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Abstract

The prism over a graph G is the cartesian product GLK>. It is known
that the property of having a Hamiltonian prism (prism-Hamiltonicity) is
stronger than that of having a 2-walk (spanning closed walk using every
vertex at most twice) and weaker than that of having a Hamilton path.
For a graph G, it is known that a(G) < 2xk(G), where o(G) is the in-
dependence number and x(G) is the connectivity, imples existence of a
2-walk in G, and the bound is sharp. West asked for a bound on a(G) in
terms of k(G) guaranteeing prism-Hamiltonicity. In this paper we answer
this question and prove that a(G) < 2k(G) implies the stronger condition,
prism-Hamiltonicity of G.

1 Introduction

In this paper, we consider only simple, finite, and undirected graphs. Let G
be a graph. By k(G) and «(G) we mean the connectivity and independence
number of G, respectively. The prism over a graph G is the cartesian product
GOK,. If GOK, is Hamiltonian, we say that G is prism-Hamiltonian. A t-tree
of G is a spanning tree of G with maximum degree at most ¢t. A t-walk of G is
a spanning closed walk that visits every vertex at most ¢ times.

Kaiser et al. [8] showed that the property of having a Hamiltonian prism is
stronger than that of having a 2-walk and weaker than that of having a Hamilton
path, i.e.,

Hamilton path = prism-Hamiltonian = 2-walk,

and there are examples in [8] showing that none of these implications can be
reversed. It is of interest to determine whether or not a graph fits in between
the properties of having a Hamilton path and having a 2-walk. In particular,



which graphs are prism-Hamiltonian even though they may not have a Hamilton
path?
Chvatal and Erdés proved the following theorem.

Theorem 1.1 (Chvétal and Erdés [5]). Let G be a graph with at least three
vertices. If a(G) < k(QG), then G is Hamiltonian.

Suppose G is a graph with |V(G)| > 2 and o(G) < &(G) + 1. By adding a
new vertex v adjacent to all vertices of G, we construct G’ which satisfies the
hypothesis of Theorem 1.1. Hence G’ is Hamiltonian, so that G = G’ — v has a
Hamilton path. This also holds if |[V(G)| = 1, giving the following corollary.

Corollary 1.2. Let G be a graph. If o(G) < k(G) + 1, then G has a Hamilton
path.

Moreover, it is known that a(G) < 2k(G) implies existence of a 2-walk for
G [7].

Problem 1.3 (West [9]). Given k, what is the largest value of a such that if G
is a graph with x(G) = k and «(G) = a, then the prism over G is Hamiltonian?

For a > k, the complete bipartite graph K , is k-connected and has inde-
pendence number a. When a > 2k, the prism over Ky, is not Hamiltonian,
since deleting the 2k vertices of degree a + 1 leaves a components. Hence the
answer to this problem is at most 2k.

The following theorem is our answer to this question.

Theorem 1.4. Let G be a graph with at least two vertices. If a(G) < 2k(G),
then G is prism-Hamiltonian.

This theorem shows that the Chvétal-Erd6s condition sufficient for being
prism-Hamiltonian is the same as for the weaker property of having a 2-walk.
Here we list the results that we need in our proofs.

Theorem 1.5 (Bondy and Lovéasz [2]). Let S be a set of k vertices in a k-
connected graph G, where k > 3. Then there exists an even cycle in G through
every vertex of S.

Theorem 1.6 (Jackson and Wormald [7]). The existence of a t-tree implies the
existence of a t-walk, and the existence of a t-walk implies the existence of a
(t+ 1)-tree.

Theorem 1.7 (Batagelj and Pisanski [1]). Let T be a tree with mazimum degree
A(T) > 2. Then TOC is Hamiltonian if and only if A(T) < t.

A spanning cactus in a graph G is a spanning connected subgraph of max-
imum degree 3 that is the union of vertex-disjoint cycles C1,Cs,...,Cs and
vertex-disjoint paths Py, Py, ..., P; such that the graph has no cycles other than
C1,Cs,...,Cs. The cactus is said to be even if all of its cycles are even, that is,
if the cactus is a bipartite graph.

Lemma 1.8 (Cada et al. [3]). If G contains a spanning even cactus, then G is
prism-Hamiltonian.



