COLOURINGS

Reading: B\&M 14.1,7 (vert. col.); 10.1-3 \& 11.1-2 (planar).

- k-colouring: $c: V(G) \rightarrow S,|S|=k$ (often $S=\{1,2, \ldots, k\}$).
- proper colouring: no two adjacent vertices get same colour. Often 'proper' implicit when we talk about colourings.
- k-colourable: has proper k-colouring.
- chromatic number $\chi(G)$: smallest k for which G is k-colourable; k-chromatic means $\chi(G)=k$.

Example:

vertices \leftrightarrow meetings
edges \leftrightarrow conflicts
colouring \leftrightarrow schedule
C_{5} has proper 3-colouring, no proper 2-colouring,

so $\chi=3$.
Assume: All graphs simple for vertex-colourings. If loop, no proper colouring. Parallel edges make no difference.

Inequalities: (X1) Each colour forms an independent set, so $\chi(G) \geq\lceil n / \alpha(G)\rceil$.
(X2) $\omega(G)=$ size of largest clique (complete subgraph): $\chi(G) \geq \omega(G)$.
Both of these can be tight, or not.

$$
\begin{aligned}
& C_{5}: \\
& \chi=3=\lceil n / \alpha\rceil= \\
& \quad\lceil 5 / 2\rceil \\
& \chi=3>\omega=2
\end{aligned}
$$

Greedy colouring: Colours $1,2, \ldots$

given ordering $v_{1}, v_{2}, \ldots, v_{n}$ of vertices
for $i=1$ to $n\{$
$c\left(v_{i}\right)=$ smallest colour not already used on a neighbour of v_{i}
\}
Usually uses more than χ colours. Finding χ is NP-hard.
(X3) $c(v) \leq(\#$ previously coloured neighbors of $v)+1 \forall v$, so uses $\leq \Delta+1$ colours. Hence $\chi \leq \Delta+1$. Sometimes tight, almost always not.
Brooks' Theorem: If G is connected and not an odd cycle or complete then $\chi(G) \leq \Delta(G)$.
Sketch of proof: Won't provide full details. Idea is to order vertices carefully, use greedy colouring. Let $\Delta=\Delta(G)$.
(1) $\Delta \leq 2$. G is path with ≥ 2 edges or even cycle so $\chi=\Delta=2$.
(2) G is not regular. Choose v with $d(v)<\Delta$. Grow spanning tree T from root v (Local TCM), adding vertices $v=v_{1}, v_{2}, \ldots, v_{n}$. Apply greedy colouring in reverse order $v_{n}, v_{n-1}, \ldots, v_{1}$.

- When colour $u \neq v$, has parent in T that comes later. So $c(u) \leq d(u) \leq \Delta$.
- And $c(v) \leq d(v)+1 \leq \Delta$.
(3) G is k-regular, $k \geq 3$, with cutvertex v. Δ colour H, K by (2) since not regular. Permute colours on K so $c_{H}(v)=c_{K}(v)$ and combine c_{H}, c_{K}.

(4) G is k-regular, $k \geq 3$, and 2-connected.

Will find spanning tree as shown, then:
$c\left(u_{1}\right)=c\left(u_{2}\right)=1$,
colour T towards v as in (2),
$c(v) \leq d(v)$ since u_{1}, u_{2} same colour.

To find tree: Choose any x; since $G \neq K_{n}, d(x)=k \leq n-2$.
If $\kappa(G-x) \geq 2$ take $u_{1}=x$ and any path $u_{1} v u_{2}$; build T from v in $G-\left\{u_{1}=x, u_{2}\right\}$.
If $\kappa(G-x)=1$ then x has a neighbour in each leaf block of $G-x$; take u_{1}, u_{2} as neighbours in two such blocks and build tree from $v=x$ in $G-\left\{u_{1}, u_{2}\right\}$. Use $d(v)=k \geq 3$.

Chromatic polynomials

Assume: all graphs simple again back to vertex-colouring.
Idea: as one approach to 4CT, Birkhoff thought of counting k-colourings of a graph, idea developed by Whitney and Tutte.

