## MATCHINGS

Reading: B\&M 16.1-5.

Examples: Assignment Problem


Roommate Problem


- matching $M$ : set of independent (pairwise nonadjacent, no common vertex) edges.
- $M$-saturated vertex: incident with edge of $M$, otherwise $M$-unsaturated.
- perfect matching or 1-factor: saturates all vertices.


## Examples:


$M_{1}$, maximal, not maximum

$M_{2}$, maximum

Notation: For $S \subseteq E(G)$ we also use $S$ to mean $G[S]$ subgraph induced by $S, S$ and ends of edges in $S$. For sets $S \triangle T=(S-T) \cup(T-S)$. For subgraphs $H \triangle J$ is subgraph induced by $E(H) \triangle E(J)$. Different from previous definition for spanning subgraphs.

- M-alternating path: edges alternately in, not in, $M$.
- M-augmenting path $P$ : nontrivial $M$-alternating, ends $M$-unsaturated. Then $M \triangle P$ is a larger matching.
Examples:

$M_{1}$-augmenting path $P_{1}$

$M_{1} \triangle P_{1}$

Berge's Theorem: A matching $M$ has an $M$-alternating path $\Leftrightarrow$ it is not maximum.
Proof: $(\Rightarrow)$ If an $M$-augmenting path exists, we can find a larger matching than $M$.
$(\Leftarrow)$ Suppose $M$ is not maximum. Let $M^{\prime}$ be a matching that is maximum. Let $F=M \triangle M^{\prime}$. The components of $F$ are $M$-alternating paths or even cycles. Since $\left|M^{\prime}\right|>$ $|M|$, some component of $M^{\prime}$ has more $M^{\prime}$ edges than $M$ edges: must be odd length path, starts and ends with $M$ unsaturated vertices, so $M$-augmenting path as required.

$M_{1} \triangle M_{2}$

Corollary M1: Contrapositive: Matching $M$ is maximum $\Leftrightarrow$ no $M$-augmenting path exists.

## Matching in bipartite graphs

- $\alpha^{\prime}(G)=$ size of maximum matching.
- vertex cover $K: K \subseteq V(G)$, every edge has at least one end in $K$.
- $\beta(G)=$ cardinality of minimum vertex cover.
(M2) If $M$ matching, $K$ vertex cover, then $|M| \leq|K|$ since $K$ contains at least one end of each $e \in M$. Hence $\alpha^{\prime}(G) \leq \beta(G)$. Also if
 $|M|=|K|$, then $M$ is maximum, $K$ is minimum. For bipartite graphs will show $\alpha^{\prime}=\beta$, not true in general..


## Bipartite matching $\leftrightarrow$ network flow

Given bipartite $G(X, Y)$, construct flow network:
Feasible integer flow in $(D, c)$ $\uparrow$
Matching $M$ in $G$
So $\alpha^{\prime}(G)=$ value of max. $\quad x y$-flow $=$ capacity of min. $x y$-cut. So need to examine $x y$-cuts in $D$. Infinite capacity edges will not appear in min. cuts.


Given $x y$-cut $\delta^{+} A$, let $S=X \cap A, S^{\prime}=X-A$, $T=Y \cap A, T^{\prime}=Y-A \quad(A=\{x\} \cup S \cup T)$.
(1) If $\left[S, T^{\prime}\right] \neq \emptyset$ then $c\left(\delta^{+} A\right)=\infty$.
(2) So $\delta^{+} A$ has finite capacity

$$
\begin{array}{ll}
\Leftrightarrow & {\left[S, T^{\prime}\right]=\emptyset(\text { in } G)} \\
\Leftrightarrow & K=S^{\prime} \cup T \text { is a vertex cover }(\text { in } G) .
\end{array}
$$

For vertex cover $K$ in $G$, can take $A=\{x\} \cup(X-$ $K) \cup(Y \cap K)$ in $D$. So 1-1 correspondence $A \leftrightarrow K$ with $c\left(\delta^{+} A\right)=\left|S^{\prime}\right|+|T|=|K|$.
(3) Since finite cap. $x y$-cuts exist (e.g., $\delta^{+} x$ ), $\alpha^{\prime}(G)=$ min. cap. of $x y$-cut

