph is k-linked if for any k pairs of vertices {ui, vi}, 1 ≤ i ≤ k, there is a k-linkage,

namely k internally disjoint paths Π1, Π2, . . . , Πk such that Πi joins ui and vi. Graph linkage

is a very important tool in studying graph minors.

If G and H are graphs, then an H-subdivision in G is a subgraph H ′ of G isomorphic to a

subdivision of H . There is an associated map ` : V (H) → V (G), where `(v) (called a branch

vertex ) is the vertex of H ′ corresponding to each vertex v of H . We say H ′ is consistent

with `. We say G is H-linked if for every injection ` : V (H) → V (G) there is a consistent

H-subdivision.

Properties related to H-subdivisions were first studied by Jung [6] in the 1970s. This idea

was recently re-introduced by Kostochka and Yu [9], and independently by Ferrara, Gould,

Tansey, and Whalen [2]. Special cases of H-linkage include being k-linked (kK2-linked),

k-connected (K1,k-linked, or (K2 ∪ (k − 1)K1)-linked), and k-ordered (Ck-linked). Sufficient

degree conditions for a graph to be H-linked were extensively studied in [2, 5, 8, 9, 10, 11].

In [13], implications among linkage properties in graphs were studied.

The study of f(k), the minimum t such that t-connected graphs are k-linked, has a long

history. After a series of papers by Jung [6], Larman and Mani [12], Mader [14], and Robert-

son and Seymour [16], the first linear upper bound for f , namely, f(k) ≤ 22k was proved by
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Bollobás and Thomason [1]. This was improved by Kawarabayashi, Kostochka and Yu [7]

to f(k) ≤ 12k, and Thomas and Wollan [19] showed that f(k) ≤ 10k.

Jung [6] proved that f(2) = 6 and showed that every 4-connected non-planar graph is

2-linked. Later, Seymour [17] and Thomassen [18] independently characterized all non-2-

linked graphs. Thomas and Wollan [20] showed that f(3) ≤ 10, but this bound is not known

to be best possible.

In this paper we examine linkage for two small graphs. Let K4 − e be the graph obtained

from K4 by removing one edge, which can also be described as K1,1,2, and is sometimes

referred to as the diamond . It is clear that a K4-linked graph is (K4 − e)-linked, a (K4 − e)-

linked graph is C4-linked, a C4-linked graph is P4-linked, and a P4-linked graph is 2-linked.

There are examples showing that none of these implications can be reversed. We will inves-

tigate (K4 − e)-linkage for planar graphs, and P4-linkage in general.

Planarity can provide barriers to linkage properties. For example, a 2-connected planar

graph with a face of degree 4 or more is not 2-linked (and hence not H-linked for H = P4,

C4, K4 − e or K4): there is no 2-linkage for vertices u1, u2, v1, v2 in order around the face. So,

what positive results can be given for H-linkage in planar graphs? One (difficult) approach

is to characterize structures that prevent H-linkage; X. Yu [21] did this for K4-linkage in

4-connected planar graphs. Another approach is to restrict ourselves to graphs without

obvious barriers to H-linkage: in particular, to avoid faces of degree 4 or more we may

consider triangulations. Goddard [4] showed that 4-connected planar triangulations are C4-

linked. A linkage property somewhat different from the ones we examine in this paper was

investigated by Mori [15], who showed that 4-connected planar triangulations are (3, 3)-

linked : for all disjoint 3-subsets S1 and S2 of vertices, there are vertex-disjoint connected

subgraphs H1 and H2 with S1 ⊆ V (H1) and S2 ⊆ V (H2).

Here we strengthen Goddard’s result as follows.

Theorem 1.1. Any 4-connected planar triangulation is (K4 − e)-linked.

The proof of Theorem 1.1 occupies most of Section 2. We cannot replace ‘4-connected’

here by ‘3-connected,’ ‘(K4 − e)-linked’ by ‘K4-linked,’ or ‘planar triangulation’ by ‘planar

graph’ (even if we increase the connectivity to 5): details are given at the end of Section 2.

However, if we just increase the connectivity, then it is known that every 5-connected planar

triangulation is K4-linked. This follows from X. Yu’s results; see [21, Cor. 4.3].

Motivated by trying to extend the results of [21] from 4-connected planar graphs to more

general settings, X. Yu characterized a family of graphs called obstructions [22, 23, 24]. Let

G be a graph, {a, b, c} ⊆ V (G), and {a′, b′, c′} ⊆ V (G), such that {a, b, c} 6= {a′, b′, c′}.

(G, {a, c} , {a′, c′} , (b, b′)) is an obstruction if for every set of three vertex disjoint paths from

{a, b, c} to {a′, b′, c′} in G, one path is from b to b′.

The problem of characterizing obstructions was posed by Robertson and Seymour (see

[22, p. 90]). In [24], Yu stated a characterization of obstructions, and investigated their

connectivity.
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Theorem 1.2 (X. Yu [24]). Let (G, {a, c} , {a′, c′} , (b, b′)) be an obstruction. If {a, c} 6=

{a′, c′} and b 6= b′, then G is at most 7-connected. �

In the same paper, Yu constructed a class of obstructions which he claimed were 7-connected.

Upon studying these graphs, however, we found that each is only 6-connected. In fact, we

will show that there are essentially no 7-connected obstructions.

Theorem 1.3. Let (G, {a, c} , {a′, c′} , (b, b′)) be an obstruction. If {a, c} 6= {a′, c′} and

b 6= b′, then G is at most 6-connected.

(Any graph G with a, b, c, a′, b′, c′ chosen so that {a, c} = {a′, c′} or b = b′ is an obstruction,

so there is no upper bound on the connectivity of these trivial types of obstructions.)

Seymour (see [24, p. 245]) has pointed out a connection between obstructions and the

existence of P4-subdivisions in a graph, which we will state in Section 3. Using this and

Theorem 1.3, it follows that every 7-connected graph is P4-linked. On the other hand, this

connection also allows us to modify Yu’s construction from [24] to construct instances of

6-connected graphs where a specific P4-subdivision does not exist.

Theorem 1.4. Every 7-connected graph is P4-linked, but there are 6-connected graphs that

are not P4-linked.

We prove Theorem 1.3 and the first part of Theorem 1.4 in Section 3. The second part

of Theorem 1.4 is proved in Section 4. Theorem 1.4 is the first determination of the exact

connectivity required for H-linkage for any H with three or more edges, other than for the

family of graphs where H-linkage is equivalent to k-connectivity (e.g., H = K2 ∪ (k − 1)K1

or H = K1,k).

Most notation, definitions and supporting lemmas will be given in the sections where they

are needed. However, the following are used in more than one section so we give them here.

We use Kn(v1, v2, . . . , vn) to denote a labeled complete graph with distinct vertices v1, v2,

. . ., vn. A near-triangulation is a plane graph in which all faces are triangles, except perhaps

the outer face, which is a cycle. Cutsets in near-triangulations are characterized as follows.

Lemma 1.5. In a near-triangulation, a minimal cutset induces either a chordless separating

cycle, or a chordless path whose ends are vertices on the boundary not joined by an edge of

the boundary and which contains no other vertex of the boundary.

Proof. Add an extra vertex adjacent to all vertices of the outer face to obtain a triangulation,

and use the well-known fact that a minimal cutset in a triangulation induces a chordless

separating cycle. �

2. (K4 − e)-subdivisions in 4-connected planar triangulations

In this section, we prove Theorem 1.1. Our proof follows the same approach used in [4].

We first introduce some notation and a basic result.

3



Let f be an edge of graph G. Denote by G · f the graph resulting from G by contracting

the edge f to a single vertex and deleting any loops and multiple edges thus formed. More

generally, suppose X ⊆ V (G). Then denote by G · X the graph obtained by identifying X

to a single vertex and deleting all loops and multiple edges thus formed.

When dealing with a planar triangulation G, we assume it has a fixed embedding in the

plane. Given a separating cycle D in G, we may refer to the vertices on the inside or the

outside or ‘on one side’ of D; these terms never include vertices of D itself.

Lemma 2.1 (Goddard [4, Claim 1 and proof of Claim 4]). Suppose G is a 4-connected planar

triangulation and f ∈ E(G). Then

(i) G · f is a planar triangulation.