2 Proof of Theorem 1.4

Recall that Theorem 1.4 states that if G is a connected graph then a(G) < 2x(G)
implies prism-Hamiltonicity of G.

Let P = ajas .. .a, be a path with n vertices. By Pla;, a;] and P(a;,a;) for
1 <i < j < n we mean the paths a;a;41...a; and a;410:42...a5_1, respec-
tively. Similarly, we can define Pla;, a;) and P(a;, a;].

Proof of Theorem 1.4. If a(G) < k(G) + 1 then, by Corollary 1.2, G has a
Hamilton path, and hence is prism-Hamiltonian by Lemma 1.8. So we may
assume that £(G) + 2 < a(G) < 2k(G). Thus, k(G) > 2.

We break the proof into two cases, k(G) = 2 and x(G) > 3. Somewhat
surprisingly, we have to work harder in the first case; in the second case Bondy
and Lovéasz’s Theorem 1.5 does a significant amount of the work.

Case 1. Suppose that £(G) = 2. Since k(G) +2 =4 < a(G) < 2k(G) = 4,
we have a(G) = 4. By adding two adjacent vertices (a complete graph on two
vertices, K3) to G that are adjacent to all vertices of G, we obtain a new graph,
say G'. Then x(G’) = a(G") = 4. Therefore by Theorem 1.1 G’ is Hamiltonian.
Removing these two new vertices implies that G has a Hamilton path or two
vertex-disjoint paths P; and P, that cover all vertices of G. In the former case
G is prism-Hamiltonian, so we assume the latter case. Let u; and us be the end
vertices of P; and vy and let v2 be the end vertices of Ps.

Claim 1. Each of P; and P, contains more than one vertex; otherwise, G is
prism-Hamiltonian.

Proof. Suppose u; = uy = u. Since G is 2-connected, there are two edges
from u to Py, say uby and ubs. If by or by belongs to {vy,vs}, then G has a
Hamilton path, and hence is prism-Hamiltonian. Now suppose b; is the neighbor
of u closest to v; in P. Since G is 2-connected, there exists an edge zy €
E(G) such that z € V(P[v1,b1)) and y € V(Pa(b1,v2]). One of the cycles
Pyly, ba] U bauby U Po[by, z] U zy, Palb1,ba] U bguby or Polx,y] Uxy is an even
cycle and the even cycle together with remaining two path segments of P, form
a spanning even cactus, and hence G is prism-Hamiltonian. O

Suppose u1 # us and vy # ve. Since G is 2-connected, there are distinct
vertices a1,as € V(P1) and by,bs € V(P;) such that ajas,biby € E(G). We
may assume that uy,aq, as, us occur in that order on P;, and vy, by, ba, vo occur
in that order on Ps.

Claim 2. The orders of the paths P;[a,as] and Py[b, bs] have different parity;
otherwise, GG is prism-Hamiltonian.

Proof. Suppose the orders of the paths Pj[a1, as] and P [by, ba] have same parity.
Then P;[a1,az] U azbs U Paylbe,b1] U bay is an even cycle. This cycle together
with remaining path segments of P, and P, form a spanning even cactus, i.e.,
the even cycle together with Py — Pj[a1,as] and Py — P[by, ba]. Therefore G is
prism-Hamiltonian. O



Claim 3. If Py[z,y] N Pa[b1, bo] has at least one edge and zy € E(G) \ E(P2)
for x,y € V(P2), then Pylx,y] Uyx is an even cycle; otherwise, G is prism-
Hamiltonian.

Proof. Suppose Pslz,y] Uyz is an odd cycle. By Claim 2, Pj[a1,as] U azbs U
Py[by,b1] Ubyag is an odd cycle. Then combining these two odd cycles form an
even cycle which yields to a spanning even cactus. (The same statement holds
for edges between two vertices of P;.) O

Claim 4. The set {u,us,v1,v2} is an independent set; otherwise, G is prism-
Hamiltonian.

Proof. By contradiction suppose {u1,ug,v1,v2} is not an independent set. If
w;v; € E(G) for 4,j € {1,2} then G contains a Hamilton path and hence it is
prism-Hamiltonian.

