MATCHINGS

Reading: B&M 16.1-5.

• matching M: set of independent (pairwise nonadjacent, no common vertex) edges. • M-saturated vertex: incident with edge of M, otherwise M-unsaturated.

• *perfect* matching or 1-*factor*: saturates all vertices.

Examples:

 M_1 , maxim*al*, not maxim*um*

 M_2 , maximum

- **Notation:** For $S \subseteq E(G)$ we also use S to mean G[S] subgraph induced by S, S and ends of edges in S. For sets $S \bigtriangleup T = (S - T) \cup (T - S)$. For subgraphs $H \bigtriangleup J$ is subgraph induced by $E(H) \bigtriangleup E(J)$. Different from previous definition for spanning subgraphs.
- \circ *M*-alternating path: edges alternately in, not in, *M*.
- \circ $M\mathchar`-augmenting path P:$ nontrivial $M\mathchar`-alternating,$ ends $M\mathchar`-unsaturated.$ Then $M\bigtriangleup P$ is a larger matching.

Examples:

 M_1 -augmenting path P_1

Berge's Theorem: A matching M has an M-alternating path \Leftrightarrow it is not maximum. **Proof:** (\Rightarrow) If an M-augmenting path exists, we can find a larger matching than M. edges: must be odd length path, starts and ends with Munsaturated vertices, so *M*-augmenting path as required.

d $M_1 \bigtriangleup M_2$

Corollary M1: Contrapositive: Matching M is maximum \Leftrightarrow no M-augmenting path exists.

Graph Theory

Matchings in bipartite graphs

 $\circ \alpha'(G) =$ size of maximum matching.

 \circ vertex cover K: $K \subseteq V(G)$, every edge has at least one end in K. $\circ \beta(G) =$ cardinality of minimum vertex cover.

(M2) If M matching, K vertex cover, then |M| < |K| since K contains at least one end of each $e \in M$. Hence $\alpha'(G) \leq \beta(G)$. Also if |M| = |K|, then M is maximum, K is minimum. For bipartite graphs will show $\alpha' = \beta$, not true in general..

Bipartite matching \leftrightarrow network flow

Given bipartite G(X, Y), construct flow network: Feasible integer flow in (D, c)↥ Matching M in G

So $\alpha'(G)$ = value of max. xy-flow = capacity of min. xy-cut. So need to examine xy-cuts in D. Infinite capacity edges will not appear in min. cuts.

Given xy-cut $\delta^+ A$, let $S = X \cap A$, S' = X - A, $T = Y \cap A, T' = Y - A \quad (A = \{x\} \cup S \cup T).$

(1) If $[S, T'] \neq \emptyset$ then $c(\delta^+ A) = \infty$.

(2) So $\delta^+ A$ has finite capacity

 $\Leftrightarrow \quad [S, T'] = \emptyset \text{ (in } G)$

 $\Leftrightarrow \quad K = S' \cup T \text{ is a vertex cover (in } G).$ For vertex cover K in G, can take $A = \{x\} \cup (X - X)$ $(K) \cup (Y \cap K)$ in D. So 1-1 correspondence $A \leftrightarrow K$ with $c(\delta^+ A) = |S'| + |T| = |K|$.

(3) Since finite cap. xy-cuts exist (e.g., $\delta^+ x$), $\alpha'(G) = \min$. cap. of xy-cut = min. finite cap. of xy-cut $= \min\{|K| \mid K \text{ a vertex cover}\}\$

 C_5 has $\alpha' = 2 < \beta = 3$.

(4) And
$$\alpha'(G) = \operatorname{cap. of min.} xy\operatorname{-cut} = \min_{\substack{S \subseteq X, T \subseteq Y: N(S) \subseteq T \\ S \subseteq X}} |S'| + |T| = \min_{\substack{S \subseteq X \\ T \subseteq Y: N(S) \subseteq T}} \min_{\substack{S \subseteq X \\ S \subseteq X}} |S'| + |N(S)| \text{ since } N(S) \text{ is smallest } T \text{ with } N(S) \subseteq T$$
$$= \min_{\substack{S \subseteq X \\ S \subseteq X}} |X| - |S| + |N(S)| = |X| - \max_{\substack{S \subseteq X \\ S \subseteq X$$

positive excess means S has too many vertices to match them all to N(S) – Kőnig-Ore formula true for bipartite graphs.

Corollary M3, Hall's Theorem: Bipartite G(X, Y)

has a matching saturating all of X

 $\Leftrightarrow \alpha'(G) = |X|$ $\Leftrightarrow \text{ every } S \subseteq X \text{ has nonpositive excess } (\emptyset \text{ has excess of } 0)$ $\Leftrightarrow |N(S)| \ge |S| \text{ for all } S \subseteq X.$

Corollary M4 (König): For $k \ge 1$, every k-regular bipartite graph G(X, Y) has a perfect matching. Graph does **not** need to be simple. For most matching results can just use underlying simple graph; not this one since underlying simple graph may not be regular.