(ii) If G · f is not 4-connected then f is in a chordless separating 4-cycle.

(iii) If X is the set of vertices on one side of a separating 4-cycle in G, then G ·X is also

a 4-connected planar triangulation. �

Proof of Theorem 1.1. By way of contradiction, assume that G is a counterexample with

fewest vertices. Represent K4 − e as K4(a1, a2, a3, a4) − a2a4. We suppose that B =

{b1, b2, b3, b4} ⊆ V (G) is such that there is no subdivision of K4 − e in G with branch

vertices b1, b2, b3, b4, each bi corresponding to ai ∈ V (K4 − e). When we mention a (K4 − e)-

subdivision ‘with branch set B’ in a graph related to G, we assume this correspondence

between B and V (K4 − e). When a different branch set is used we indicate how this corre-

spondence is modified. An edge of G is free if it is not incident with any vertex of B. Two

vertices bi, bj of B are pre-adjacent if aiaj ∈ E(K4 − e).

Claim 2.2. Every free edge of G is in a separating 4-cycle.

Proof. Suppose f is free. If G ·f is 4-connected then by Lemma 2.1(i) and minimality of G it

has a (K4 − e)-subdivision H ′ with branch set B. Since the vertex obtained by contracting f

is not a branch vertex of H ′, we can easily modify H ′ to obtain a desired (K4 − e)-subdivision

H in G. Therefore, G · f is not 4-connected and Lemma 2.1(ii) applies. �

Claim 2.3. Every vertex not in B has degree at least 5.

Proof. Assume that u /∈ B has degree at most 4. Since G is 4-connected, u has degree

exactly 4.

We now show that for each v ∈ N(u), uv is in a separating 4-cycle. Suppose this does not

hold for some v. Then v ∈ B by Claim 2.2, and G · uv is 4-connected by Lemma 2.1(ii). If

we contract uv to a vertex x, then there is a (K4 − e)-subdivision H ′ in G · uv with branch

set B − {v} ∪ {x}, x playing the role of v. Note that all neighbors of x except one, say v′,

are neighbors of v. Hence, replacing xv′ in H ′ with vuv′ if necessary, we obtain a desired

(K4 − e)-subdivision in G, a contradiction. Hence, uv is in a separating 4-cycle.

Suppose the neighbors of u are v1, v2, v3, v4 in order. The separating 4-cycle for uv1 must

contain v3 and use another vertex y. The separating 4-cycle for uv2 and uv4 must use y as

well, by planarity. So G is an octahedron K2,2,2, which is K4-linked, a contradiction. �
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Claim 2.4. Let D be a separating 4-cycle.

(i) There is at least one vertex of B on each side of D.

(ii) If there is exactly one vertex of B on one side of D, then it is the only vertex of G

on that side.

(iii) If there are two vertices of B on each side of D, then b1 and b3 are on one side of

D, and b2 and b4 are on the other.

Proof. By symmetry we may suppose that there are at most two vertices of B inside D.

Denote by X the set of all vertices of G inside D. By Lemma 2.1(iii), G ·X is a 4-connected

planar triangulation.

(i) Suppose that X ∩ B = ∅. Then |X| ≥ 2, for otherwise the vertex in X has degree four,

contradicting Claim 2.3. By the minimality of G, G ·X contains a (K4 − e)-subdivision with

branch set B which we can then extend to a (K4 − e)-subdivision in G.

(ii) Suppose that X ∩B = {x} and |X| ≥ 2. Contract X into a single vertex x′. Then G ·X

contains a (K4 − e)-subdivision with branch set B − {x} ∪ {x′}, with x′ playing the role of

x. This can be transformed into a (K4 − e)-subdivision in G.

(iii) If there are two vertices of B on each side of D but (iii) does not hold, then we may

assume without loss of generality that X ∩ B = {b1, b2}.

Since G is 4-connected, there are four internally disjoint paths Π1, Π2, Π3, Π4 from b1 to

the four vertices in D. We claim that we may assume that one of these paths contains b2.

For suppose not. Then we may assume that b2 lies interior to the region bounded by, say,

Π1, Π2 and an edge of D. There are four paths from b2 to the boundary of this region, and

at least two of these paths must terminate on either Π1 or Π2, say on Π1. Then path Π1

may be replaced by a new path Π′

1 which contains b2. So, we now assume that b2 is on Π1.

Let u be the end of Π1 on D.

Contract X to a single vertex x′, and let B′ = B−{b1, b2}∪{x′, u}, with x′ and u playing

the roles of b1 and b2 respectively. By minimality of G, G ·X has a (K4 − e)-subdivision H ′

with branch set B′. We may assume that x′u ∈ E(H ′), and we can transform H ′ into the

required (K4 − e)-subdivision in G using Π1 and two of Π2, Π3, Π4. �

Let Q be the set of vertices outside of B with degree exactly five. Since G is 4-connected

and only the four vertices of B can have degree four, |Q| ≥ 4 by Euler’s formula.

Claim 2.5. For each vertex u ∈ Q,

(i) exactly two neighbors, say x and y, of u are in B;

(ii) x and y are not successive neighbors of u in the planar embedding;

(iii) x and y are pre-adjacent; and

(iv) neither ux nor uy is in a separating 4-cycle.

Proof. Suppose that u ∈ Q has neighbors v1, v2, v3, v4, v5 in cyclic order.

Suppose that three neighbors of u are in B, and let b be the fourth vertex of B. First

assume that three successive neighbors of u, say v1, v2, v3, lie in B. There are four internally
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disjoint paths from b to {v1, v2, v3, u}. But then v1v2, v2v3, v1uv3 and the paths from b

to v1, v2, v3 give a K4-subdivision with branch set B, a contradiction. Therefore, no three

successive neighbors of u lie in B, so we may assume that v1, v3, v5 ∈ B and v2, v4 /∈ B.

There are four internally disjoint paths from b to {v1, v3, v5, u}. At least one of v2 or v4, say

v2, is used by the path to u. Then v1v5, v1v2v3, v3uv5 and the paths from b to v1, v3, v5 give a

K4-subdivision with B as the branch set, a contradiction. Therefore, at most two neighbors

of u are in B.

We now claim that if each of uvi−1, uvi, uvi+1 (subscripts interpreted modulo 5) is in a

separating 4-cycle, then at least one of vi−1 or vi+1 is in B. Without loss of generality

suppose that uv1, uv2, uv3 are in separating 4-cycles. The separating 4-cycle for uv2 must

include v4 or v5, say v4, and another vertex v. The separating 4-cycle for uv3 must also

include v, by planarity. But then, since G is 4-connected, v3 has degree four, and hence

v3 ∈ B by Claim 2.3, as claimed.

Thus, if three successive neighbors of u are not in B, then the edge from u to each of

these neighbors is in a separating 4-cycle by Claim 2.2, and the preceding paragraph yields

a contradiction. Hence at most two successive neighbors of u are not in B, and (i) and (ii)

follow. Without loss of generality suppose that v1, v3 ∈ B and v2, v4, v5 /∈ B. If either uv1 or

uv3 is in a separating 4-cycle then the preceding paragraph again yields a contradiction, so

(iv) holds.

If v1 and v3 are not pre-adjacent, then upon contracting uv3 to x′, there is a (K4 − e)-

subdivision H ′ in G · uv3 with branch set B − {v3} ∪ {x′}, with x′ playing the role of v3.

Since x′v1 is not in H ′ (because v1 and x′ are not pre-adjacent), we can replace x′v5 by v3uv5

and every other edge x′v by v3v, as necessary, to obtain the desired (K4 − e)-subdivision in

G, a contradiction. Hence (iii) holds. �

Claim 2.6. Two vertices in B have at most one common neighbor in Q.

Proof. Suppose that two vertices in B, say b and b′, have two common neighbors u and v

in Q. By Claim 2.5(iii), b and b′ are pre-adjacent. Suppose (bub′v) is a separating 4-cycle.

Then by Claim 2.4(i) there is exactly one vertex of B on each side of (bub′v). Hence by

Claim 2.4(ii) |V (G)| = 6 and deg u = 4, a contradiction. So (bub′v) is not a separating

4-cycle, and thus either uv ∈ E(G) or bb′ ∈ E(G). If bb′ ∈ E(G), vertex u contradicts

Claim 2.5(ii). Hence uv ∈ E(G).