$=\min$. finite cap. of $x y$-cut
$=\min \{|K| \mid K$ a vertex cover $\}$
$=\beta(G)$ - Kőnig-Egerváry Theorem true for bipartite graphs.
(4) And $\alpha^{\prime}(G)=$ cap. of min. $x y$-cut $=\min _{S \subseteq X, T \subseteq Y: N(S) \subseteq T}\left|S^{\prime}\right|+|T|=\min _{S \subseteq X} \min _{T \subseteq Y: N(S) \subseteq T}\left|S^{\prime}\right|+|T|$

$$
\begin{aligned}
& =\min _{S \subseteq X}\left|S^{\prime}\right|+|N(S)| \text { since } N(S) \text { is smallest } T \text { with } N(S) \subseteq T \\
& =\min _{S \subseteq X}|X|-|S|+|N(S)|=|X|-\max _{S \subseteq X} \underbrace{|S|-|N(S)|)}_{\text {excess of } S}
\end{aligned}
$$

positive excess means $S$ has too many vertices to match them all to $N(S)$

- Kőnig-Ore formula true for bipartite graphs.

Corollary M3, Hall's Theorem: Bipartite $G(X, Y)$ has a matching saturating all of $X$

$$
\begin{aligned}
& \Leftrightarrow \alpha^{\prime}(G)=|X| \\
& \Leftrightarrow \text { every } S \subseteq X \text { has nonpositive excess } \quad(\emptyset \text { has } \\
& \quad \text { excess of } 0) \\
& \Leftrightarrow|N(S)| \geq|S| \text { for all } S \subseteq X
\end{aligned}
$$



Corollary M4 (Kőnig): For $k \geq 1$, every $k$-regular bipartite graph $G(X, Y)$ has a perfect matching. Graph does not need to be simple. For most matching results can just use underlying simple graph; not this one since underlying simple graph may not be regular.
Proof: From the bipartite degree-sum formula, $\sum_{x \in X} d(x)=k|X|=\sum_{y \in Y} d(y)=k|Y|$, so $|X|=|Y|$. So it is enough to find a matching saturating $X$. For any $S \subseteq X$, we have
$k|S|=\#$ edges out of $S \leq \#$ edges into $N(S)=k|N(S)|$
so that $|N(S)| \geq|S|$ for all $S \subseteq X$, so by Hall's Theorem the required matching exists.
Corollary M5: For $k \geq 0$, the edges of a $k$-regular bipartite graph can be partitioned into $k$ perfect matchings. Later will connect this to edge-colourings.

## Matchings in general graphs

Look at what restricts size of maximum matching.
Example: $G-S$ has 4 odd components.
At most 2 odd components have vertex matched to vertex of $S$.
$\therefore$ At least two unmatched vertices.

- defect of $M$ is $\operatorname{def}(M)=$ number of $M$-unsaturated vertices $=n-2|M|$.

- shortfall of $S \subseteq V(G)$ is $\operatorname{shf}(S)=c_{\text {odd }}(G-S)-|S|$. My terminology: how much $S$ falls short of helping all odd components get matched. May be positive, 0 or negative. But empty set has nonnegative shortfall so maximum always nonnegative.
(M6) For any matching $M$ and $S \subseteq V(G), \operatorname{def}(M) \geq \operatorname{shf}(S)$.
(M7) For any $S \subseteq V(G), \operatorname{shf}(S) \equiv|V(G)| \bmod 2$. Both even or both odd.

Berge's Formula, 1958: For any $G$,
the minimum defect of any matching $=$ the maximum shortfall of any $S \subseteq V(G)$.

Hence $\alpha^{\prime}(G)=\frac{1}{2}\left(|V(G)|-\min _{M \text { matching }} \operatorname{def}(M)\right)=\frac{1}{2}\left(|V(G)|-\max _{S \subseteq V(G)}\left(c_{\text {odd }}(G-S)-|S|\right)\right)$.
Special case: $\min _{M} \operatorname{def}(M)=0 \Leftrightarrow \max _{S} \operatorname{shf}(S)=0 \Leftrightarrow \operatorname{shf}(S) \leq 0 \forall S \subseteq V(G) \quad(\operatorname{shf}(\emptyset) \geq 0)$
i.e. $G$ has a perfect matching $\Leftrightarrow c_{\text {odd }}(G-S) \leq|S| \forall S \subseteq V(G)$

- Tutte's 1-Factor Theorem, 1947.