- $P(G, k)=\#$ of proper k-colourings of G with colours $1,2, \ldots, k$.

Example:

$P\left(P_{3}, 1\right)=0$,
$P\left(P_{3}, 2\right)=2$,
$P\left(P_{3}, 3\right)=12$.

- $P\left(K_{n}, k\right)=k(k-1)(k-2) \ldots(k-n+1)=P(k, n)={ }^{k} P_{n}=(k)_{n}$.
- $P\left(\overline{K_{n}}, k\right)=k^{n}$.
- $P(T, k)=k(k-1)^{n}$ for any tree T - colour outward from arbitrary root. Hence $P\left(P_{3}, k\right)=$ $k(k-1)^{2}$.
- If G_{1}, G_{2} vertex-disjoint, $P\left(G_{1} \cup G_{2}, k\right)=P\left(G_{1}, k\right) P\left(G_{2}, k\right)$.

Expansion formula: If $x y \notin E(G), \quad P(G, k)=P(G+x y, k)+P\left(G_{x=y}, k\right) \quad$ (E).
First term is colourings where $c(x) \neq c(y)$, second term colourings where $c(x)=c(y)$.
$G_{x=y}=G /\{x, y\}:$ identify x, y into single vertex.
Example: Represent $P(G, k)$ by just (G) :

$$
\begin{aligned}
\left.()^{y}\right) & =\left({ }^{\text {a }} x=y\right) \\
& =\left(K_{4}\right)+\left(K_{3}\right)=k(k-1)(k-2)(k-3)+k(k-1)(k-2) \\
& =k(k-1)(k-2)(k-3+1)=k(k-1)(k-2)^{2} \\
& =k^{4}-5 k^{3}+8 k^{2}-4 k .
\end{aligned}
$$

Observation X5: By repeated use of (E) can express any $P(G, k)$ as sum of $P\left(K_{t}, k\right)$'s. Therefore $P(G, k)$ is a polynomial in k, chromatic polynomial of G. Can also show has degree n, coefficients alternate in sign, and is monic (leading coefficient is 1).

However, computing $P(G, k)$ is NP-hard, since if can find it, can determine $\chi(G)=$ first k with $P(G, k)>0$. Formula (E) gives exponential time algorithm.
Can turn formula (E) around.
Deletion-contraction formula: Suppose $x y \in E(G)$. Let $H=G \backslash x y$ using \backslash for deletion rather than usual -, standard when talking about deletion and contraction together, then

$$
\begin{aligned}
& P(H, k)=P(H+x y, k)+P\left(H_{x=y}, k\right) \\
& \text { i.e., } P(G \backslash x y)=P(G, k)+P(G / x y), \\
& \text { so that } P(G, k)=P(G \backslash x y, k)-P(G / x y, k) \quad \text { (DC). }
\end{aligned}
$$

Example: $\left(P_{3}\right)$ again:

$$
\begin{aligned}
& \left(\begin{array}{lll}
x_{1} & y_{1} & \\
\bigcirc & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & x_{2} & y_{2} \\
0 & 0 & 0
\end{array}\right)-\left(\begin{array}{ll}
x_{3} & y_{3} \\
0 & 0
\end{array}\right) \\
& \left.=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right)-\left(\begin{array}{ll}
0 & 0
\end{array}\right)\right]-\left[\left(\begin{array}{ll}
0 & 0
\end{array}\right)-(0)\right] \\
& =\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right)-2\left(\begin{array}{ll}
0 & 0
\end{array}\right)+(0) \\
& =k^{3}-2 k^{2}+k=k(k-1)^{2} \quad \text { as before } .
\end{aligned}
$$

Using (DC) can reduce any graph to edgeless graphs and compute $P(G, k)$ that way, gives another proof that it's a polynomial. Typically use (E) for dense graphs and (DC) for sparse graphs.