Suppose that in clockwise order the neighbors of u are v, b, u1, u2, b
′, and the neighbors

of v are u, b′, v2, v1, b. Since G is 4-connected, u1, u2 6= v1, v2, so G contains the cycle

(bu1u2b
′v2v1). See Figure 1. By Claim 2.5(i), u1, u2, v1, v2 /∈ B. If G contains u1v2 then

(ub′v2u1) is a separating 4-cycle, contradicting Claim 2.5(iv) for ub′. So u1v2 and (similarly)

u2v1 are not edges.

Now uu1 is a free edge, so by Claim 2.2 there is a separating 4-cycle C containing uu1.

By 4-connectivity, C contains neither ub or uu2. By Claim 2.5(iv), C does not contain ub′

and hence must contain uv. By Claim 2.5(iv), C does not contain vb or vb′, and since
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u

b′

v

b

u2

v2v1

u1

Figure 1. Situation in Claim 2.6

u1v2 /∈ E(G), C does not contain vv2, so C contains vv1, and u1v1 ∈ E(G). Similarly,

u2v2 ∈ E(G). Since deg u1 ≥ 5, D = (u1u2v2v1) is a separating 4-cycle. Without loss

of generality we may assume that u, v, b, b′ are inside D. By Claim 2.4(iii) applied to D,

{b, b′} = {b1, b3}, and b2 and b4 are outside D.

Now suppose one of u1, u2, v1, v2, say u1, is in Q. Then by Claim 2.5(i), (ii) and (iv)

the neighbors of u1 in clockwise order are, without loss of generality, u, b, v1, b2, u2. There

are four internally disjoint paths from b4 to D, and the path to u1 must use b2 as it is the

only neighbor of u1 outside D. Then the paths from b4 to v1 and v2 joined to v1b and v2b
′

respectively, and the paths b2u1b, b2u2b
′ and buvb′, give a desired (K4 − e)-subdivision in G,

a contradiction.

Therefore none of u1, u2, v1, v2 is in Q. Since |Q| ≥ 4, there is u′ ∈ Q outside D. By Claim

2.5(i) u′ is adjacent to both b2 and b4, but this contradicts Claim 2.5(iii). �

Now consider the subgraph J of G induced by edges of the form ub, u ∈ Q and b ∈ B. By

Claim 2.5(i), each vertex of Q has exactly two neighbors in B, say bi and bj with i < j, and

by Claim 2.6 no other vertex of Q is adjacent to both bi and bj . Therefore we can denote

this vertex of Q unambiguously as ui,j. By Claim 2.5(iii), bi and bj are pre-adjacent if ui,j

exists. Therefore |Q| ≤ 5 and J is isomorphic to a subdivision of a |Q|-edge subgraph of

K4 − e, each edge being subdivided exactly once.

If ui,j exists, then bibj /∈ E(G), for otherwise (biui,jbj) would be a separating triangle by

Claim 2.5(ii). If ui,j does not exist, bibj may or may not be an edge.

If |Q| = 5, J is the subdivision of K4 − e that we require. So suppose, then, that |Q| = 4.

Since G is a plane triangulation, by Claim 2.3 and Euler’s formula, it follows that deg bi ≤ 4

for each bi ∈ B, and hence, since G is 4-connected, all vertices in B have degree exactly four.

Modulo automorphisms of K4 − e there are only two four-edge subgraphs of K4 − e, namely

(K4 − e) − a3a4 and (K4 − e) − a1a3, giving two cases for us to consider.

Case 1 . Suppose J is isomorphic to a subdivision of K4 − e− a3a4, which we may assume is

embedded in the plane as shown at left in Figure 2. To simplify notation we let u1 = u2,3,

and ui = u1,i for 2 ≤ i ≤ 4. Since u1,2, u1,3, u1,4 all exist, b1b2, b1b3, b1b4 /∈ E(G). It suffices

to find a b3b4-path that is internally disjoint from B ∪ Q.

Suppose first that u4 and u3 are not successive neighbors of b1. Then the neighbors of b1 in

clockwise order are u2, u4, v, u3, where v /∈ B ∪ Q. Thus, u2u3, u2u4, vu3, vu4 ∈ E(G). Since
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u2

u3

u4

Figure 2. The two cases

u2b4, u4b2 /∈ E(G), the fifth neighbor of u4 is between u2 and b4 in clockwise order around

u4, so vb4 ∈ E(G). Similarly, vb3 ∈ E(G). Thus, b3vb4 is the required path.

Now suppose that u4 and u3 are successive neighbors of b1, so that u3u4 ∈ E(G). By Claim

2.5 and since u4 is not adjacent to b3, the neighbors of u3 in clockwise order are b1, u4, s, b3, t,

so that su4, su3, sb3 ∈ E(G). By Claim 2.5(i) for u3, s /∈ B. Now by Claim 2.5(ii) for u4,

sb4 ∈ E(G). Since u3,4 does not exist and sb3, sb4 ∈ E(G), s /∈ Q. Thus, b3sb4 is the required

path.

Case 2 . Suppose J is isomorphic to a subdivision of K4 − e− a1a3, which we may assume is

embedded in the plane as shown at right in Figure 2. To simplify notation we let ui = ui,i+1

for 1 ≤ i ≤ 3, and u4 = u1,4. It suffices to find a b1b3-path that is internally disjoint from

B ∪ Q.

Let H1 and H2 be the subgraphs of G consisting of J and everything inside or outside of

J , respectively. Then Hi has a b1b3-path internally disjoint from B ∪Q = V (J) unless there

is a minimal cutset S ⊆ V (J) separating b1 from b3 in Hi. Since Hi is a near-triangulation,

by Lemma 1.5 such a cutset S must consist of two vertices of J joined by an edge, which

can only be u1u4, b2b4, or u2u3. Since G is a counterexample, each Hi must contain one of

these edges.

Suppose b2b4 ∈ E(G); without loss of generality assume that b2b4 ∈ E(H1). Then one

of u1u4, u2u3, say u1u4, must be an edge of H2. Then (b2u1u4b4) is a separating 4-cycle,

contradicting Claim 2.5(iv) for u1b2 and u4b4. Therefore, b2b4 /∈ E(G).

Hence, without loss of generality we must have u1u4 ∈ E(H1) and u2u3 ∈ E(H2). By

4-connectivity, (u4u1b1) and (u3u2b3) are facial triangles. Let the second facial triangle on

u1u4 be (u1u4v1) where v1 ∈ V (H1), and let the second facial triangle on u2u3 be (u2u3v3),

where v3 ∈ V (H2).

Suppose that v1 /∈ V (J). Then by Claim 2.5(ii) applied to u1 and u4, v1b2, v1b4 ∈ E(H1).

If v3 /∈ V (J), then similarly v3b2, v3b4 ∈ E(H2). Then (v1b2v3b4) is a separating 4-cycle

contradicting Claim 2.4(ii). Therefore v3 ∈ V (J). The only possibilities for v3 are u1 or

u4; without loss of generality assume that v3 = u1. Then (u1v1b4u3) is a separating 4-cycle,

contradicting Claim 2.5(iv) for u3b4.
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Figure 3. Triangulation with no K4-subdivision

Thus, v1 ∈ V (J), and similarly v3 ∈ V (J). The only possibilities for v1 are u2 or u3;

without loss of generality assume that v1 = u2. Then u1u2, u2u4 ∈ E(H1). Since u2 ∈ Q has

degree 5, u4b3 ∈ E(G), contradicting Claim 2.5(i) for u4.

Thus, the proof of Theorem 1.1 is complete. �

In Theorem 1.1 we cannot replace ‘4-connected’ by ‘3-connected’ because placing b1 and

b3 on one side of a separating triangle and b2 and b4 on the other gives a situation with

no (K4 − e)-subdivision. We now sketch constructions (leaving the details to the reader) to

show that ‘triangulation’ cannot be replaced by ‘planar graph’, and ‘(K4 − e)-linked’ cannot

be replaced by ‘K4-linked.’

