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MATCHINGS

Reading: B&M 16.1-5.

Examples: Assignment Problem Roommate Problem
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◦ matching M : set of independent (pairwise nonadjacent, no common vertex) edges.
◦ M -saturated vertex: incident with edge of M , otherwise M -unsaturated .
◦ perfect matching or 1-factor : saturates all vertices.

Examples:
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M1, maximal , not maximum
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M2, maximum

Notation: For S ⊆ E(G) we also use S to mean G[S] subgraph induced by S, S and ends of edges
in S. For sets S △ T = (S − T ) ∪ (T − S). For subgraphs H △ J is subgraph induced by
E(H)△ E(J). Different from previous definition for spanning subgraphs.

◦ M -alternating path: edges alternately in, not in, M .
◦ M -augmenting path P : nontrivial M -alternating, ends M -unsaturated. Then M △ P is a larger

matching.

Examples:
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M1-augmenting path P1
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M1 △ P1

Berge’s Theorem: A matching M has an M -alternating path ⇔ it is not maximum.

Proof: (⇒) If an M -augmenting path exists, we can find a larger matching than M .
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(⇐) Suppose M is not maximum. Let M ′ be a matching
that is maximum. Let F = M △M ′. The components of
F are M -alternating paths or even cycles. Since |M ′| >
|M |, some component of M ′ has more M ′ edges than M
edges: must be odd length path, starts and ends with M -
unsaturated vertices, so M -augmenting path as required.

a

c

e g

i

b

d

f h

M1 △M2

Corollary M1: Contrapositive: Matching M is maximum ⇔ no M -augmenting path exists.

Matchings in bipartite graphs

◦ α′(G) = size of maximum matching.

◦ vertex cover K: K ⊆ V (G), every edge has at least one end in K.
◦ β(G) = cardinality of minimum vertex cover.

(M2) IfM matching, K vertex cover, then |M | ≤ |K| sinceK contains
at least one end of each e ∈ M . Hence α′(G) ≤ β(G). Also if
|M | = |K|, then M is maximum, K is minimum. For bipartite graphs
will show α′ = β, not true in general..

C5 has α′ = 2 < β = 3.

Bipartite matching ↔ network flow

Given bipartite G(X,Y ), construct flow network:
Feasible integer flow in (D, c)

l
Matching M in G

So α′(G) = value of max. xy-flow = capacity
of min. xy-cut. So need to examine xy-cuts in
D. Infinite capacity edges will not appear in min.
cuts.

Given xy-cut δ+A, let S = X ∩A, S′ = X −A,
T = Y ∩A, T ′ = Y −A (A = {x}∪S ∪T ).

(1) If [S, T ′] 6= ∅ then c(δ+A) = ∞.

(2) So δ+A has finite capacity
⇔ [S, T ′] = ∅ (in G)
⇔ K = S′ ∪ T is a vertex cover (in G).

For vertex cover K in G, can take A = {x}∪(X−
K)∪(Y ∩K) in D. So 1-1 correspondence A ↔ K
with c(δ+A) = |S′|+ |T | = |K|.

(3) Since finite cap. xy-cuts exist (e.g., δ+x),
α′(G) = min. cap. of xy-cut
= min. finite cap. of xy-cut
= min{|K| | K a vertex cover}
= β(G) – Kőnig-Egerváry Theorem true for bipartite graphs.
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(4) And α′(G) = cap. of min. xy-cut = min
S⊆X,T⊆Y :N(S)⊆T

|S′|+ |T | = min
S⊆X

min
T⊆Y :N(S)⊆T

|S′|+ |T |

= min
S⊆X

|S′|+ |N(S)| since N(S) is smallest T with N(S) ⊆ T

= min
S⊆X

|X| − |S|+ |N(S)| = |X| −max
S⊆X

(|S| − |N(S)|)
︸ ︷︷ ︸

excess of S
positive excess means S has too many vertices to match them all to N(S)

– Kőnig-Ore formula true for bipartite graphs.

Corollary M3, Hall’s Theorem: Bipartite G(X,Y )
has a matching saturating all of X

⇔ α′(G) = |X|
⇔ every S ⊆ X has nonpositive excess (∅ has

excess of 0)
⇔ |N(S)| ≥ |S| for all S ⊆ X.