Planar graphs and the Four Colour Problem
Recall: graph planar if can be drawn in plane without edge crossings. Not all graphs planar, e.g., can show $K_{5}, K_{3,3}$ not planar.
Four Colour Problem (Francis Guthrie, 1852): Can we colour maps (plane graphs) so that faces different colours if share an edge? Transform to

Graph G Dual G^{*} vertex-colouring by duality.
Before discussing colourings need another fundamental result.
Euler's formula: Let G be a plane graph (specific crossing-free drawing of planar graph) with r faces (regions determined by graph, including outside). If G is connected then $n-m+r=2$.
Proof: By induction on m for fixed n. The smallest m is $m=n-1$ when G is a tree; then $r=1$ and the result holds.

So suppose result true for graphs with fewer edges than G, which is not a tree. So G has an edge e not a cutedge. Let $G^{\prime}=G-e$, then $n^{\prime}=n$, $m^{\prime}=m-1$ and since e is not a cutedge, $r^{\prime}=r-1$. G^{\prime} is connected, so by induction $2=n^{\prime}-m^{\prime}+r^{\prime}=$ $n-(m-1)+(r-1)=n-m+r$.

- degree $d(f)$ of face $f=$ total length of all boundary walks.
- $F(G)=$ set of faces of G.

Face Degree-Sum Formula: $\sum_{f \in F(G)} d(f)=2 m$. Every face has two sides (as well as two ends!) Or apply DegreeSum Formula to dual.

Putting Euler's formula and Face Degree-Sum Formula together gives very useful result (for colourings and other things).

Theorem. Let G be a simple planar graph with $n \geq 3$. Then $m \leq 3 n-6$.
Proof: First suppose G is connected and has plane embedding. Because G is simple and $n \geq 3$, $d(f) \geq 3$ for all $f \in F(G)$. So

$$
2 m=\sum_{f \in F(G)} d(f) \geq 3|F(G)|=3 r \quad \text { so } \quad r \leq 2 m / 3
$$

By Euler's Formula,

$$
2=n-m+r \leq n-m+2 m / 3=n-m / 3 \quad \text { or equivalently } \quad m \leq 3 n-6
$$

If G is disconnected add edges to get connected simple planar G^{\prime}, then $m \leq m^{\prime} \leq 3 n^{\prime}-6=$ $3 n-6$.
Corollary. K_{5} is not planar. $(m=10 \not \leq 3 n-6=9$.)
Corollary. (a) The average degree of a simple planar graph is less than 6 . True if $n \leq 2$, and if $n \geq 3$ then, by regular Degree-Sum Formula, $d(G)=2 m / n \leq 2(3 n-6) / n<6$.
(b) Thus, a planar graph G must have a vertex of degree at most 5 .

Now can say something about colourings.
Observation: Every planar graph is 6-colourable. Remove v of degree $\leq 5,6$-colour $G-v$ by induction, add v back. Or can think of repeatedly removing vertices of degree 5 , then applying greedy colouring in reverse order of removal.

Five Colour Theorem. Every planar graph G is 5 -colourable.
Proof: By induction on n. Use plane drawing of G.

- If $n \leq 5$ result is true.
- Suppose $n \geq 6$ and result is true for graphs with fewer vertices than G. Let v have degree ≤ 5 in G and 5 -colour $G^{\prime}=G-v$ by induction.

If ≤ 4 colours used on $N(v)$ can colour v too. So $d(v)=5$ and each v_{i} is different colour i. Let $H(i, j)$ be subgraph induced by vertices of colours i and j. Kempe chain.

If v_{1}, v_{3} in different components of $H(1,3)$, switch $1 \leftrightarrow 3$ in v_{3} 's component, colour v with 3.

So v_{1}, v_{3} in same component of $H(1,3)$. But
 then v_{2} and v_{4} must be in different components of $H(2,4)$, since components of $H(1,3)$ and $H(2,4)$ can't cross. Switch $2 \leftrightarrow 4$ in v_{4} 's component, colour v with 4 .

Four Colour Theorem (Appel and Haken, 1976): Every planar graph G is 4-colourable. Proof complicated, computer checking of hundreds of cases.