First, there are 4-connected, or even 5-connected, planar graphs, differing by only one edge

from a triangulation, that are not 2-linked, and hence are not (K4 − e)-linked. For example,

take a large triangulation with 12 vertices of degree 5 and all other vertices of degree 6 (the

dual of a ‘fullerene’). Delete an edge between two vertices of degree 6 sufficiently far from

every degree 5 vertex. The result can be shown to be 5-connected, and any planar graph on

at least four vertices that is not a triangulation is not 2-linked.

Second, as Goddard [4] mentions, there are 4-connected planar triangulations that are not

K4-linked. These can be constructed using X. Yu’s characterization [21, Theorem 4.2]. For

example, in Figure 3 there are separating 4-cycles (shown with thicker edges) between the

inner and outer pairs of solid vertices. In a K4-subdivision for the solid vertices, the path

between the inner solid vertices must use the other two inner vertices, and similarly for the

outer vertices. There must be four paths between the inner and outer solid vertices, crossing

the separating 4-cycles, but each such path is forced to join both left solid vertices or both

right solid vertices, so we cannot get a K4-subdivision. Infinitely many other examples may

be obtained by adding more or fewer separating 4-cycles between the inner and outer solid

vertices.

3. Maximum connectivity of obstructions

In this section we prove that every 7-connected obstruction is an obstruction for a trivial

reason. We use this to prove that every 7-connected graph is P4-linked.
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A separation in a graph G is a pair of edge-disjoint subgraphs (G1, G2) such that G =

G1 ∪ G2 and each Gi contains an edge or vertex not in G3−i. If |V (G1 ∩ G2)| = k then

(G1, G2) is a k-separation. We say that T ⊆ V (G) separates S1, S2 ⊆ V (G) if S1 and S2 are

disjoint from T and there is no path from S1 to S2 in G − T . If H is a subgraph of G, then

NG(H) is {v ∈ V (G) − V (H) | vw ∈ E(G) for some w ∈ V (H)}.

We need some definitions and results from [22, 23, 24]. The following definitions of ‘3-

planar’ and ‘rung’ differ slightly from those in [24], but are equivalent. We introduce the idea

of the ‘foundation’ of a 3-planar graph for later reference, and the idea of ‘R-equivalence’ to

describe permitted symmetries for rungs.

Definition 3.1. If G is a graph and A = {A1, A2, . . . , Ak} is a (possibly empty) collection of

pairwise disjoint induced subgraphs of G, then we say (G,A) is 3-planar if NG(Ai)∩Aj = ∅

for all distinct i and j, |NG(Ai)| ≤ 3 for all i, and the graph G′ obtained from G by replacing

each Ai with a new vertex ai adjacent to NG(Ai) is planar.

We call G −
⋃k

i=1 V (Ai) the foundation of G. If in addition b0, b1, . . . , bn are (possibly

not distinct) vertices of the foundation of G and G′ can be embedded in a closed disk with

b0, b1, . . . , bn in cyclic order along its boundary, then we say that (G,A, b0, b1, . . . , bn), or just

(G, b0, b1, . . . , bn), is 3-planar .

Since a planar graph is at most 5-connected, it is clear that a 3-planar graph whose

foundation has at least four vertices is at most 5-connected.

Definition 3.2. Suppose G is a graph, and {a, b, c}, {a′, b′, c′} are 3-subsets of V (G). Sup-

pose {a, b, c} 6= {a′, b′, c′}, and G has no 3-separation (G1, G2) with {a, b, c} ⊆ V (G1) and

{a′, b′, c′} ⊆ V (G2). Then we call (G, (a, b, c), (a′, b′, c′)) a rung if at least one of the following

holds:

(1) b = b′ or {a, c} = {a′, c′};

(2) a = a′ and (G − a, c, c′, b′, b) is 3-planar;

(3) {a, b, c} ∩ {a′, b′, c′} = ∅ and (G, a′, b′, c′, c, b, a) is 3-planar;

(4) {a, b, c}∩{a′, b′, c′} = ∅, G has a 1-separation (G1, G2) such that {a, a′, b, b′} ⊆ V (G1),

{c, c′} ⊆ V (G2), and (G1, a, a′, b′, b) is 3-planar;

(5) {a, b, c} ∩ {a′, b′, c′} = ∅, (G, a, a′, b′, b) is 3-planar, and G has a separation (G1, G2)

such that V (G1∩G2) = {z, b}, {a, a′, b, b′} ⊆ V (G1), {c, c
′} ⊆ V (G2), and (G2, c, c

′, z, b)

is 3-planar;

(6) {a, b, c} ∩ {a′, b′, c′} = ∅, and there are pairwise edge-disjoint subgraphs Ga, Gc, M

of G such that G = Ga ∪ Gc ∪ M , V (Ga ∩ M) = {u, w}, V (Gc ∩ M) = {p, q},

V (Ga ∩Gc) = ∅, {a, a′, b′} ⊆ V (Ga), {c, c
′, b} ⊆ V (Gc), (Ga, a, a′, b′, w, u) is 3-planar,

and (Gc, c
′, c, b, p, q) is 3-planar;

(7) {a, b, c} ∩ {a′, b′, c′} = ∅, and there are pairwise edge-disjoint subgraphs Ga, Gc, M

of G such that G = Ga ∪ Gc ∪ M , V (Ga ∩ M) = {b, b′, w}, V (Gc ∩ M) = {b, b′, p},

V (Ga ∩ Gc) = {b, b′}, {a, a′, b′} ⊆ V (Ga), {c, c′, b} ⊆ V (Gc), (Ga, a, a′, b′, w, b) is

3-planar, and (Gc, c
′, c, b, p, b′) is 3-planar.
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A structure (G, (a, b, c), (a′, b′, c′)) is said to be R-equivalent to itself and to the struc-

tures (G, (a′, b′, c′), (a, b, c)), (G, (c, b, a), (c′, b′, a′)) and (G, (c′, b′, a′), (c, b, a)). Anything R-

equivalent to a rung is also considered a rung.

If (G, (a, b, c), (a′, b′, c′)) is a rung, then it is not hard to show that (G, {a, c} , {a′, c′} ,

(b, b′)) is an obstruction [22, Prop. 4.2]. Rungs are ‘basic’ obstructions which form the

building blocks of general obstructions.

Definition 3.3 ([24]). Let L be a graph and let R1, . . . , Rm, m ≥ 1, be edge disjoint

subgraphs of L such that

(i) (Ri, (xi−1, vi−1, yi−1), (xi, vi, yi)) is a rung for 1 ≤ i ≤ m,

(ii) V (Ri ∩ Rj) = {xi, vi, yi} ∩ {xj−1, vj−1, yj−1} for 1 ≤ i < j ≤ m,

(iii) for any 0 ≤ i < j ≤ m, if xi = xj then xk = xi for all i ≤ k ≤ j, if vi = vj then

vk = vi for all i ≤ k ≤ j, and if yi = yj then yk = yi for all i ≤ k ≤ j.

(iv) L = (
⋃m

i=1 Ri) + S, where S consists of edges of L with both endvertices in some

{xi, vi, yi}, 0 ≤ i ≤ m.

Then we call (L, (x0, v0, y0), (xm, vm, ym)) a ladder with rungs (Ri, (xi−1, vi−1, yi−1), (xi, vi,

yi)), i = 1, 2, . . . , m, or simply a ladder along v0v1 . . . vm. Note that [24] has the inequalities

in (iii) and (iv) beginning at 1, not 0, but 0 is correct.

Informally, a ladder is obtained from a sequence of rungs by identifying the (a′, b′, c′)

vertices of each rung with the (a, b, c) vertices of the next rung. We can also add edges ab,

ac, bc, a′b′, a′c′, b′c′ inside any rung. Note that anything R-equivalent to a ladder is also a

ladder.

Theorem 3.4 (Yu [24, Theorem 1.3]). Let G be a graph, and let S = {a, b, c} and S ′ =

{a′, b′, c′} be 3-subsets of V (G) with S 6= S ′. Assume that for every T ⊆ V (G) with |T | ≤ 3,

every component of G− T contains a vertex of S ∪S ′. Then (G, {a, c} , {a′, c′} , (b, b′)) is an

obstruction if and only if one of the following statements hold:

(1) G has a k-separation (G1, G2) with k ≤ 2, S ⊆ V (G1), and S ′ ⊆ V (G2).