Thus, we may assume that ujus € E(G), i.e., Py Uujug is a cycle. By Claim
3, P Uujus is an even cycle. We can assume that by is the closest neighbor
of a vertex of P; on P, to v;. Then, by 2-connectedness and since b is the
closest vertex to v; adjacent to a vertex of Pp, there is an edge xy such that
x € V(P2[v1,b1)) and y € V(Pa(b1,v2]). Then by Claim 3, Py, z] U zy is an
even cycle. Therefore P; Uwujus and Pz, y] Uyx are even cycles and together
with the edge a1b; and remaining path segments of P, form a spanning even
cactus. O

Claim 5. There is no edge zy with x € V(P;) — {a1,a2} and y € V(P) —
{b1,b2}; otherwise, G is prism-Hamiltonian.

Proof. Suppose zy € E(G) for x € V(P;) and y € V(P). By Claim 2,
Pifay,as] U agby U Palbe,b1] U biay is an odd cycle. Then one of the cycles
Z1 =P1 [x,al} U &1b1 U Pg[bl,y] U yxr or Z2 =P1 [I,CLQ] U CLQbQ U Pg[bg,y] U yxr is
even and together with remaining path segments of P; and P, forms a spanning
even cactus. O

Claim 6. There is no edge xy such that either (i) v € {u1,uz} and y € V(Ps) —
{b1,b2} or (ii) x € V(P1) — {a1,a2} and y € {v1,v2}; otherwise, G is prism-
Hamiltonian.

Proof. Without loss of generality suppose that (i) holds with = uy. If z # a4
then the result follows by Claim 5, so suppose that + = u; = a;. The proof
of Claim 5 fails when x = a; because if we need to construct a spanning even
cactus from the cycle Z; then we would have to attach two path segments of
P, at x = a1, creating a degree 4 vertex, which is not allowed. However, since
x = u; = ay here one of these path segments is trivial (just the single vertex
u1) so this does not create a problem now, and we may proceed as in the proof
of Claim 5. U



Now we may suppose that {uy, us,v1,v2} is an independent set. By Claim 2,
the paths Pj[a1,as] and Pa[by, bo] have different parity. Without loss of gener-
ality we can assume that Ps[by, b2] has an odd number of vertices, and therefore
there is a vertex x € V(Pa(by,b2)). Since a(G) = 4, and S = {uy, uz,v1,v2}
is an independent set, x is adjacent to some vertex in S. By Claim 6, we
may assume that z is adjacent to neither uw; nor us. Without loss of gener-
ality we may assume that x is adjacent to v;. Then by Claim 3, the cycle
Py[z,v1]Uv 2 is even. If a; = u; then we have a spanning even cactus using the
cycle Po[x,v1] Uviz and paths Palz, ve] and byuy U Py, so we may assume that
a1 # uy. By 2-connectedness there is an edge yz such that y € V(Py[u1,a1))
and z € V(P2) UV (Pyi(a1,usz]). So we have the following cases.

Case 1.1. If z € V(P;(a1,v2]), by Claim 3 we may assume that yz U Pi[z, 3]
is an even cycle. Then the cycles viz U Pa[x,v1] and yz U P [z, y] together with
the edge a1b1 and remaining path segments of P; and P form a spanning even
cactus.

Case 1.2. Suppose z € V(P). By Claim 5 we can assume that z = by or z = by
which lead us to the following cases.

Case 1.2.1. Suppose z = by. Then we can assume that the cycle ybsas U
Pylas,y] is even; otherwise, the cycle Py[by,bo] U bay U Pily,a1] U a1by is even
and yields a spanning even cactus. Therefore the even cycles ybaas U P [az, 3]
and vz U Pz, v1] together with the edge a1b; and remaining path segments of
P, and P, form a spanning even cactus.

Case 1.2.2. Suppose z = b;. Then for the same reason as above we can
assume that the cycle ybia; U Pifa1,y] is even. Therefore there is a vertex
¢ € V(Pi(y,a1)). We can assume that ca; € E(Pp). Since a(G) = 4, and
S = {uy,us,v1,v2} is an independent set, ¢ is adjacent to some vertex in S. By
Claim 6 we may assume that c is adjacent to neither vy nor ve. If uge € E(G)
then by Claim 3, P [c, u2]Uugc is an even cycle and together with Pylvq, |Uzvy
it yields a spanning even cactus. Hence we may assume that uic € E(G).