Berge originally proved his formula using Tutte's Theorem. We prove both together.
B\&M call this Tutte-Berge Formula/Theorem.
Proof of Berge's Formula: (This proof based on West, Eur. J. Combin. 2011. Similar proof in Kotlov, arXiv:math/0011204v1, 2000.) By induction on $|V(G)|$. True if $\mid V(G)=1$. Consider a maximal set of maximum shortfall (which is $\geq 0$ ), $T$. Enough to find matching $M$ with $\operatorname{def}(M)=$ $\operatorname{shf}(T)$.
(a) All components of $G-T$ are odd: If not, take an even component $C$ and $v \in V(C)$. Then $c_{\text {odd }}(G-(T \cup v))=$ $c_{\text {odd }}(G-T)+c_{\text {odd }}(C-v) \geq c_{\text {odd }}(G-T)+1$ and $|T \cup v|=$ $|T|+1$, giving $\operatorname{shf}(T \cup v) \geq \operatorname{shf}(T)$, contradicting maximality assumptions for $T$. Will use ' $v$ ' to denote set of single vertex $v$ to simplify notation, should not cause any confusion.
(b) If $C$ is a component of $G-T$ and $v \in V(C)$ then $C-v$ has a perfect matching $M_{C-v}$ : We claim that $\operatorname{shf}_{C-v}(S) \leq 0 \forall S \subseteq V(C-v)$. We have

$$
\begin{aligned}
& \operatorname{shf}_{G}(T \cup v \cup S)=c_{\text {odd }}(G-T-v-S)-|T \cup v \cup S| \\
& \left.\quad=\left(c_{\text {odd }}(G-T)-1\right)+c_{\text {odd }}(C-v-S)\right)-|T|-|S|-1 \\
& \quad=\left(c_{\text {odd }}(G-T)-|T|\right)+\left(c_{\text {odd }}(C-v-S)-|S|\right)-2 \\
& \quad=\operatorname{shf}_{G}(T)+\operatorname{shf}_{C-v}(S)-2 .
\end{aligned}
$$



Since $T$ is maximal of maximum shortfall, $\operatorname{shf}_{G}(T \cup v \cup S)<\operatorname{shf}_{G}(T)$, so $\operatorname{shf}_{C-v}(S) \leq 1$. But since $C-v$ is even, by Observation $\mathrm{M} 7 \operatorname{shf}_{C-v}(S)$ is even, so $\operatorname{shf}_{C-v}(S) \leq 0$. Thus, by induction (using the special case) $C-v$ has a perfect matching.
(c) Now can find matching of defect $\operatorname{shf}(T)$ as long as can match every vertex of $T$ to a component of $G-T$. To do this, use bipartite matching! Construct a bipartite graph $H$ from $G$ by (1) deleting all edges inside $T$, and (2) contracting every component $C$ of $G-T$ to a single vertex $y_{C}$; let $Y$ be the set of such $y_{C}$ 's. Then $H$ has a matching $M_{H}$ saturating $T$ : Let $S \subseteq T$, then

$$
\begin{aligned}
|Y| & -|T|=c_{\text {odd }}(G-T)-|T|=\operatorname{shf}_{G}(T) \\
& \geq \operatorname{shf}_{G}(T-S)=c_{\text {odd }}(G-(T-S))-|T-S| \\
& \geq\left|Y-N_{H}(S)\right|-|T|+|S| \\
& =|Y|-|T|+|S|-\left|N_{H}(S)\right|
\end{aligned}
$$


because for every $y_{C} \notin N_{H}(S), C$ is an odd component of $G-(T-S)$ (may also be other odd components from $S$ and components of $G-T$ adjacent to $S$ ). Thus, $\left|N_{H}(S)\right| \geq|S|$ for all such $S$, and $M_{H}$ exists by Hall's Theorem.
(d) Now for each component $C$ of $G-T$ :
if $M_{H}$ contains edge $t_{C} y_{C}$, let $t_{C} v_{C}$ be the corresponding edge in $G$,
otherwise let $v_{C}$ be any vertex of $C$.
Let $M=\bigcup_{\text {comps } C \text { of } G-T} M_{C-v_{C}} \cup\left\{t_{C} v_{C} \mid t_{C} y_{C} \in\right.$