(2) G is the edge-disjoint union of a ladder (L, (a, b, c), (a′, b′, c′)) or (L, (a, b, c), (c′, b′, a′))

along v0v1 . . . vm (where b = v0 and b′ = vm) and a (possibly edgeless) graph J

such that V (J ∩ L) = {w0, w1, . . . , wn} and (J, w0, w1, . . . , wn) is 3-planar, where

w0, w1, . . . , wn is the sequence v0, v1, . . . , vm with repetitions removed. �

In [24], case (2) above is separated into two cases, the situation where J is edgeless being

treated as a separate case. Also, in [24] the case of the ladder being (L, (a, b, c), (c′, b′, a′)) is

not mentioned, but this needs to be present for the ‘only if’ part of the theorem to be correct.

This is because there is symmetry between a′ and c′ in the definition of an obstruction, but

not in the definition of a rung (G, (a, b, c), (a′, b′, c′)) or ladder (L, (a, b, c), (a′, b′, c′)).

To take the symmetry between a′ and c′ into account we define (G, (a, b, c), (a′, b′, c′))

to be X-equivalent to itself, to (G, (a, b, c), (c′, b′, a′)), and to everything R-equivalent to
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either of these. Then an X-rung is a structure X-equivalent to one of (1)–(7) of Definition

3.2. For every X-rung (G, (a, b, c), (a′, b′, c′)), (G, {a, c} , {a′, c′} , (b, b′)) is an obstruction.

We define an X-ladder by replacing ‘rung’ by ‘X-rung’ in the definition of a ladder. Clearly

(L, (a, b, c), (a′, b′, c′)) is an X-ladder if and only if either it is a ladder or (L, (a, b, c), (c′, b′, a′))

is a ladder. Therefore, the condition on L in case (2) of Theorem 3.4 may be restated as

‘(L, (a, b, c), (a′, b′, c′)) is an X-ladder’.

The following lemma will be used to handle one-rung ladders.

Lemma 3.5. If (G, (a, b, c), (a′, b′, c′)) is an X-rung not covered by case (1) of Definition 3.2

and G′ = G ∪ K3(a, b, c) ∪ K3(a
′, b′, c′) ∪ {bb′}, then G′ is at most 6-connected.

Proof. Without loss of generality, assume G is exactly as in one of cases (2)–(7) of Definition

3.2. We examine each case individually.

(2) We can add bc, b′c′ and bb′ to G − a without destroying 3-planarity, so G′ − a = (G −

a) ∪ {bc, b′c′, bb′} is 3-planar. Since G is not covered by case (1), b, b′, c and c′ are distinct,

so G′ − a has at least four foundation vertices and hence is at most 5-connected. Therefore,

G′ is at most 6-connected.

(3) We can add the edges of K3(a, b, c) and K3(a
′, b′, c′) to G without destroying 3-planarity.

Thus, G′−bb′ is 3-planar with at least six foundation vertices and hence at most 5-connected.

Therefore, G′ is at most 6-connected.

(4) If c 6= z then {a, b, c′, z} separates a′ and c in G′, and if c = z then {a′, b′, c = z} separates

a and c′ in G′.

(5) {a, b, c′, z} separates {a′, b′} − {z} and c in G′.

(6) {a, b, c′, p, q} separates a′ and c in G′.

(7) {a, b, b′, c′, p} separates a′ and c in G′. �

Now we restate our upper bound on the connectivity of obstructions.

Theorem 1.3. Let (G, {a, c} , {a′, c′} , (b, b′)) be an obstruction. If {a, c} 6= {a′, c′} and

b 6= b′, then G is at most 6-connected.

Proof. Suppose that G is 7-connected. We may assume we have a maximal obstruction,

meaning that (G + e, {a, c} , {a′, c′} , (b, b′)) is not an obstruction for any e ∈ E(G). Since

G is 7-connected, case (1) of Theorem 3.4 does not hold, so case (2) holds. Thus G is the

union of an X-ladder (L, (a, b, c), (a′, b′, c′)) and a 3-planar graph (J, w0, w1, . . . , wn). Let the

X-rungs of L be (Ri, (xi−1, vi−1, yi−1), (xi, vi, yi)), 1 ≤ i ≤ m, so that w0, w1, . . . , wn is the

sequence v0, v1, . . . vm with repetitions removed.

Define the I-rung R′

i, 1 ≤ i ≤ m, to be the subgraph of G induced by V (Ri). By

maximality of G and Definition 3.3 (iv), R′

i contains K3(xi−1, vi−1, yi−1) and K3(xi, vi, yi) as

subgraphs. Also, if vi−1 6= vi then we may always add the edge vi−1vi to J , so by maximality

vi−1vi ∈ E(R′

i) if vi−1 6= vi. In general, R′

1, R′

2, . . ., R′

m are not pairwise edge-disjoint.

Claim 3.6. We have m ≥ 2, and we may assume that every I-rung R′

i, 1 ≤ i ≤ m, has one

of the following forms:
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(i) K4(xi−1 = xi, vi−1 = vi, yi−1, yi), or K4(xi−1, xi, vi−1 = vi, yi−1 = yi), or

(ii) K4(xi−1 = xi, vi−1, vi, yi−1 = yi), or

(iii) K5(xi−1, xi, vi−1 = vi, yi−1, yi).

Proof. If m = 1 (there is only one X-rung) then V (J)− {v0, v1} is empty, otherwise {v0, v1}

is a cutset. Hence, G = R′

1. Since b 6= b′ and {a, c} 6= {a′, c′}, case (1) of Definition 3.2 does

not apply, so R′

1 is at most 6-connected by Lemma 3.5. Therefore, m ≥ 2.

To satisfy the claim about each I-rung, we may need to swap the labels of xi and yi for

some values of i, which we can do since swapping xi and yi in the X-rung (Ri, (xi−1, vi−1,

yi−1), (xi, vi, yi)) still yields an X-rung. By processing the X-rungs in order from R1 up to Rm,

each such swap can be done without altering the effects of previous swaps. We describe how

to process each X-rung Ri. We use ‘Ri is an obstruction’ as shorthand for ‘(Ri, {xi−1, yi−1} ,

{xi, yi} , (vi−1, vi)) is an obstruction’.

Write T = {xi−1, vi−1, yi−1} and T ′ = {xi, vi, yi}, which may not be disjoint. If V (Ri) 6=

T ∪T ′, then T ∪T ′ is a cutset in G of order at most 6, a contradiction. Hence V (Ri) = T ∪T ′

and |V (Ri)| ≤ 6. By Definition 3.2, Ri has no 3-separation (G1, G2) with T ⊆ V (G1) and

T ′ ⊆ V (G2). Therefore, Ri has no 3-cutset S which separates T − S from T ′ − S.

Suppose that |V (Ri)| = 6, so that T and T ′ are disjoint. Let Q be the bipartite graph

with vertex set T ∪ T ′ and containing all edges of Ri with one end in T and the other end

in T ′.

If u ∈ T has degree 0 or 1 in Q, then u is nonadjacent to two vertices s, t of T ′. Then

T ∪T ′−{u, s, t} is a 3-cutset of Ri separating u from s and t, which is not allowed. So every

vertex in T , and similarly in T ′, has degree at least 2 in Q.

Therefore, if Q′ is the complement of Q in the K3,3 with bipartition (T, T ′), it has maximum

degree at most 1 and so Q′ ⊆ 3K2. Thus, Q contains K3,3 − 3K2 = C6 as a subgraph. But

then Q has two disjoint perfect matchings, and in at least one of them vi−1 is not matched

to vi, contradicting the fact that Ri is an obstruction.

Now suppose that |V (Ri)| = 5. If there is a vertex s of T −T ′ not adjacent to some vertex

t of T ′ − T , then T ∪ T ′ − {s, t} is a 3-cutset of Ri separating s and t, which is not allowed.

Therefore, R′

i is a K5. Since |V (Ri)| = 5, some vertex in T is equal to some vertex in T ′.

Since Ri is an obstruction, the equality must be vi−1 = vi and we have (iii) above.