Corollary M4 (Kőnig): For k ≥ 1, every k-regular bipartite graph G(X,Y ) has a perfect
matching. Graph does not need to be simple. For most matching results can just use underlying
simple graph; not this one since underlying simple graph may not be regular.

Proof: From the bipartite degree-sum formula,
∑

x∈X d(x) = k|X| =
∑

y∈Y d(y) = k|Y |, so
|X| = |Y |. So it is enough to find a matching saturating X. For any S ⊆ X, we have

k|S| = # edges out of S ≤ # edges into N(S) = k|N(S)|
so that |N(S)| ≥ |S| for all S ⊆ X, so by Hall’s Theorem the required matching exists.

Corollary M5: For k ≥ 0, the edges of a k-regular bipartite graph can be partitioned into k
perfect matchings. Later will connect this to edge-colourings.

Matchings in general graphs

Look at what restricts size of maximum matching.

Example: G− S has 4 odd components.
At most 2 odd components have vertex matched to

vertex of S.

··· At least two unmatched vertices.

◦ defect of M is def(M) = number of M -unsaturated
vertices = n− 2|M |.

◦ shortfall of S ⊆ V (G) is shf(S) = codd(G− S)− |S|. My terminology: how much S falls short of
helping all odd components get matched. May be positive, 0 or negative. But empty set has
nonnegative shortfall so maximum always nonnegative.

(M6) For any matching M and S ⊆ V (G), def(M) ≥ shf(S).

(M7) For any S ⊆ V (G), shf(S) ≡ |V (G)| mod 2. Both even or both odd.

Proof: |V (G)| =

−shf(S)
︷ ︸︸ ︷

|S| − codd(G − S)+

even
︷ ︸︸ ︷
∑

odd C

(|V (C)|+ 1)+

even
︷ ︸︸ ︷
∑

even C

|V (C)|.

Berge’s Formula, 1958: For any G,
the minimum defect of any matching = the maximum shortfall of any S ⊆ V (G).
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Hence α′(G) = 1
2

(

|V (G)| − min
M matching

def(M)

)

= 1
2

(

|V (G)| − max
S⊆V (G)

(codd(G− S)− |S|)

)

.

Special case: minM def(M) = 0 ⇔ maxS shf(S) = 0 ⇔ shf(S) ≤ 0 ∀ S ⊆ V (G) (shf(∅) ≥ 0)
i.e. G has a perfect matching ⇔ codd(G− S) ≤ |S| ∀ S ⊆ V (G)
– Tutte’s 1-Factor Theorem, 1947.

Berge originally proved his formula using Tutte’s Theorem. We prove both together.
B&M call this Tutte-Berge Formula/Theorem.

Proof of Berge’s Formula: (This proof based on West, Eur. J. Combin. 2011. Similar proof
in Kotlov, arXiv:math/0011204v1, 2000.) By induction on |V (G)|. True if |V (G) = 1. Consider a
maximal set of maximum shortfall (which is ≥ 0), T . Enough to find matching M with def(M) =
shf(T ).

(a) All components of G− T are odd: If not, take an even
component C and v ∈ V (C). Then codd(G − (T ∪ v)) =
codd(G− T ) + codd(C − v) ≥ codd(G− T ) + 1 and |T ∪ v| =
|T |+1, giving shf(T∪v) ≥ shf(T ), contradicting maximality
assumptions for T . Will use ‘v’ to denote set of single vertex
v to simplify notation, should not cause any confusion.

(b) If C is a component of G − T and v ∈ V (C) then
C − v has a perfect matching MC−v : We claim that
shfC−v(S) ≤ 0 ∀ S ⊆ V (C − v). We have

shfG(T ∪ v ∪ S) = codd(G−T−v−S)−|T ∪ v ∪ S|

= (codd(G−T )−1) + codd(C−v−S))−|T |−|S|−1

= (codd(G−T )−|T |) + (codd(C−v−S)−|S|)−2

= shfG(T ) + shfC−v(S)−2.

Since T is maximal of maximum shortfall, shfG(T ∪ v∪S) < shfG(T ), so shfC−v(S) ≤ 1. But since
C − v is even, by Observation M7 shfC−v(S) is even, so shfC−v(S) ≤ 0. Thus, by induction (using
the special case) C − v has a perfect matching.

