
Math 4710/6710 Graph Theory Fall 2019

COLOURINGS

Reading: B&M 14.1,7 (vert. col.); 10.1-3 & 11.1-2 (planar).

◦ k-colouring : c : V (G) → S, |S| = k (often S = {1, 2, . . . , k}).
◦ proper colouring: no two adjacent vertices get same colour. Often ‘proper’ implicit when we talk

about colourings.
◦ k-colourable: has proper k-colouring.
◦ chromatic number χ(G): smallest k for which G is k-colourable; k-chromatic means χ(G) = k.

Example:

vertices ↔ meetings
edges ↔ conflicts
colouring ↔ schedule

C5 has proper 3-colouring, no proper 2-colouring,
so χ = 3.
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Assume: All graphs simple for vertex-colourings. If loop, no proper colouring. Parallel edges
make no difference.

Inequalities: (X1) Each colour forms an inde-
pendent set, so χ(G) ≥ ⌈n/α(G)⌉.

(X2) ω(G) = size of largest clique (complete sub-
graph): χ(G) ≥ ω(G).

Both of these can be tight, or not.

K5 ∨K3:
χ = 6 > ⌈n/α⌉ =

⌈8/3⌉ = 3
χ = 6 = ω

C5:
χ = 3 = ⌈n/α⌉ =

⌈5/2⌉
χ = 3 > ω = 2

Greedy colouring: Colours 1, 2, . . .
given ordering v1, v2, . . . , vn of vertices
for i = 1 to n {

c(vi) = smallest colour not already used on a neighbour of vi
}

Usually uses more than χ colours. Finding χ is NP-hard.

(X3) c(v) ≤ (# previously coloured neighbors of v) + 1 ∀ v, so uses ≤ ∆ + 1 colours. Hence
χ ≤ ∆+ 1. Sometimes tight, almost always not.

Brooks’ Theorem: If G is connected and not an odd cycle or complete then χ(G) ≤ ∆(G).

Sketch of proof: Won’t provide full details. Idea is to order vertices carefully, use greedy
colouring. Let ∆ = ∆(G).

(1) ∆ ≤ 2. G is path with ≥ 2 edges or even cycle so χ = ∆ = 2.

(2) G is not regular. Choose v with d(v) < ∆. Grow spanning tree T from root v (Local TCM),
adding vertices v = v1, v2, . . . , vn. Apply greedy colouring in reverse order vn, vn−1, . . . , v1.

- When colour u 6= v, has parent in T that comes later. So c(u) ≤ d(u) ≤ ∆.
- And c(v) ≤ d(v) + 1 ≤ ∆.

(3) G is k-regular, k ≥ 3, with cutvertex v. ∆-
colour H,K by (2) since not regular. Permute
colours onK so cH(v) = cK(v) and combine cH , cK .

H K
v
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(4) G is k-regular, k ≥ 3, and 2-connected.
Will find spanning tree as shown, then:

c(u1) = c(u2) = 1,
colour T towards v as in (2),
c(v) ≤ d(v) since u1, u2 same colour.

Tv

u1

u2

To find tree: Choose any x; since G 6= Kn, d(x) = k ≤ n− 2.

If κ(G− x) ≥ 2 take u1 = x and any path u1vu2; build T from v in G− {u1 = x, u2}.

If κ(G − x) = 1 then x has a neighbour in each
leaf block of G − x; take u1, u2 as neighbours in
two such blocks and build tree from v = x in
G− {u1, u2}. Use d(v) = k ≥ 3.

v = x
u2

u1

Chromatic polynomials

Assume: all graphs simple again back to vertex-colouring.

Idea: as one approach to 4CT, Birkhoff thought of counting k-colourings of a graph, idea developed
by Whitney and Tutte.

◦ P (G, k) = # of proper k-colourings of G with colours 1, 2, . . . , k.

Example:

P (P3, 1) = 0,
P (P3, 2) = 2,
P (P3, 3) = 12.

◦ P (Kn, k) = k(k − 1)(k − 2) . . . (k − n+ 1) = P (k, n) = kPn = (k)n.

◦ P (Kn, k) = kn.
◦ P (T, k) = k(k − 1)n for any tree T – colour outward from arbitrary root. Hence P (P3, k) =

k(k − 1)2.
◦ If G1, G2 vertex-disjoint, P (G1 ∪G2, k) = P (G1, k)P (G2, k).

Expansion formula: If xy /∈ E(G), P (G, k) = P (G+ xy, k) + P (Gx=y, k) (E).
First term is colourings where c(x) 6= c(y), second term colourings where c(x) = c(y).
Gx=y = G/{x, y}: identify x, y into single vertex.

Example: Represent P (G, k) by just (G):
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x = y









= (K4) + (K3) = k(k − 1)(k − 2)(k − 3) + k(k − 1)(k − 2)

= k(k − 1)(k − 2)(k − 3 + 1) = k(k − 1)(k − 2)2

= k4 − 5k3 + 8k2 − 4k.