Finally, suppose that |V (Ri)| = 4. Not every 4-vertex obstruction is an X-rung; for

example, an edgeless graph on vertices xi−1, xi = vi−1, vi, yi−1 = yi is an obstruction, but

not an X-rung. So we must refer to the details of Definition 3.2. (Ri, (xi−1, vi−1, yi−1), (xi,

vi, yi)) must be X-equivalent to case (1) of Definition 3.2 (or to a degenerate version of case

(2), with b = b′ or c = c′, but then we have case (1) again). Adding any edge between T and

T ′ that is not already present does not violate the conditions of case (1), so by maximality

R′

i must be a K4. By swapping the labels of xi and yi if necessary, we can guarantee that

R′

i has the form of (i) above (if b = b′ in (1)) or (ii) above (if {a, c} = {a′, c′} in (1)). �

13



Henceforth we assume all I-rungs are as in Claim 3.6. All X-rungs are therefore covered

by case (1) of Definition 3.2.

If vi−1 6= vi then G always contains the edge vi−1vi, which may be in J or in the X-rung

Ri. Definition 3.2(1) allows us to assume that it is always in Ri. Thus, L contains the

path W = w0w1 . . . wn. Also, if xi 6= xi−1 then Ri always contains the edge xixi−1. Thus,

L contains the path A = a0a1 . . . ap, where a0, a1, . . . , ap is the sequence x0, x1, . . . , xm with

repetitions removed. Similarly, L contains the path C = c0c1 . . . cq, where c0, c1, . . . cq is

the sequence y0, y1, . . . , ym with repetitions removed. We have L =
⋃m

i=1 R′

i, and V (L) =

V (W ) ∪ V (A) ∪ V (C).

From Claim 3.6 and the definition of an X-ladder we observe the following.

(A) Suppose P, Q ∈ {W, A, C} are distinct. If v ∈ V (P ) then the neighbors of v on Q are

consecutive.

(B) Every edge of W , A or C belongs to a unique Ri and hence to a unique R′

i.

(C) Suppose (P, Q) = (A, W ), (C, W ), (W, A) or (W, C). If uv ∈ E(P ), then u and v have

exactly one common neighbor on Q, namely the unique vertex of Q in the unique I-rung

containing uv. (This does not hold with (P, Q) = (A, C) or (C, A).)

Let J ′ denote the subgraph of G induced by V (J). Then J ′ = J ∪ W .

Claim 3.7. J ′ may be regarded as a plane graph with outer cycle (w0w1 . . . wn), where n ≥ 2.

Proof. Suppose that n ≤ 1. Then V (J) = V (W ), otherwise V (W ) is a cutset of order

n + 1 ≤ 2. The only possible edge of J is w0w1 when n = 1, but this is an edge of L.

Therefore J is edgeless. Hence, since m ≥ 2, T = {x1, v1, y1} is a cutset of order 3 separating

V (R1) − T from V (R2) − T in G. So n ≥ 2.

Since G is 7-connected, the 3-planar graph J cannot contain any subgraphs H disjoint

from L with |NJ(H)| ≤ 3. So J is in fact planar, and can be embedded in a disk with

w0, w1, . . . , wn in cyclic order around the boundary. The edge w0wn can always be added to

this embedding if it is not already present, so by maximality of G, w0wn ∈ E(J). Moreover,

by maximality w0wn must be an edge of the outer facial walk, otherwise we can move it into

the outer face and add another edge to J . We can also add the edges of W in the outer face

to obtain a planar embedding of J ′ with (w0w1 . . . wn) as outer cycle. �

Claim 3.8. We may assume that there are i and k so that either (i) wiak−1, wiak, wiak+1 ∈

E(L), or (ii) wiak−1, wiak, wi+1ak, wi+1ak+1 ∈ E(L).

Proof. For P = A or C, let nP (wi) = |NL(wi) ∩ V (P )|. If nA(wi) ≥ 3 or nC(wi) ≥ 3

for some wi then we may assume (i) by (A). So, assume that nA(wi), nC(wi) ≤ 2, so that

dL−E(W )(wi) ≤ 4, for all wi. Since G is 7-connected, dG(wi) ≥ 7. Therefore, dJ ′(wi) =

dG(wi) − dL−E(W )(wi) ≥ 3 for all wi.

Let n3, n4 and n+
5 be the number of vertices in W with degree 3, 4, and at least 5 in J ′,

respectively, and let nint be the number of internal vertices of J ′. Add a new vertex z and
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join it to all vertices of the outer cycle (w0w1 . . . wn) of J ′, giving a new planar graph J ′′.

Then dJ ′′(z) = n3 + n4 + n+
5 ; dJ ′′(wi) = dJ ′(wi) + 1 for all wi; and dJ ′′(v) = d′

J(v) ≥ 7 for all

internal vertices v of J ′, because G is 7-connected.

Since J ′′ is planar, 6|V (J ′′)| − 12 ≥ 2|E(J ′′)|. This implies that 6(nint + n3 + n4 + n+
5 +

1)− 12 ≥ 7nint + 4n3 + 5n4 + 6n+
5 + (n3 + n4 + n+

5 ), from which n3 ≥ nint + n+
5 + 6 ≥ n+

5 + 6.

Therefore, on W there are two vertices with degree 3 in J ′ such that no vertices with degree

at least 5 in J ′ lie between them.

Thus, there is ww′ ∈ E(W ) with dJ ′(w) ≤ 3 and dJ ′(w′) ≤ 4. Since G is 7-connected,

dL−E(W )(w) ≥ 4 and dL−E(W )(w
′) ≥ 3. Since nA(w), nC(w), nA(w′), nC(w′) ≤ 2, we must

have nA(w) = nC(w) = 2, and without loss of generality nA(w′) = 2 and nC(w′) ≥ 1. Then

(ii) follows from (C) and (A). �

If Claim 3.8(i) applies, let j = i, and if Claim 3.8(ii) applies, let j = i + 1. In either case,

wiak−1, wiak, wjak, wjak+1 ∈ E(L). By (B) there are unique s and t with ak−1ak ∈ E(Rs)

and akak+1 ∈ E(Rt); clearly s ≤ t. Then ak−1 = xs−1, ak = xs = xt−1, and ak+1 = xt. By

(C), wi is the unique vertex of W in Rs, so wi = vs−1 = vs, and wj is the unique vertex of

W in Rt, so wj = vt−1 = vt. Let ys−1 = cg and yt = ch; clearly g ≤ h.

Define

U1 = {aα |α < k − 1} ∪ {wβ | β < i} ∪ {cγ | γ < g},

U2 = {ak} ∪ {cγ | g < γ < h}, and

U3 = {aα |α > k + 1} ∪ {wβ | β > j} ∪ {cγ | γ > h}.

Because xs−1 = ak−1, vs−1 = wi, and ys−1 = cg, if Rr (or R′

r) contains a vertex of U1 then

r ≤ s− 1, and if Rr contains a vertex of U2 then r ≥ s. Because xt = ak+1, vt = wj and yt =

ch, if Rr contains a vertex of U2 then r ≤ t, and if Rr contains a vertex of U3 then r ≥ t + 1.

Therefore there is no R′

r containing both a vertex of U2 and a vertex of U1∪U3, so there are no

edges from U2 to U1∪U3. There are also no edges from U2 to U0 = V (J)−V (W ) because U2

contains no vertex of J . Therefore, S = V (G)−(U0∪U1∪U2∪U3) = {ak−1, ak+1, wi, wj, cg, ch}

separates U2 from U0 ∪U1 ∪U3, which is nonempty because |V (W )| = n + 1 ≥ 3 and U2 ∪ S

contains at most two vertices of W . Therefore, G is not 7-connected, a contradiction which

concludes the proof of Theorem 1.3. �

Now we can show that 7-connected graphs are P4-linked.

Suppose u and v are vertices of G. If NG(u) = NG(v), then we say u and v are nonadjacent

twins of each other in G, and if NG[u] = NG[v] we say they are adjacent twins . If we add a

new vertex w to G adjacent exactly to all vertices of NG(v) or NG[v], then we say we have

made a nonadjacent or adjacent twin of v, respectively.

The following is well known.