$\left.M_{H}\right\}$. Then $\operatorname{def}(M)=$ (since all vertices of $T$ covered
by $M$, just worry about $G-T) c_{\text {odd }}(G-T)$ (vertices in $G-T$ missed by first term) $-|T|$ (vertices of $G-T$ covered by second term) $=\operatorname{shf}(T)$, as required.
Also gives structure for maximum matchings. If refine a bit more we get Gallai-Edmonds Theorem. Set of maximum shortfall often called a barrier and value of min defect/max shortfall is deficiency of $G$.

Algorithmic material not covered in class, included here in case you are interested

## Bipartite matching algorithm (Egerváry's algorithm)

Idea: Translate flow augmentation into direct operation on matching.
Rough outline: Search for $M$-augmenting paths by building search forest:

- start with all $M$-unsaturated vertices in $X$;
- go down $(X \rightarrow Y)$ on non- $M$ edges;
- go back up $(Y \rightarrow X)$ on $M$ edges (add automatically);
- hoping to get to an $M$-unsaturated vertex in $Y$.

Augment and repeat, until no $M$-augmenting path can be found. Then use current search forest $F$ to find vertex cover that proves $M$ is maximum.

## Exact algorithm

let $M=M_{0}\left(M_{0}=\emptyset\right.$, or chosen greedily $)$;
while find-alt-path-forest $(M, F)$ returns an $M$-augmenting path $P$
augment $M$ using $P$;
maximum matching $M^{*}=M$;
minimum vertex cover $K^{*}=S^{\prime} \cup T$ where
$S^{\prime}=$ vertices of $X$ not in $F$,
$T=$ vertices of $Y$ in $F$.
find-alt-path-forest $(M, F)$ \{
let $F=$ all $M$-unsaturated vertices in $X$;
root each component of $F$;
construct $F$ by modified local tree search as follows: while there is $x y$ with $x \in X \cap V(F), y \in Y-V(F)\{$
add $x y$ to $F ; \quad \#$ necessarily $x y \notin M$
if $y$ is incident with an edge $y x^{\prime}$ of $M$
add $y x^{\prime}$ to $F$;
else
return $M$-augmenting path from root of $y$ 's component to $y$;
\}
return nothing;
\}

Example: Start with obvious vertical matching. Search forest $F$ of alternating paths contains $M$-aug. path dick.


Augment, construct new search forest $F$, contains $M$-aug. path ehbj.


Augment, construct new search forest $F$. (Dashed edges go to an already used vertex.) Now no $M$-aug. path.


So current matching. size 4, is maximum $M^{*}$. Min. vertex cover $K^{*}$ is $S^{\prime}(X$ not in $F) \cup$ $T(Y$ in $F)=\{b, c, e\} \cup\{g, i\}=\{b, c, e, g, i\}$. Notice every edge of $M^{*}$ has exactly one end in $K^{*}$.


Final situation: $S=X \cap V(F), S^{\prime}=X-S, T=$ $Y \cap V(F), T^{\prime}=Y-T$.

- In $S$ get precisely (a) all $M$-unsat. vertices of $X$, and (b) all ends of $M$-edges from $T$.
- In $T$ get all ends of non- $M$-edges from $S$.
- So in $S^{\prime}$ all vertices are $M$-sat., by an $M$-edge from $T^{\prime}$.
- Since no $M$-aug. path, all vertices of $T$ are $M$-sat.
- So no $M$ - or non- $M$-edges in $\left[S, T^{\prime}\right]$; only non- $M$ edges in $\left[S^{\prime}, T\right]$. So $K=S^{\prime} \cup T$ is a vertex cover covering every edge of $M$ exactly once: $|K|=|M|$.


Matching algorithm for general graphs: Egerváry's algorithm can be modified to deal with issues caused by odd cycles. Result is Edmond's algorithm using blossoms.