Proof: From the bipartite degree-sum formula, $\sum_{x \in X} d(x) = k|X| = \sum_{y \in Y} d(y) = k|Y|$, so |X| = |Y|. So it is enough to find a matching saturating X. For any $S \subseteq X$, we have

k|S| = # edges out of $S \leq \#$ edges into N(S) = k|N(S)|so that $|N(S)| \geq |S|$ for all $S \subseteq X$, so by Hall's Theorem the required matching exists.

Corollary M5: For $k \ge 0$, the edges of a k-regular bipartite graph can be partitioned into k perfect matchings. Later will connect this to edge-colourings.

Matchings in general graphs

Look at what restricts size of maximum matching.

Example: G - S has 4 odd components.

- At most 2 odd components have vertex matched to vertex of S.
- \therefore At least two unmatched vertices.
- defect of M is def(M) = number of M-unsaturated vertices = n 2|M|.
- shortfall of $S \subseteq V(G)$ is $shf(S) = c_{odd}(G S) |S|$. My terminology: how much S falls short of helping all odd components get matched. May be positive, 0 or negative. But empty set has nonnegative shortfall so maximum always nonnegative.

(M6) For any matching M and $S \subseteq V(G)$, $def(M) \ge shf(S)$.

(M7) For any $S \subseteq V(G)$, $\operatorname{shf}(S) \equiv |V(G)| \mod 2$. Both even or both odd.

Proof:
$$|V(G)| = \overline{|S| - c_{\text{odd}}(G - S)} + \underbrace{\sum_{\text{odd } C}^{\text{even}} (|V(C)| + 1)}_{\text{odd } C} + \underbrace{\sum_{\text{even } C}^{\text{even}} |V(C)|}_{\text{even } C}.$$

Berge's Formula, 1958: For any G,

the minimum defect of any matching = the maximum shortfall of any $S \subseteq V(G)$.

S

Graph Theory

Hence
$$\alpha'(G) = \frac{1}{2} \left(|V(G)| - \min_{M \text{ matching}} \operatorname{def}(M) \right) = \frac{1}{2} \left(|V(G)| - \max_{S \subseteq V(G)} (c_{\operatorname{odd}}(G-S) - |S|) \right).$$

Special case: $\min_M \operatorname{def}(M) = 0 \Leftrightarrow \max_S \operatorname{shf}(S) = 0 \Leftrightarrow \operatorname{shf}(S) \le 0 \forall S \subseteq V(G)$ ($\operatorname{shf}(\emptyset) \ge 0$) i.e. G has a perfect matching $\Leftrightarrow c_{\operatorname{odd}}(G-S) \le |S| \forall S \subseteq V(G)$

- Tutte's 1-Factor Theorem, 1947.

Berge originally proved his formula using Tutte's Theorem. We prove both together. B&M call this Tutte-Berge Formula/Theorem.

Proof of Berge's Formula: (This proof based on West, Eur. J. Combin. 2011. Similar proof in Kotlov, arXiv:math/0011204v1, 2000.) By induction on |V(G)|. True if |V(G) = 1. Consider a maximal set of maximum shortfall (which is ≥ 0), T. Enough to find matching M with def(M) = shf(T).

(a) All components of G - T are odd: If not, take an even component C and $v \in V(C)$. Then $c_{\text{odd}}(G - (T \cup v)) =$ $c_{\text{odd}}(G - T) + c_{\text{odd}}(C - v) \ge c_{\text{odd}}(G - T) + 1$ and $|T \cup v| =$ |T|+1, giving $\operatorname{shf}(T \cup v) \ge \operatorname{shf}(T)$, contradicting maximality assumptions for T. Will use 'v' to denote set of single vertex v to simplify notation, should not cause any confusion.

(b) If C is a component of G - T and $v \in V(C)$ then C - v has a perfect matching M_{C-v} : We claim that $\operatorname{shf}_{C-v}(S) \leq 0 \forall S \subseteq V(C-v)$. We have

$$\begin{split} \mathrm{shf}_G(T \cup v \cup S) &= c_{\mathrm{odd}}(G - T - v - S) - |T \cup v \cup S| \\ &= (c_{\mathrm{odd}}(G - T) - 1) + c_{\mathrm{odd}}(C - v - S)) - |T| - |S| - 1 \\ &= (c_{\mathrm{odd}}(G - T) - |T|) + (c_{\mathrm{odd}}(C - v - S) - |S|) - 2 \\ &= \mathrm{shf}_G(T) + \mathrm{shf}_{C - v}(S) - 2. \end{split}$$

Since T is maximal of maximum shortfall, $\operatorname{shf}_G(T \cup v \cup S) < \operatorname{shf}_G(T)$, so $\operatorname{shf}_{C-v}(S) \leq 1$. But since C - v is even, by Observation M7 $\operatorname{shf}_{C-v}(S)$ is even, so $\operatorname{shf}_{C-v}(S) \leq 0$. Thus, by induction (using the special case) C - v has a perfect matching.