Observation X5: By repeated use of (E) can express any P (G, k) as sum of P (Kt, k)’s. Therefore
P (G, k) is a polynomial in k, chromatic polynomial of G. Can also show has degree n, coefficients
alternate in sign, and is monic (leading coefficient is 1).
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However, computing P (G, k) is NP-hard, since if can find it, can determine χ(G) = first k
with P (G, k) > 0. Formula (E) gives exponential time algorithm.

Can turn formula (E) around.

Deletion-contraction formula: Suppose xy ∈ E(G). Let H = G\xy using \ for deletion rather
than usual −, standard when talking about deletion and contraction together, then

P (H, k) = P (H + xy, k) + P (Hx=y, k),
i.e., P (G\xy) = P (G, k) + P (G/xy),
so that P (G, k) = P (G\xy, k) − P (G/xy, k) (DC).

Example: (P3) again:
(

x1 y1
)

=
(

x2 y2
)

−
(

x3 y3
)

= [( )− ( )]− [( )− ( )]

= ( )− 2 ( ) + ( )

= k3 − 2k2 + k = k(k − 1)2 as before.

Using (DC) can reduce any graph to edgeless graphs and compute P (G, k) that way, gives another
proof that it’s a polynomial. Typically use (E) for dense graphs and (DC) for sparse graphs.

Planar graphs and the Four Colour Problem

Recall: graph planar if can be drawn in plane with-
out edge crossings. Not all graphs planar, e.g., can
show K5, K3,3 not planar.

Four Colour Problem (Francis Guthrie, 1852):
Can we colour maps (plane graphs) so that faces
different colours if share an edge? Transform to
vertex-colouring by duality .

Graph G
Dual G∗

Before discussing colourings need another fundamental result.

Euler’s formula: Let G be a plane graph (specific crossing-free drawing of planar graph) with r
faces (regions determined by graph, including outside). If G is connected then n−m+ r = 2.

Proof: By induction on m for fixed n. The smallest m is m = n− 1 when G is a tree; then r = 1
and the result holds.

So suppose result true for graphs with fewer
edges than G, which is not a tree. So G has an
edge e not a cutedge. Let G′ = G − e, then n′ = n,
m′ = m− 1 and since e is not a cutedge, r′ = r − 1.
G′ is connected, so by induction 2 = n′ −m′ + r′ =
n− (m− 1) + (r − 1) = n−m+ r.

n = 5, m = 6, r = 3
→

n′ = 5, m′ = 5, r′ = 2

◦ degree d(f) of face f = total length of all boundary walks.
◦ F (G) = set of faces of G.

Face Degree-Sum Formula:
∑

f∈F (G) d(f) = 2m. Every

face has two sides (as well as two ends!) Or apply Degree-
Sum Formula to dual.

3
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Putting Euler’s formula and Face Degree-Sum Formula together gives very useful result (for colour-
ings and other things).
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Theorem. Let G be a simple planar graph with n ≥ 3. Then m ≤ 3n − 6.

Proof: First suppose G is connected and has plane embedding. Because G is simple and n ≥ 3,
d(f) ≥ 3 for all f ∈ F (G). So

2m =
∑

f∈F (G)

d(f) ≥ 3|F (G)| = 3r so r ≤ 2m/3.

By Euler’s Formula,

2 = n−m+ r ≤ n−m+ 2m/3 = n−m/3 or equivalently m ≤ 3n− 6.

If G is disconnected add edges to get connected simple planar G′, then m ≤ m′ ≤ 3n′ − 6 =
3n− 6.

Corollary. K5 is not planar. (m = 10 6≤ 3n− 6 = 9.)

Corollary. (a) The average degree of a simple planar graph is less than 6. True if n ≤ 2, and if
n ≥ 3 then, by regular Degree-Sum Formula, d(G) = 2m/n ≤ 2(3n − 6)/n < 6.

(b) Thus, a planar graph G must have a vertex of degree at most 5.

Now can say something about colourings.

Observation: Every planar graph is 6-colourable. Remove v of degree ≤ 5, 6-colour G − v by
induction, add v back. Or can think of repeatedly removing vertices of degree 5, then applying
greedy colouring in reverse order of removal.

Five Colour Theorem. Every planar graph G is 5-colourable.

Proof: By induction on n. Use plane drawing of G.
• If n ≤ 5 result is true.
• Suppose n ≥ 6 and result is true for graphs with fewer vertices than G. Let v have degree ≤ 5 in
G and 5-colour G′ = G− v by induction.

If ≤ 4 colours used on N(v) can colour v too.
So d(v) = 5 and each vi is different colour i. Let
H(i, j) be subgraph induced by vertices of colours
i and j. Kempe chain.

If v1, v3 in different components of H(1, 3),
switch 1 ↔ 3 in v3’s component, colour v with 3.

So v1, v3 in same component of H(1, 3). But
then v2 and v4 must be in different components of
H(2, 4), since components of H(1, 3) and H(2, 4)
can’t cross. Switch 2 ↔ 4 in v4’s component,
colour v with 4.

H(1, 3)

v1

v2

v3
v4

v5
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Four Colour Theorem (Appel and Haken, 1976): Every planar graph G is 4-colourable. Proof
complicated, computer checking of hundreds of cases.
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