Observation 3.9. Suppose G is k-connected. Let G′ be obtained from G by making a

nonadjacent (or adjacent) twin of a vertex of G. Then G′ is also k-connected.
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Observation 3.10 (Seymour, see [24, p. 245]). Let u, v, w, x be distinct vertices of a graph

G.

(i) If vw ∈ E(G) then G has a path through u, v, w, x in that order if and only if G has

vertex-disjoint paths from u to v and from w to x.

(ii) If vw /∈ E(G), construct G′ from G by making nonadjacent twins v′, w′ of v,

w respectively. Then G has a path through u, v, w, x in that order if and only if

(G′, {w, w′}, {v, v′}, (u, x)) is not an obstruction.

Proof of first part of Theorem 1.4. Suppose G is a 7-connected graph. To show G is P4-

linked we must show there is a path through specified vertices u, v, w, x in that order. If

vw ∈ E(G), then since every 6-connected graph is 2-linked [6], G has vertex-disjoint paths

from u to v and from w to x. If vw /∈ E(G), make nonadjacent twins v′, w′ of v and w

respectively to obtain a graph G′. By Observation 3.9, G′ is 7-connected. By Theorem 1.3,

(G′, {w, w′}, {v, v′}, (u, x)) is not an obstruction. In either case, G has the desired path by

Observation 3.10. �

4. 6-connected graphs without P4-subdivisions

In this section we prove the second half of Theorem 1.4 by constructing a family of 6-

connected graphs that are not P4-linked. We use Seymour’s Observation 3.10, first finding

a 6-connected obstruction G and then deriving our example G′ from G.

X. Yu [24, pp. 243-245] constructed obstructions that were claimed to be 7-connected; in

fact they are only 6-connected. One can derive graphs that are not P4-linked from these

obstructions, but they are only 5-connected. We will modify X. Yu’s construction to obtain

our examples. Since the crucial issue here is the connectivity of the resulting graphs, we

provide a detailed verification that our examples are 6-connected.

We use the terminology and notation of Section 3.

4.1. Construction of near-triangulation J ′. We describe a near-triangulation which will

play the role of J ′ in our construction of G.

Let Π0 be an edge bb′. For each i, 0 ≤ i ≤ 4, construct a new path Πi+1 so that each

vertex of Πi is adjacent to at least four consecutive vertices on Πi+1, every vertex of Πi+1 is

adjacent to one or two vertices of Πi, and the region between Πi and Πi+1 is triangulated.

For i = 5 we construct Π6 in the same way, except the first and last vertex of Π5 each has

only one neighbor in Π6, the first or last vertex of Π6, respectively. Let J ′ be the union of

the paths Π1, Π2, . . ., Π6 and all edges between them. J ′ is a near-triangulation. Let W+

be its boundary cycle and write W+ = (w0w1w2 . . . wn) where w0 = b and wn = b′. J ′ may

be seen as the subgraph consisting of the solid vertices and thicker edges in Figure 4.

Then from every internal vertex v of J ′ there are at least seven paths, disjoint except at

v, from v to W+. Suppose v is on Πi. We may take one path that uses one vertex of each

of Πi−1, Πi−2, . . . , Π0; two paths along Πi from v to each end of Πi; and four paths that use

one vertex of each of Πi+1, Πi+2, . . . , Π6.
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Observation 4.1. If Z is a cycle in J ′ with at least one vertex inside it, then |V (Z)| ≥ 7,

because the seven paths from the inside vertex to W+ must intersect Z at distinct points.

4.2. Construction of obstruction G and example G′. Given the vertices w0, w1, . . . , wn

of J ′ and new vertices a0, a1, . . . , an−7 and c0, c1, . . . , cn−7, we form L by taking the union of

the following I-rungs (all K4’s as in Claim 3.6(ii) or K5’s as in Claim 3.6(iii)):

K4(a0, wi, wi+1, c0), 0 ≤ i ≤ 2,

K5(a0, a1, w3, c0, c1),

K4(a1, wi, wi+1, c1), 3 ≤ i ≤ 4,

K5(ai, ai+1, wi+4, ci, ci+1), 1 ≤ i ≤ n − 9,

K4(ai, wi+3, wi+4, ci), 2 ≤ i ≤ n − 9,

K4(an−8, wi, wi+1, cn−8), n − 5 ≤ i ≤ n − 6,

K5(an−8, an−7, wn−3, cn−8, cn−7), and

K4(an−7, wi, wi+1, cn−7), n − 3 ≤ i ≤ n − 1.

(So we take three K4’s, then one K5, then two K4’s, then alternate K5, K4, K5, . . ., K4,

K5, finishing with two K4’s, then one K5, then three K4’s.) Then L satisfies the definition

of a ladder, and if G = J ′ ∪L, then (G, {a0, c0} , {an−7, cn−7} , (w0, wn)) is an obstruction by

Theorem 3.4.

Notice that in G, ai and ci are adjacent twins for all i, 0 ≤ i ≤ n − 7.

Now let G′ = G−{c0, cn−7}. We claim that G′ has no P4-subdivision with branch vertices

w0, an−7, a0, wn in that order along the P4. By Observation 3.10, there is no P4-subdivision

if and only if when we make a nonadjacent twin a′

n−7 of an−7 and an nonadjacent twin a′

0 of

a0 we get a graph G′′ such that (G′′, {a0, a
′

0} ,
{
an−7, a

′

n−7

}
, (w0, wn)) is an obstruction. But

relabelling a′

0 as c0 and a′

n−7 as cn−7, we see that G′′ = G − {a0c0, an−7cn−7} and since G is

an obstruction, G′′ is an obstruction. Thus, G′ does not have the required P4-subdivision

and so G′ is not P4-linked.

Now we must show that G′ is 6-connected.

4.3. Projections and minimal cutsets. To examine the connectivity of G and G′, we will

make use of a simpler graph H . In order to relate cutsets in H to cutsets in G and G′, we

need the following concepts.

Let G be a graph. By a minimal cutset S ⊆ V (G) we mean that no proper subset of S is

a cutset.

Suppose H is an induced subgraph of G and we have a map π : V (G) → V (H) such that

if v ∈ V (H) then π(v) = v, and if v /∈ V (H) then π(v) is an adjacent twin of v. We call π

a projection of G onto H . The essential fact we need is the following. We omit the proof,

which is not difficult. The word ‘minimal’ is necessary here.

Lemma 4.2. Suppose we have a projection π of G onto H. Then S is a minimal cutset of

G if and only if S = π−1(T ) for some minimal cutset T of H. �
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Figure 4. Near-triangulation H with subgraph J ′ (thicker edges)

4.4. Cutsets in the projection H. It is convenient to modify slightly our notation from

Section 3, and write A = {a0, a1, . . . , an−7} and C = {c0, c1, . . . , cn−7} (so these are sets of

vertices, not paths). Let H = G − C. As shown in Figure 4, H is a near-triangulation with

boundary cycle (w0a0a1a2 . . . an−7wn). Lemma 1.5 and the following observation are useful

for investigating cutsets in H .

Observation 4.3. For 0 ≤ i ≤ n − 8, ai and ai+1 have a unique common neighbor in H,

which is a vertex wj for some j.

Since ai and ci are adjacent twins in G for each i, we have a projection π from G to H

with π(v) = v for v ∈ V (H) and π(ci) = ai for 0 ≤ i ≤ n − 7. If π′ is the restriction of π

to V (G′), then π′ also gives a projection from G′ to H . We will use Lemma 4.2 to examine

the cardinality of cutsets in G or G′ by looking at weighted minimal cutsets in H . Let ω be

a weighting of V (H) so that each vertex ai in A receives weight 2 (because it will represent

both ai and ci in G) and each vertex of J ′ receives weight 1.

Lemma 4.4. H has no minimal cutset T with ω(T ) ≤ 5. The only minimal cutsets T with

ω(T ) ≤ 6 are NH(a0), NH(an−7), and NH(ai), 2 ≤ i ≤ n − 9. Thus, H has no minimal

cutset T containing a0 or an−7 with ω(T ) ≤ 6.

Proof. Suppose T is a minimal cutset of H with ω(T ) ≤ 6. Since H is a near-triangulation

we may use Lemma 1.5 to analyse the minimal cutsets of T .