(c) Now can find matching of defect $\operatorname{shf}(T)$ as long as can match every vertex of T to a component of G-T. To do this, use bipartite matching! Construct a bipartite graph H from G by (1) deleting all edges inside T, and (2) contracting every component C of G-T to a single vertex y_C ; let Y be the set of such y_C 's. Then H has a matching M_H saturating T: Let $S \subseteq T$, then

$$|Y| - |T| = c_{odd}(G - T) - |T| = \operatorname{shf}_G(T)$$

$$\geq \operatorname{shf}_G(T - S) = c_{odd}(G - (T - S)) - |T - S|$$

$$\geq |Y - N_H(S)| - |T| + |S|$$

$$= |Y| - |T| + |S| - |N_H(S)|$$

because for every $y_C \notin N_H(S)$, C is an odd component of G - (T - S) (may also be other odd components from S and components of G - T adjacent to S). Thus, $|N_H(S)| \ge |S|$ for all such S, and M_H exists by Hall's Theorem.

- (d) Now for each component C of G T:
 - if M_H contains edge $t_C y_C$, let $t_C v_C$ be the corresponding edge in G,
 - otherwise let v_C be any vertex of C.

Let $M = \bigcup_{\text{comps } C \text{ of } G-T} M_{C-v_C} \cup \{t_C v_C \mid t_C y_C \in M_H\}$. Then def(M) = (since all vertices of T covered)by M, just worry about G-T) $c_{\text{odd}}(G-T)$ (vertices in G-T missed by first term) -|T| (vertices of G-Tcovered by second term) = shf(T), as required.

Also gives structure for maximum matchings. If refine a bit more we get Gallai-Edmonds Theorem. Set of maximum shortfall often called a *barrier* and value of min defect/max shortfall is *deficiency* of G.

Algorithmic material not covered in class, included here in case you are interested

Bipartite matching algorithm (Egerváry's algorithm)

Idea: Translate flow augmentation into direct operation on matching.

Rough outline: Search for *M*-augmenting paths by building search forest:

- start with all M-unsaturated vertices in X;
- go down $(X \to Y)$ on non-*M* edges;
- go back up $(Y \to X)$ on M edges (add automatically);
- hoping to get to an M-unsaturated vertex in Y.

Augment and repeat, until no M-augmenting path can be found. Then use current search forest F to find vertex cover that proves M is maximum.

Exact algorithm

let $M = M_0$ ($M_0 = \emptyset$, or chosen greedily); while find-alt-path-forest(M, F) returns an M-augmenting path P augment M using P: maximum matching $M^* = M$; minimum vertex cover $K^* = S' \cup T$ where S' =vertices of X not in F, T =vertices of Y in F. find-alt-path-forest(M, F) { let F = all M-unsaturated vertices in X; root each component of F; construct F by modified local tree search as follows: while there is xy with $x \in X \cap V(F), y \in Y - V(F)$ { add xy to F; # necessarily $xy \notin M$ if y is incident with an edge yx' of M add yx' to F; else return *M*-augmenting path from root of y's component to y; return nothing: }

Example: Start with obvious vertical matching. Search forest F of alternating paths contains M-aug. path dick.

Augment, construct new search forest F, contains M-aug. path ehbj.

Augment, construct new search forest F. (Dashed edges go to an already used vertex.) Now no M-aug. path.

So current matching. size 4, is maximum M^* . Min. vertex cover K^* is $S'(X \text{ not in } F) \cup T(Y \text{ in } F) = \{b, c, e\} \cup \{g, i\} = \{b, c, e, g, i\}$. Notice every edge of M^* has exactly one end in K^* .

Final situation: $S = X \cap V(F)$, S' = X - S, $T = Y \cap V(F)$, T' = Y - T.

- In S get precisely (a) all M-unsat. vertices of X, and (b) all ends of M-edges from T.
- In T get all ends of non-M-edges from S.
- So in S' all vertices are M-sat., by an M-edge from T'.
- Since no M-aug. path, all vertices of T are M-sat.
- So no M- or non-M-edges in [S, T']; only non-Medges in [S', T]. So $K = S' \cup T$ is a vertex cover covering every edge of M exactly once: |K| = |M|.

Matching algorithm for general graphs: Egerváry's algorithm can be modified to deal with issues caused by odd cycles. Result is *Edmond's algorithm* using *blossoms*.