If uic ¢ E(Py), then we may assume that Pi[c,u1] U uic is an odd cycle;
otherwise, together with Ps[vy,z] U xv; it yields a spanning even cactus. If
Pi[c,u1] Uuge is odd, then Pic, as] Uasbe U Palbe,bi] Ubiy U Pily, u1] Uwugc is
an even cycle and together with remaining path segments of P, and P, forms
a spanning even cactus. Therefore we may assume that uic € E(P;), which
implies y = uy. Then Pyvy, z] Uz together with paths byuq U Py and Pz, vo)
forms a spanning even cactus.

Case 2. Suppose that k = k(G) > 3. Let « = «(G) and let t = a— k > 2. Let
G’ be the graph G together with a K; and all edges from these new ¢ vertices
to V(G). Then o(G')= a(G) < k(G’)= k(G) + t, hence by Theorem 1.1 G’ is
Hamiltonian. By removing these ¢t new vertices, we can cover all the vertices
of G by r <t vertex-disjoint paths, P, P, ..., P.. Let v1,...,v, be one of the
end vertex of each of these r paths. By Theorem 1.5 there is an even cycle, say
C, passing through vy, ..., v,.. Now we put a direction on each of these r paths



starting from v;, 1 <4 < r. Our goal is attaching some paths to C' to form a
spanning even cactus.

Suppose C' intersects P; at wt = v;, wh, ..., w}c, in that order along P;. Let
m}m be the end of P; other than v;, and for 1 < j < k; — 1 let gc; be the vertex
immediately before w§+1 on P;. Then we add the paths P; [w;,ac;], 1<i<r,
1 <j <k, toC. This process will form a spanning even cactus. Hence, G is
prism-Hamiltonian. U

3 Conclusion

It is known [7, Theorem 5.3] that a(G) < tk(G) implies Hamiltonicity of G[K}]
(the lexicographic product of G and K;). As an extension of Theorems 1.1 and
1.4 we can ask whether a(G) < tk(G) implies Hamiltonicity of GOK; when
t > 3. We can prove the following slightly weaker result.

Proposition 3.1. Let G be a graph, andt > 3 an integer. If a(G) < (t—1)k(G)
then GOCY, and hence GOK,, is Hamiltonian.

Proof. We know that a(G) < (¢t — 1)k implies existence of a (¢t — 1)-walk in G.
By Theorem 1.6 existence of a (¢t — 1)-walk implies the existence of a ¢-tree and
hence, by Theorem 1.7, Hamiltonicity of GOIC}. O

We assume the reader is familiar with the idea of toughness, introduced
by Chvétal [4], who conjectured that for some fixed ¢ every t-tough graph is
Hamiltonian. For k& > 3 we know that (1/(k — 2))-tough graphs have a k-
tree and hence a k-walk [7, 10], and 4-tough graphs have a 2-walk [6]. Kaiser
et al. [8, Conjecture 4] make the natural conjecture that for some fixed t all
t-tough graphs are prism-Hamiltonian, and show that ¢ must be at least 9/8.

While it appears very difficult to show that some constant toughness implies
Hamiltonicity or even prism-Hamiltonicity, Chvatal-Erdos conditions combined
with some simple observations suffice to show that (y/n)-tough graphs have
these properties. As far as we can tell, no one has noted this before. Suppose
G is a non-complete n-vertex t-tough graph; let @ = a(G) and k = k(G). By
[4, Propositions 1.3 and 1.4], x > 2t and t < (n —«a)/a, or n/(t+ 1) > a. Using
these, we obtain the following.

Proposition 3.2. Supposet >0, n > 3, and G is a t-tough n-vertex graph.
(i) If 2t(t + 1) > n (e.g., if t > /n/2), then G is Hamiltonian.
(i) If 4t(t + 1) > n (e.g., if t > \/n/2), then G is prism-Hamiltonian.

Proof. We may assume G is non-complete. If p > 0 and 2pt(t + 1) > n then
pk > 2pt > n/(t+1) > a. Applying Theorem 1.1 when p = 1 and Theorem 1.4
when p = 2 gives the result. O
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