(c) Now can find matching of defect shf(T ) as long
as can match every vertex of T to a component of
G− T . To do this, use bipartite matching! Construct
a bipartite graph H from G by (1) deleting all edges
inside T , and (2) contracting every component C of
G − T to a single vertex yC ; let Y be the set of such
yC ’s. Then H has a matching MH saturating T : Let
S ⊆ T , then

|Y | − |T | = codd(G− T )− |T | = shfG(T )

≥ shfG(T − S) = codd(G− (T − S))− |T − S|

≥ |Y −NH(S)| − |T |+ |S|

= |Y | − |T |+ |S| − |NH(S)|

because for every yC /∈ NH(S), C is an odd component of G − (T − S) (may also be other odd
components from S and components of G− T adjacent to S). Thus, |NH(S)| ≥ |S| for all such S,
and MH exists by Hall’s Theorem.
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(d) Now for each component C of G− T :
if MH contains edge tCyC , let tCvC be the corre-

sponding edge in G,
otherwise let vC be any vertex of C.

Let M =
⋃

comps C of G−T MC−vC ∪ {tCvC | tCyC ∈
MH}. Then def(M) = (since all vertices of T covered
by M , just worry about G− T ) codd(G− T ) (vertices
in G− T missed by first term) −|T | (vertices of G− T
covered by second term) = shf(T ), as required.

Also gives structure for maximum matchings. If refine a bit more we get Gallai-Edmonds Theorem.
Set of maximum shortfall often called a barrier and value of min defect/max shortfall is deficiency

of G.

Algorithmic material not covered in class, included here in case you are interested

Bipartite matching algorithm (Egerváry’s algorithm)

Idea: Translate flow augmentation into direct operation on matching.

Rough outline: Search for M -augmenting paths by building search forest:
- start with all M -unsaturated vertices in X;
- go down (X → Y ) on non-M edges;
- go back up (Y → X) on M edges (add automatically);
- hoping to get to an M -unsaturated vertex in Y .

Augment and repeat, until no M -augmenting path can be found. Then use current search forest F
to find vertex cover that proves M is maximum.

Exact algorithm

let M = M0 (M0 = ∅, or chosen greedily);
while find-alt-path-forest(M,F ) returns an M -augmenting path P

augment M using P ;
maximum matching M∗ = M ;
minimum vertex cover K∗ = S′ ∪ T where

S′ = vertices of X not in F ,
T = vertices of Y in F .

find-alt-path-forest(M,F ) {
let F = all M -unsaturated vertices in X;
root each component of F ;
construct F by modified local tree search as follows:

while there is xy with x ∈ X ∩ V (F ), y ∈ Y − V (F ) {
add xy to F ; # necessarily xy /∈ M
if y is incident with an edge yx′ of M

add yx′ to F ;
else

return M -augmenting path from root of y’s component to y;
}

return nothing;
}
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Example: Start with obvious vertical matching. Search forest F of alternating paths contains
M -aug. path dick.

a b c d e f

g h i j k ℓ

a c

d e f

g i

k

Augment, construct new search forest F , contains M -aug. path ehbj.

a b c d e f

g h i j k ℓ

b

e f

h

j

Augment, construct new search forest F . (Dashed edges go to an already used vertex.) Now no
M -aug. path.

a b c d e f

g h i j k ℓ a d

f

g i

So current matching. size 4, is maximum M∗. Min. vertex cover K∗ is S′ (X not in F ) ∪
T (Y in F ) = {b, c, e} ∪ {g, i} = {b, c, e, g, i}. Notice every edge of M∗ has exactly one end in
K∗.

a b c d e f

g h i j k ℓ
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Final situation: S = X ∩ V (F ), S′ = X − S, T =
Y ∩ V (F ), T ′ = Y − T .

• In S get precisely (a) all M -unsat. vertices of X, and
(b) all ends of M -edges from T .

• In T get all ends of non-M -edges from S.
• So in S′ all vertices are M -sat., by an M -edge from

T ′.
• Since no M -aug. path, all vertices of T are M -sat.
• So no M - or non-M -edges in [S, T ′]; only non-M -

edges in [S′, T ]. So K = S′ ∪ T is a vertex cover
covering every edge ofM exactly once: |K| = |M |.

Matching algorithm for general graphs: Egerváry’s
algorithm can be modified to deal with issues caused by
odd cycles. Result is Edmond’s algorithm using blossoms.
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