First suppose that |T ∩ A| = 0, i.e., T ⊆ V (J ′). Since the only vertices of J ′ on the

boundary of H are w0 and wn, which are adjacent, T cannot induce a path in H , so T

induces a separating cycle in H which is also a cycle in J ′. Since the cycle is separating there

is a vertex inside it which must be a vertex of J ′. Then ω(T ) = |T | ≥ 7 by Observation 4.1,

a contradiction.
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Now suppose that |T ∩ A| = 1, so that |T − A| ≤ 4; let T ∩ A = {ai}.

Suppose T induces a chordless separating cycle Z. No 3-cycle incident with any ai is

separating, so |T | ≥ 4 and T must use nonadjacent x, y ∈ NH(ai) ∩ V (J ′). Since Z is

chordless it must avoid the other neighbors of ai. The only vertices of A with two nonadjacent

neighbors in V (J ′) are a0, a1, an−8 and an−7. However, it is easy to check the pairs of

nonadjacent neighbors x, y of each such ai, and see that there is no vertex z /∈ NH(ai) with

xz, yz ∈ E(H), and no pair of vertices x′, y′ /∈ NH(ai) with xx′, yy′, x′y′ ∈ E(H).

Thus, T induces a path. The other end must be a vertex in V (J ′), which must be w0 or

wn. Suppose it is w0. Then a0, wn /∈ T . Then T gives a path from w0 to ai in H − {a0, wn},

using at most four vertices of J ′ (including w0). There is no such path from w0 to an−7 or

an−8, and if 2 ≤ i ≤ n − 9 then the path would have to reach Π5 before reaching ai and

hence would have to use at least six vertices of J ′. Therefore i = 1, and the only path that

will work is w0w1w2w3a1, giving T = NH(a0). Similarly, we get T = NH(an−7) if the end of

the path induced by T is wn.

Now suppose that |T ∩ A| = 2, so that |T − A| ≤ 2; let T ∩ A = {ai, aj}, i < j. Note

that every path between ai and aj contains at least one vertex of A or at least two vertices

of V (J ′) unless j = i + 1 and the path goes through the unique common neighbor of ai and

ai+1 described in Observation 4.3.

Suppose T induces a cycle Z. If j 6= i + 1 then the internal vertices of both of the ai − aj

paths in Z have weight at least two, by the observation above, so ω(T ) ≥ 8, a contradiction.

Thus j = i + 1. Now |T | ≥ 4 because there are no separating 3-cycles using two vertices of

A. The common neighbor wj of ai and ai+1 cannot be a vertex of Z, because at least one

of the edges aiwj, ai+1wj would not be an edge of Z and so would be a chord of Z. So Z

uses some x ∈ NH(ai) − {wj} and some y ∈ NH(ai+1) − {wj}. But it can be seen that no

such x and y are ever adjacent in H , so T contains at least one additional vertex. But then

ω(T ) ≥ 7, a contradiction.

Thus, T induces a path and so j ≥ i + 2. Since ai and aj with j ≥ i + 2 have no common

neighbor not in A, T must induce a path of the form aixyaj where x, y are vertices of J ′, so

xy is an edge of J ′. The only edges of J ′ with ends adjacent to ai and aj with j ≥ i + 2 are

edges wi+4wi+5 when j = i + 2 and 1 ≤ i ≤ n − 10, giving T = NH(ai′) with i′ = i + 1, so

that 2 ≤ i′ ≤ n − 9.

Finally, suppose that |T ∩ A| ≥ 3, so that |T − A| ≤ 0, i.e., T ⊆ A. Then by Lemma

1.5 since T contains at least three vertices of the boundary of H , it must induce a chordless

cycle. But the set A induces only a path in H , so this cannot happen.

No minimal cutset that we have found with ω(T ) = 6 contains a0 or an−7. �

Lemma 4.4 is sufficient, with Lemma 4.2, to show that G is 6-connected, since |π−1(S)| =

ω(S) for all S ⊆ V (H). However, we really wish to show that G′ is 6-connected. To do this

we examine the cutsets of H containing a0 and an−7 more closely.

Lemma 4.5. There is no minimal cutset T in H that contains {a0, an−7} and has ω(T ) ≤ 7.
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Proof. From Lemma 4.4 there is no such T with ω(T ) ≤ 6, so we may suppose that T is a

minimal cutset containing {a0, an−7} and with ω(T ) = 7.

If T induces a cycle, then, as observed in the proof of Lemma 4.4, the internal vertices of

each of the a0−an−7-paths in the cycle have weight at least two, so ω(T ) ≥ 8, a contradiction.

Thus T induces a path whose internal vertices are internal vertices of H . Thus T has the

form a0xzyan−7, where x ∈ {w1, w2, w3} and y ∈ {wn−3, wn−2, wn−1}. But no such x has a

common neighbor z with any such y, so this cannot happen. �

Proof of second part of Theorem 1.4. Let S be a minimal cutset in G′, then by Lemma 4.2

S = (π′)−1(T ) for some minimal cutset of H . Let t = |T ∩ {a0, an−7} |, then |S| = ω(T ) − t.

If t = 0 then ω(T ) ≥ 6 by Lemma 4.4, if t = 1 then ω(T ) ≥ 7 by the last sentence of the

statement of Lemma 4.4, and if t = 2 then ω(T ) ≥ 8 by Lemma 4.5. Therefore, |S| ≥ 6

and hence G′ is 6-connected. Thus, we have exhibited a 6-connected graph G′ that is not

P4-linked. �
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Appendix A. Proof of Lemma 4.2

We use the notation of Subsection 4.3.

Lemma 4.2. Suppose we have a projection π of G onto H. Then S is a minimal cutset of

G if and only if S = π−1(T ) for some minimal cutset T of H.

Proof. Extend π to a map π̂ : V (G) ∪ E(G) → V (H) ∪ E(H) by π̂(v) = π(v) ∈ V (H) for

v ∈ V (G), and for uv ∈ E(G), π̂(uv) = π(u)π(v) ∈ E(H) if π(u) 6= π(v), and π̂(uv) =

π(u) ∈ V (H) if π(u) = π(v). Since π̂ applies to the vertices and edges of G we can extend it

in a natural way to all subgraphs of G. Subgraphs of H can be lifted via π̂−1 to subgraphs

of G. For v ∈ V (H), π̂−1(v) is a nonempty clique induced by π−1(v), a set of adjacent twins

of v in G. For uv ∈ E(H), π̂−1(uv) is a nonempty complete bipartite graph between the

vertices of π−1(u) and π−1(v).

Now we establish a lemma and make two observations.

Lemma A.1. Suppose a, b are adjacent twins in G and S is a minimal cutset of G. Then

a ∈ S ⇐⇒ b ∈ S.

Proof. Suppose a ∈ S. Since S is minimal, a has neighbors v and w which are in different

components of G − S. If v = b then v is adjacent to w, contradicting v and w being in

different components. So v 6= b and similarly w 6= b. Now both v and w are neighbors of b,

so if b /∈ S then v and w are in the same component of G − S, a contradiction. Thus b ∈ S.

The reverse implication follows by symmetry. �

Observation A.2. Since any path in G projects to a (possibly shorter) path in H, and any

path in H lifts to a connected subgraph in G, a subgraph K of H is connected if and only if

π̂−1(K) is connected.

Observation A.3. For any T ⊆ V (H), π̂−1(H − T ) = G− π−1(T ). Therefore, by Observa-

tion A.2, T is a cutset of H if and only if π−1(T ) is a cutset of G.

Suppose S is a minimal cutset of G. By Lemma A.1, whenever π(u) = π(v) then u and v

are both in or both not in S, so S = π−1(T ) for some T ⊆ V (H). By Observation A.3, T
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is a cutset of H . If a proper subset T ′ of T is also a cutset of H , then by Observation A.3

π−1(T ′) would be a proper subset of S that is also a cutset of G, a contradiction, so T is

minimal.

Now suppose T is a minimal cutset in H . From Observation A.3, S = π−1(T ) is a cutset

in G. Suppose S is not minimal, so there exists a proper subset S ′ of S that is a minimal

cutset. From above S ′ = π−1(T ′) for some minimal cutset T ′. But T ′ is a proper subset of

T , contradicting minimality of T . Therefore S is minimal.

This concludes the proof of Lemma 4.2. �
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